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COMMUTATORS OF RIESZ TRANSFORMS RELATED TO
SCHRÖDINGER OPERATORS

B. BONGIOANNI, E. HARBOURE AND O. SALINAS

Abstract. In this work we obtain boundedness on Lp, for 1 < p < ∞, of

commutators Tbf = bTf − T (bf) where T is any of the Riesz transforms

or their conjugates associated to the Schrödinger operator −∆ + V with V
satisfying an appropriate reverse Hölder inequality. The class where b belongs

is larger than the usual BMO. We also obtain a substitute result for p =∞,

under a slightly stronger condition on b.

1. Introduction

Let us consider the Schrödinger operator

L = −∆ + V

in Rd, d ≥ 3. The function V is non-negative, V 6= 0, and belongs to a reverse-
Hölder class RHq for some exponent q > d/2, i.e. there exists a constant C such
that

(1)
(

1
|B|

∫
B

V (y)q dy
)1/q

≤ C

|B|

∫
B

V (y) dy,

for every ball B ⊂ Rd.
We associate to the differential operator L the vector valued Riesz Transform

R = ∇(−∆ + V )−1/2.

This operator has been considered in [10], where the author shows that it is bounded
on Lp(Rd) for 1 < p < p0, with p0 depending on q in a way that if V ∈ RHq with
q ≥ d, it results p0 = ∞. Moreover, Z. Shen shows that in that case R and its
adjoint R∗ are in fact Calderón-Zygmund operators (see [10]).

As in [10], we will use the auxiliary function ρ defined for x ∈ Rd as

(2) ρ(x) = sup

{
r > 0 :

1
rd−2

∫
B(x,r)

V ≤ 1

}
.

Under the above conditions on V , we have 0 < ρ(x) <∞.
For θ > 0, we define the class BMOθ(ρ) of locally integrable functions b such

that

(3)
1

|B(x, r)|

∫
B(x,r)

|b(y)− bB | dy ≤ C
(

1 +
r

ρ(x)

)θ
,
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2 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

for all x ∈ Rd and r > 0, where bB = 1
B

∫
B
b. A norm for b ∈ BMOθ(ρ), denoted

by [b]θ, is given by the infimum of the constants satisfying (3), after identifying
functions that differ upon a constant. Notice that if we let θ = 0 in (3) we obtain
the John-Nirenberg space BMO.

Now, with the above definition in mind, we define BMO∞(ρ) = ∪θ>0BMOθ(ρ).
Clearly BMO ⊂ BMOθ(ρ) ⊂ BMOθ′(ρ) for 0 < θ ≤ θ′, and hence BMO ⊂
BMO∞(ρ). Moreover, it is in general a larger class. As an example, when ρ is
constant (which corresponds to V a positive constant) the functions bj(x) = |xj |,
1 ≤ j ≤ d, belong to BMO∞(ρ) but not to BMO. Also, when V (x) = |x|2
and L becomes the Hermite operator, we obtain ρ(x) ' 1

1+|x| and we may take
b(x) = |xj |2.

We denote by T either R or R∗. For b ∈ BMO∞(ρ) we will consider the
commutator operator

(4) Tbf(x) = T (bf)(x)− b(x)Tf(x), x ∈ Rd.
Before stating the main theorems we introduce the definition of the reverse

Hölder index of V as q0 = sup{q : V ∈ RHq}. It is known that V ∈ RHq implies
V ∈ RHq+ε for some ε > 0 (see [5]). Therefore, under the assumption V ∈ RHd/2

we may conclude q0 > d/2.
Finally recall that V ∈ RHq for some q > 1 implies that V satisfies the doubling

condition, i.e., there exist constants µ ≥ 1 and C such that

(5)
∫
tB

V ≤ C tdµ
∫
B

V,

holds for every ball B and t > 1.
Now, we are in position to state our first result.

Theorem 1. Let V ∈ RHd/2, b ∈ BMO∞(ρ) and p0 such that 1/p0 = (1/q0 − 1/d)+,
where q0 is the reverse Hölder index of V .

i) If 1 < p < p0, then
‖Rbf‖p ≤ Cb‖f‖p,

for all f ∈ Lp.
ii) If p′0 < p <∞, then

‖R∗bf‖p ≤ Cb‖f‖p,
for all f ∈ Lp.

Moreover, Cb . [b]θ whenever b ∈ BMOθ(ρ).

In order to present our result concerning the behavior of commutators for p =∞
we need the following definition.

The space BMOL is defined as the set of functions f in L1
loc satisfying that there

exists a constant C such that for every ball B = B(x, r),∫
B

|f − fB | ≤ C |B|,

if r < ρ(x), and ∫
B

|f | ≤ C |B|,

if r ≥ ρ(x).
This space was introduced in [3] as the appropriate substitute of BMO in the

study of the boundedness of operators associated to L.
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COMMUTATORS OF RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS. . . 3

Regarding the Riesz transforms, it was shown in [1] that R∗ preserves BMOL

when q0 > d/2, and the same occurs with R under the stronger assumption q0 > d.
Since L∞ is continuously embedded in BMOL, these results imply the L∞ – BMOL

continuity of R and R∗, under the stated hypothesis on q0. We point out that even
when R and R∗ are Calderón-Zygmund these results are sharper than those derived
from Calderón-Zygmund theory since BMOL ⊂ BMO.

It is a natural question to ask for the class of functions b such that Rb and R∗b
are also bounded operators from L∞ into BMOL. For this purpose we introduce
the following definition.

For θ > 0, we denote by BMOlog
θ (ρ) the set of functions b such that

1
|B(x, r)|

∫
B(x,r)

|b− bB | ≤ C
(1 + r/ρ(x))θ

1 + log+(ρ(x)/r)
,

for all x ∈ Rd and r > 0. Correspondingly, we defineBMOlog
∞ (ρ) = ∪θ>0BMOlog

θ (ρ).
Our second result can be stated as follows.

Theorem 2. Let V ∈ RHd/2 and b ∈ BMO∞(ρ), then

i) R∗b : L∞ 7→ BMOL if and only if b ∈ BMOlog
∞ (ρ).

ii) If V ∈ RHd, the above result is also true for Rb.

The contents of Theorem 1 were already known for functions b in BMO. In
the case q0 > d, since R and R∗ are Calderón-Zygmund operators, the bounded-
ness of commutators follows from the general theory (see [2] and [8] for instance).
The result for R∗b when d/2 < q0 < d was recently proved in [6]. The novelty of
Theorem 1 relies on the extension of the Lp-boundedness for b belonging to the
larger class BMO∞(ρ). Theorem 2 is completely new for this kind of Riesz trans-
forms. However, there is a result in that direction for the classical case L = −∆ in
[7]. There, the authors show that commutators of the Hilbert transform are never
bounded from L∞ into BMO except for the trivial case when b is constant.

Our approach to handle commutators is the Strömberg technique that was also
used in [6]. That involves to obtain a point-wise majorization of the sharp maximal
function of the commutators. In this article we reduce the problem to estimate
a more appropriate and smaller sharp maximal function which takes into account
only local balls, namely those contained in a critical ball. In order to do so we
prove a suitable Fefferman-Stein inequality (see Lemma 2).

The clue that allows us to enlarge the class of functions b with respect to the
classical case, relies on the stronger decay of the kernels and their modulus of
continuity outside critical balls, contained in Lemma 3 and Lemma 4.

The paper is organized as follows. In the next section we present some properties
of the space BMO∞(ρ) and a Fefferman-Stein type inequality. In Section 3 we
collect some useful estimates of the kernels of R and R∗. Section 4 is devoted to
prove some estimates of averages and oscillations related to commutators that will
be used in the last section to prove Theorem 1 as well as Theorem 2.
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4 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

2. Preliminary lemmas and propositions

Proposition 1 ([10]). Let V ∈ RHd/2. For the associated function ρ there exist C
and k0 ≥ 1 such that

(6) C−1ρ(x)
(

1 +
|x− y|
ρ(x)

)−k0
≤ ρ(y) ≤ C ρ(x)

(
1 +
|x− y|
ρ(x)

) k0
k0+1

for all x, y ∈ Rd.

A ball B(x, ρ(x)) is called critical.

Proposition 2 ([4]). There exists a sequence of points {xk}∞k=1 in Rd, so that the
family of critical balls Qk = B(xk, ρ(xk)), k ≥ 1, satisfies

i) ∪kQk = Rd.
ii) There exists N such that for every k ∈ N, card{j : 4Qj ∩ 4Qk 6= ∅} ≤ N .

Inequality (6) implies that if x, y ∈ Q, and Q is a critical ball, then

(7) ρ(x) ≤ C0ρ(y)

where the constant C0 depends on the constants C and k0 in (6).

Proposition 3. Let θ > 0 and 1 ≤ s <∞. If b ∈ BMOθ(ρ), then

(8)
(

1
|B|

∫
B

|b− bB |s
)1/s

. [b]θ

(
1 +

r

ρ(x)

)θ′
,

for all B = B(x, r), with x ∈ Rd and r > 0, where θ′ = (k0 + 1)θ and k0 the
constant appearing in (6).

Proof. From the standard John-Nirenberg inequality (see []), given a ball B0 and a
function g ∈ BMO(B0) we have, for each 1 ≤ s <∞,

(9)
(

1
|B|

∫
B

|g − gB |s
)1/s

≤ C ‖g‖BMO(B0),

for every ball B ⊂ B0, where the constant C does not depend on the ball B0.
Therefore, to prove (8) we only need to show the claim: if R ≥ 1 and Q is a

critical ball, then we have b ∈ BMO(RQ) and

‖b‖BMO(RQ) . [b]θ (1 +R)(k0+1)θ.

If this is true, an application of (9), gives that for any ball B ⊂ RQ,

(10)
(

1
|B|

∫
B

|b− bB |s
)1/s

. [b]θ (1 +R)(k0+1)θ.

Now, let B = B(x, r) and Q = B(x, ρ(x)), with x ∈ Rd and r > 0. If r ≤ ρ(x),
we choose R = 1, and we may apply (10) to get (8). In the case r > ρ(x), we notice
that B = r

ρ(x)Q. Then we apply (10) with R = r
ρ(x) which yields (8).

It remains to prove the claim. Let B = B(z, r) ⊂ RQ, with z ∈ Rd and r > 0.
Due to (6), we have

ρ(x)(1 +R)−k0 . ρ(z),
then, since r < Rρ(x),

r

ρ(z)
. (1 +R)(k0+1).
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COMMUTATORS OF RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS. . . 5

Using that b ∈ BMOθ(ρ), it leads to

1
|B|

∫
B

|b− bB | . [b]θ (1 +R)(k0+1)θ.

�

Lemma 1. Let b ∈ BMOθ(ρ), B = B(x0, r) and s ≥ 1, then(
1
|2kB|

∫
2kB

|b− bB |s
)1/s

. [b]θ k
(

1 +
2kr
ρ(x0)

)θ′
,

for all k ∈ N, with θ′ as in (8).

Proof. Following standard arguments and Proposition 3, we have(
1
|2kB|

∫
2kB

|b− bB |s
)1/s

.

(
1
|2kB|

∫
2kB

|b− b2kB |s
)1/s

+
k∑
j=1

|b2jB − b2j−1B |

. [b]θ
k∑
j=1

(
1 +

2jr
ρ(x0)

)θ′

. [b]θ k
(

1 +
2kr
ρ(x0)

)θ′
.

�

Given α > 0 we define the following maximal functions for g ∈ L1
loc(Rd) and

x ∈ Rd,

Mρ,αg(x) = sup
x∈B∈Bρ,α

1
|B|

∫
B

|g|,

M ]
ρ,αg(x) = sup

x∈B∈Bρ,α

1
|B|

∫
B

|g − gB |,

where Bρ,α = {B(y, r) : y ∈ Rd, and r ≤ αρ(y)}.
Also, given a ball Q ⊂ Rd, for g ∈ L1

loc(Q) and x ∈ Q, we define

(11) MQg(x) = sup
x∈B∈F(Q)

1
|B ∩Q|

∫
B∩Q

|g|,

and

(12) M ]
Qg(x) = sup

x∈B∈F(Q)

1
|B ∩Q|

∫
B∩Q

|g − gB∩Q|,

where F(Q) = {B(y, r) : y ∈ Q, r > 0}.
Let us note that if g is supported in Q, operators (11) and (12) coincide with

the standard definitions of Hardy-Littlewood and sharp maximal functions defined
in Q viewed as a space of homogeneous type with the Euclidean metric and the
Lebesgue measure restricted to Q.
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6 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

Lemma 2 (Fefferman–Stein type inequality). For 1 < p <∞, there exist β and γ
such that if {Qk}∞k=1 is a sequence of balls as in Proposition 2, then∫

Rd
|Mρ,β(g)|p .

∫
Rd
|M ]

ρ,γ(g)|p +
∑
k

|Qk|
(

1
|Qk|

∫
2Qk

|g|
)p

,

for all g ∈ L1
loc(Rd).

Proof. The main tool to prove this lemma is the Fefferman-Stein inequality in the
setting of spaces of homogeneous type with finite measure given by Proposition 3.4
in [9]. We point out that in this case the finiteness of the Lp norm of the maximal
function is not needed (in fact that assumption is only used to prove that the left
hand side of inequality 3.14 there is finite, but this follows immediately from the
finiteness of the measure of the space).

If Q is a critical ball and x ∈ Q, it is not difficult to see that

(13) Mρ,βg(x) ≤ M2Q(gχ2Q)(x),

with β = 1
2C2

0
(where C0 is the constant appearing in (7)), and for x ∈ 2Q,

(14) M ]
2Q(gχ2Q)(x) . M ]

ρ,2g(x).

We give an outline of the proof of the last inequality since (13) is even easier.
In fact, given a ball B = B(y, r) ∈ F(2Q), we divide the argument according to

r greater or less than 3−
k0
k0+1 ρ(x0)

C where C and k0 are the constants appearing in
(6). In the first case the ball B has size comparable to 2Q which belongs to Bρ,2.
The other case we just use that B ∈ Bρ,1 ⊂ Bρ,2.

Now we use the decomposition of Rd given by Proposition 2, the mentioned
Proposition 3.4 in [9], and inequalities (13) and (14), to obtain∫

Rd
|Mρ,β(g)|p ≤

∑
k

∫
Qk

|Mρ,β(g)|p

≤
∑
k

∫
Qk

|M2Qk(gχ2Qk)|p

.
∑
k

∫
2Qk

|M ]
2Qk

(gχ2Qk)|p +
∑
k

|2Qk|
(

1
|2Qk|

∫
2Qk

|g|
)p

.
∑
k

∫
2Qk

|M ]
ρ,4(g)|p +

∑
k

|Qk|
(

1
|Qk|

∫
2Qk

|g|
)p

.
∫

Rd
|M ]

ρ,4(g)|p +
∑
k

|Qk|
(

1
|Qk|

∫
2Qk

|g|
)p

,

where in the last inequality we have used the finite overlapping property given by
Proposition 2. �

3. Estimates for the kernels of R and R∗

Let K and K∗ be the vector valued kernels of R and R∗ respectively.

Lemma 3. If V ∈ RHd/2, then we have:
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COMMUTATORS OF RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS. . . 7

i) For every N there exists a constant C such that

(15) |K∗(x, z)| ≤
C
(

1 + |x−z|
ρ(x)

)−N
|x− z|d−1

(∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du+
1

|x− z|

)
.

Moreover, the last inequality also holds with ρ(x) replaced by ρ(z).
ii) For every N and 0 < δ < min{1, 2− d/q0} there exists a constant C such that

|K∗(x, z)−K∗(y, z)| ≤

C |x− y|δ
(

1 + |x−z|
ρ(x)

)−N
|x− z|d−1+δ

(∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du+
1

|x− z|

)(16)

whenever |x− y| < 2
3 |x− z|. Moreover, the last inequality also holds with ρ(x)

replaced by ρ(z).
iii) If K∗ denotes the Rd vector valued kernel of the adjoint of the classical Riesz

operator, then for every 0 < σ < 2− d/q0,

|K∗(x, z)−K∗(x, z)| ≤

C

|x− z|d−1

(∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du+
1

|x− z|

(
|x− z|
ρ(x)

)σ)
,

(17)

whenever |x− y| < ρ(x).
iv) When q0 > d, the term involving V can be dropped from inequalities (15), (16)

and (17).

Proof. Inequalities (15) and (17) are basically contained in [10], and (16) can be
found in [6]. Statement iv) for (17) is a consequence of Lemma 1 in [1] since it gives
the boundedness of the first term by the second one. The remaining inequalities
follow from the same lemma, applying (15) and (16) with perhaps a different N .

�

Lemma 4. If V ∈ RHd, then we have:

i) For every N there exists a constant C such that

(18) |K(x, z)| ≤
C
(

1 + |x−z|
ρ(x)

)−N
|x− z|d

.

ii) For every N and 0 < δ < min{1, 1− d/q0} there exists a constant C such that

(19) |K(x, z)−K(y, z)| ≤
C |x− y|δ

(
1 + |x−z|

ρ(x)

)−N
|x− z|d+δ

whenever |x− y| < 2
3 |x− z|.

iii) If K denotes the Rd vector valued kernel of the classical Riesz operator, for
every 0 < σ < 2− d/q0, we have

(20) |K(x, z)−K(x, z)| ≤ C

|x− z|d

(
|x− z|
ρ(z)

)σ
.
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8 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

Proof. Estimate (18) can be found in [10, inequality (6.5)]. Estimates (19) and (20)
are also basically contained in [10]. Details for (20) are given in [1]. As for (19) in
[10] it is proved for N = 0. Nevertheless, the same argument can be applied to any
positive N .

�

Remark 1. Let us observe that when V ∈ RHd, (18) and (19) together with (16)
and Lemma 3 iv) imply that K and K∗ are Calderón-Zygmund kernels.

4. Technical lemmas

As usual we denote by M the Hardy-Littlewood maximal function and, for s > 1,
by Ms the operator defined as Msf = (M(fs))1/s.

Lemma 5. Let V ∈ RHd/2 , 1/p0 = (1/q0 − 1/d)+, and b ∈ BMOθ(ρ). Then, for
any s > p′0 there exists a constant C such that

1
|Q|

∫
Q

|R∗bf | ≤ C [b]θ inf
y∈Q

Msf(y),

for all f ∈ Lsloc(Rd) and every ball Q = B(x0, ρ(x0)). Additionally, if q0 > d, the
above estimate also holds for R instead of R∗.

Proof. Let f ∈ Lp(Rd) and Q = B(x0, ρ(x0)). We first observe

(21) R∗bf = (b− bQ)R∗f −R∗(f(b− bQ)),

and so we have to deal with the average on Q of each term.
By Hölder’s inequality with s > p′0 and Lemma 1,

1
|Q|

∫
Q

|(b− bQ)R∗f | ≤
(

1
|Q|

∫
Q

|b− bQ|s
′
)1/s′ ( 1

|Q|

∫
Rd
|R∗f |s

)1/s

. [b]θ

(
1
|Q|

∫
Q

|R∗f |s
)1/s

.

If we write f = f1 + f2 with f1 = fχ2Q then, using that R∗ is bounded on
Ls(Rd) with s > p′0,(

1
|Q|

∫
Q

|R∗f1|s
)1/s

.

(
1
|Q|

∫
2Q

|f |s
)1/s

. inf
y∈Q

Msf(y).
(22)

Now, for x ∈ Q and using (15) in Lemma 3, we have

|R∗f2(x)| =

∣∣∣∣∣
∫
|x0−z|>2ρ(x0)

K∗(x, z) f(z) dz

∣∣∣∣∣
. I1(x) + I2(x),

where

I1(x) =
∫
|x0−z|>2ρ(x0)

|f(z)|

|x− z|d
(

1 + |x−z|
ρ(x)

)N dz
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COMMUTATORS OF RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS. . . 9

and

I2(x) =
∫
|x0−z|>2ρ(x0)

|f(z)|

|x− z|d−1
(

1 + |x−z|
ρ(x)

)N ∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du dz.

To deal with I1(x), using that in our situation ρ(x) ' ρ(x0) and |x−z| ' |x0−z|,
we split into annuli to obtain

I1(x) .
∑
k≥1

2−Nk

(2kρ(x0))d

∫
|x0−z|<2kρ(x0)

|f(z)| dz

. inf
y∈Q

Mf(y).
(23)

To take care of I2(x), having in mind Lemma 3 (iv) we may assume d/2 < q0 < d.
Then, since x ∈ Q,

I2(x) .
∫
|x0−z|>2ρ(x0)

|f(z)|

|x0 − z|d−1
(

1 + |x0−z|
ρ(x0)

)N ∫
B(x0,4|x0−z|)

V (u)
|u− z|d−1

du dz

.
∑
k≥1

2−Nk

(2kρ(x0))d−1

∫
|x0−z|<2k+1ρ(x0)

|f(z)|
∫
B(x0,2k+3ρ(x0))

V (u)
|u− z|d−1

du dz

.
∑
k≥1

2−Nk

(2kρ(x0))d−1

∫
|x0−z|<2kρ(x0)

|f | I1(V χB(x0,2kρ(x0))).

Let p′0 < s < d (this is always possible because q0 > 1, and also sufficient since
Msf increases with s). Using first Hölder’s inequality and the boundedness of the
fractional integral I1 : Ls 7→ Lq with 1/q = 1/s′ + 1/d, we obtain∫

|x0−z|<2kρ(x0)

|f | I1(V χB(x0,2kρ(x0)))

≤ ‖fχB(x0,2kρ(x0))‖s ‖I1(V χB(x0,2kρ(x0)))‖s′
. ‖fχB(x0,2kρ(x0))‖s ‖V χB(x0,2kρ(x0))‖q.

Since V ∈ RHq, from our assumptions on s, we obtain

‖V χB(x0,2kρ(x0))‖q . (2kρ(x0))−d/q
′
∫
B(x0,2kρ(x0))

V

. 2k(dµ−d/q
′)ρ(x0)−d/q

′
∫
B(x0,ρ(x0))

V

. 2k(dµ−d/q
′)ρ(x0)−d/q

′+d−2,

(24)

where in the last two inequalities we have used (5) and the definition of ρ respec-
tively.

Therefore,

(25) I2(x) . ρ(x0)−d/q
′−1
∑
k≥1

2k(−N+1−d+dµ−d/q′)‖fχB(x0,2kρ(x0))‖s.

Finally, observing that

‖fχB(x0,2kρ(x0))‖s . (2kρ(x0))d/s inf
y∈Q

Msf(y)
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10 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

and using that d/s− d/q′ = 1, we have

I2(x) . inf
y∈Q

Msf(y)
∑
k≥1

2k(−N+dµ−d+2),(26)

since N can be chosen large enough the last series converges.
To deal with the second term of (21), we split again f = f1 + f2. Choosing

p′0 < s̃ < s and denoting ν = s̃s
s−s̃ , using the boundedness of R∗ on Ls̃(Rd) (see

[10]) and applying Hölder’s inequality,

1
|Q|

∫
Q

|R∗f1(b− bQ)| ≤
(

1
|Q|

∫
Q

|R∗f1(b− bQ)|s̃
)1/s̃

.

(
1
|Q|

∫
2Q

|f(b− bQ)|s̃
)1/s̃

.

(
1
|Q|

∫
2Q

|f |s
)1/s( 1

|Q|

∫
2Q

|(b− bQ)|ν
)1/ν

. [b]θ inf
y∈Q

Msf(y),

where in the last inequality we have used Proposition 3.
For the remaining term we have to deal with

Ĩ1(x) =
∫
|x−z|>2ρ(x0)

|f(z)(b− bQ)|

|x− z|d
(

1 + |x−z|
ρ(x)

)N dz

and

Ĩ2(x) =
∫
|x−z|>2ρ(x0)

|f(z)(b− bQ)|

|x− z|d−1
(

1 + |x−z|
ρ(x)

)N ∫
B(z,|x−z|/4)

V (u)
|u− z|d−1

du dz.

We start by observing that for 1 ≤ s̃ < s and ν = s̃s
s−s̃ , using Lemma 1, we

obtain

‖f(b− bQ)χB(x0,2kρ(x0))‖s̃
≤ ‖fχB(x0,2kρ(x0))‖s ‖(b− bQ)χB(x0,2kρ(x0))‖ν
. (2kρ(x0))d/s̃ inf

y∈Q
Msf(y) k2kθ

′
[b]θ.

(27)

For Ĩ1(x) we proceed as for I1(x), and using (27) with s̃ = 1, we arrive to

Ĩ1(x) .
∑
k≥1

2−Nk

(2kρ(x0))d

∫
|x0−z|<2kρ(x0)

|b(z)− bQ| |f(z)| dz

. [b]θ inf
y∈Q

Msf(y)
∑
k≥1

k 2k(−N+θ′)

. [b]θ inf
y∈Q

Msf(y).

To deal with Ĩ2(x) we argue as in the estimate for I2(x) with f(b− bQ) instead
of f and s̃ and q̃ instead of s and q, where 1/q̃ = 1/s̃′+ 1/d. In this way, as in (25),
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COMMUTATORS OF RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS. . .11

using also (27), we have

Ĩ2(x) . ρ(x0)−1−d/q̃′
∑
k≥1

2k(−N+1−d+dµ−d/q̃′)‖f(b− bQ)χB(x0,2kρ(x0))‖s̃

. [b]θ inf
y∈Q

Msf(y)
∑
k≥1

k2k(−N+θ′+2−d+dµ)

. [b]θ inf
y∈Q

Msf(y),

(28)

choosing N large enough.
Finally, we notice that in the proof above, we only have used the size of K∗ given

by (15) in Lemma 3, therefore in the case q0 > d we also have the result for R in
view of Lemma 4. �

Remark 2. It is easy to check that if the critical ball Q is replaced by 2Q, last
lemma also holds.

Lemma 6. Let V ∈ RHd/2 and b ∈ BMO∞(ρ), then for any s > p′0 and γ ≥ 1,
there exists a constant C such that

(29)
∫

(2B)c
|K∗(x, z)−K∗(y, z)| |b(z)− bB | |f(z)| dz ≤ C [b]θ inf

u∈B
Msf(u),

for all f and x, y ∈ B = B(x0, r), with r < γ ρ(x0). Additionally, if q0 > d, the
above estimate also holds for K instead of K∗.

Proof. DenotingQ = B(x0, γρ(x0)), by (16), and since in our situation ρ(x) ' ρ(x0)
and |x− z| ' |x0 − z|, we need to bound four terms

I1 = rδ
∫
Q\2B

|f(z)| |b(z)− bB |
|x0 − z|d+δ

dz,

I2 = rδρ(x0)N
∫
Qc

|f(z)| |b(z)− bB |
|x0 − z|d+δ+N

dz,

I3 = rδ
∫
Q\2B

|f(z)| |b(z)− bB |
|x0 − z|d−1+δ

∫
B(x0,4|x0−z|)

V (u)
|u− z|d−1

du dz,

and

I4 = rδρ(x0)N
∫
Qc

|f(z)| |b(z)− bB |
|x0 − z|d−1+δ+N

∫
B(x0,4|x0−z|)

V (u)
|u− z|d−1

du dz.

Splitting into annuli, we have

I1 .
1
rd

j0∑
j=2

2−j(d+δ)
∫

2jB

|f | |b− bB |.

where j0 is the least integer such that 2j0 ≥ γ ρ(x0)/r.
By Hölder’s inequality and Lemma 1 we obtain for j ≤ j0,∫

2jB

|f | |b− bB | ≤ j [b]θ |2jB| inf
y∈B

Msf(y).
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12 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

Then,

I1 . [b]θ inf
y∈B

Msf(y)
∞∑
j=2

j 2−jδ

. [b]θ inf
y∈B

Msf(y).

To deal with I2, splitting into annuli, using Lemma 1 and choosing N > θ′, we
have

I2 .
ρ(x0)N

rN+d

∞∑
j=j0−1

2−j(d+δ+N)

∫
2jB

|f | |b− bB |

. [b]θ inf
y∈B

Msf(y)
(
ρ(x0)
r

)N−θ′ ∞∑
j=j0−1

j2−j(δ+N−θ
′)

. [b]θ inf
y∈B

Msf(y)
∞∑

j=j0−1

j2−jδ

. [b]θ inf
y∈B

Msf(y).

To deal with I3 and I4, due to Lemma 3 (iv) we may assume d/2 < q0 ≤ d. Now,

I3 .
1

rd−1

j0∑
j=2

2−j(d−1+δ)

∫
2jB

|f(z)| |b(z)− bB | I1(V χ2j+2B)(z) dz.

If p′0 < s̃ < s, ν = s̃s
s−s̃ and q such that 1/q = 1/s̃′ + 1/d, then∫

2jB

|f | |b− bB | I1(V χ2j+2B) ≤ ‖fχ2jB‖s‖(b− bB)χ2jB‖ν‖I1(V χ2j+2B)‖s̃′

. j |2jB|1/s̃ [b]θ inf
y∈B

Msf(y) ‖V χ2j+2B‖q,
(30)

where in the last inequality we use Lemma 1 and that j ≤ j0.
Since V ∈ RHq, from our assumptions on s̃,

‖V χ2j+2B‖q . ‖V χQ‖q

. ρ(x0)−d/q
′
∫
Q

V

. ρ(x0)d/q−2,

for all j ≤ j0. Therefore, since d/s̃ = d+ 1− d/q and 2− d/q > 0,

I3 . [b]θ inf
y∈B

Msf(y)
rd/s̃−d+1

ρ(x0)2−d/q

j0∑
j=2

j 2−j(d−1+δ−d/s̃)

. [b]θ inf
y∈B

Msf(y)
(

r

ρ(x0)

)2−d/q j0∑
j=2

j 2−j(d/q−2+δ)

. [b]θ inf
y∈B

Msf(y)
(

r

ρ(x0)

)2−d/q

2j0(2−d/q)
j0∑
j=2

j 2−jδ

. [b]θ inf
y∈B

Msf(y).
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COMMUTATORS OF RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS. . .13

Finally, for I4 we have

I4 .
ρ(x0)N

rd−1+N

∞∑
j=j0−1

2−j(d−1+δ+N)

∫
2jB

|f(z)| |b(z)− bB | I1(V χ2j+2B) dz.

Now we proceed as in (30) to obtain, for j > j0,∫
2jB

|f | |b− bB | I1(V χ2j+2B) . [b]θ inf
y∈B

Msf(y) j
(2jr)θ

′+d/s̃

ρ(x0)θ′
‖V χ2j+2B‖q,

moreover,

‖V χ2j+2B‖q . (2jr)−d/q
′
∫

2jB

V

. 2j(dµ−d/q
′) r
−d/q′+dµ

ρ(x0)dµ

∫
Q

V

. 2j(dµ−d/q
′) r−d/q

′+dµ

ρ(x0)dµ−d+2
.

With this estimate, choosing N large enough so that d− 2 +N − θ′ − dµ > 0, we
have

I4 . [b]θ inf
y∈B

Msf(y)
(
ρ(x0)
r

)d−2+N−θ′−dµ ∞∑
j=j0−1

j 2−j(d−2+N−θ′−dµ+δ)

. [b]θ inf
y∈B

Msf(y),

and we have finished the proof (29).
Now, suppose q0 > d. To obtain the estimate for K we use (19) in Lemma 4 to

get ∫
(2B)c

|K(x, z)−K(y, z)| |b(z)− bB | |f(z)| dz . I1 + I2,

completing the proof of the lemma. �

5. Proofs of the main results

Proof of Theorem 1. We will prove part ii) and part i) follows by duality. We start
with a function f ∈ Lp(Rd) with p′0 < p <∞, and we notice that due to Lemma 5
we have R∗bf ∈ L1

loc(Rd).
By using Lemma 2, Lemma 5 with p′0 < s < p and Remark 2, we have

‖R∗bf‖pp ≤
∫

Rd
|Mρ,β(R∗bf)|p

.
∫

Rd
|M ]

ρ,γ(R∗bf)|p +
∑
k

|Qk|
(

1
|Qk|

∫
2Qk

|R∗bf |
)p

.
∫

Rd
|M ]

ρ,γ(R∗bf)|p + [b]pθ
∑
k

∫
2Qk

|Msf |p.

By the finite overlapping property given by Proposition 2 and the boundedness of
Ms in Lp(Rd) the second term is controlled by [b]pθ ‖f‖pp. Thus, we have to take
care of the first term.
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14 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

Our goal is to find a point-wise estimate of M ]
ρ,γ(R∗bf). Let x ∈ Rd and B =

B(x0, r), with r < γ ρ(x0) such that x ∈ B. If f = f1 + f2, with f1 = fχ2B , then
we write

(31) R∗bf = (b− bB)R∗f −R∗(f1(b− bB))−R∗(f2(b− bB)).

Therefore, we need to control the mean oscillation on B of each term that we call
O1, O2 and O3.

Let s > p′0, an application of Hölder’s inequality and Proposition 3 gives

O1 ≤
2
|B|

∫
B

|(b− bB)R∗f |

.

(
1
|B|

∫
B

|b− bB |s
′
)1/s′ ( 1

|B|

∫
B

|R∗f |s
)1/s

. [b]θMsR∗f(x),

since r
ρ(x0)

< γ.
To estimate O2, let p′0 < s̃ < s and ν = s̃s

s−s̃ . Then,

O2 ≤ 2
|B|

∫
B

|R∗((b− bB)f1)|

.

(
1
|B|

∫
B

|R∗((b− bB)f1)|s̃
)1/s̃

.

(
1
|B|

∫
2B

|(b− bB)f |s̃
)1/s̃

.

(
1
|B|

∫
2B

|b− bB |ν
)1/ν ( 1

|B|

∫
2B

|f |s
)1/s

. [b]θMsf(x).

(32)

For O3 we observe that

O3 .
1
|B|2

∫
B

∫
B

|R∗(f2(b− bB))(u)−R∗(f2(b− bB))(z)|du dz

and the integral is clearly bounded by the left hand side of (29). Therefore, Lemma 6
asserts

(33) O3 . [b]θMsf(x).

Therefore, we have proved that

|M ]
ρ,γ(R∗bf)| . [b]θ (MsR∗f +Msf).

Since s < p, we obtain the desired result. �

Proof of Theorem 2. We first assume V ∈ RHd, and we denote T either R or R∗
and G either K or K∗.

Let f ∈ L∞(Rd) and Q = B(x0, ρ(x0)). In view of Proposition 2, it is not hard
to see that it is enough to consider averages over critical balls (see [3]). Due to
Lemma 5,

1
|Q|

∫
Q

|Tbf | . [b]θ inf
y∈Q

Msf(y) . [b]θ ‖f‖∞.

In order to deal with the oscillations, let B = B(x0, r) with r < ρ(x0). Notice
that by Lemma 5 the function Tbf belongs to L1

loc(Rd).
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COMMUTATORS OF RIESZ TRANSFORMS RELATED TO SCHRÖDINGER OPERATORS. . .15

We write as in (31)

Tbf = (b− bB)Tf − T (f1(b− bB))− T (f2(b− bB)),

and its mean oscillations on B as O1, O2 and O3.
The estimate for terms O2 and O3 are already done in (32) and (33) for R∗.

They also can be performed for R as long as q0 > d, due to the boundedness of R
in Ls̃(Rd) for s̃ > 1 and Lemma 6. Thus, both terms are bounded by [b]θ ‖f‖∞.

To deal with O1 we fixed u ∈ B and write,

(b− bB)Tf = (b− bB)Tf1+(b− bB)(Tf2 − Tf2(u))

+ Tf21(u)(b− bB) + Tf22(u)(b− bB),
(34)

where f2 = f21 + f22, with f22 = fχ4Q\2B and Q = B(x0, ρ(x0)). We denote each
oscillation O11, O12, O13 and O14.

We observe that Tf21(u) and Tf22(u) are finite for any u ∈ B, since f ∈ L∞
and

(35)
∫

(2B)c
|G(u, z)| dz <∞.

We will see thatO11, O12 andO13 are bounded under the condition b ∈ BMO∞(ρ).
For O11, choosing s so that T is bounded on Ls(Rd), we have

O11 ≤
2
|B|

∫
B

|(b− bB)Tf1|

.

(
1
|B|

∫
B

|b− bB |s
′
)1/s′ ( 1

|B|

∫
Rd
|Tf1|s

)1/s

.

(
1
|B|

∫
B

|b− bB |s
′
)1/s′ ( 1

|B|

∫
2B

|f |s
)1/s

. [b]θ ‖f‖∞.

(36)

For O12 we claim

|Tf2(x)− Tf2(u)| . ‖f‖∞,

for any x and u in B.
First, observe that when V ∈ RHd, the claim follows easily, since both kernels

are Calderón-Zygmund. Therefore, for V ∈ RHq and d/2 ≤ q < d, and T = R∗
due to (16) in Lemma 3, we only need to estimate

J1 = rδ
∫
Q\2B

|f(z)|
|x0 − z|d−1+δ

∫
B(x0,4|x0−z|)

V (u)
|u− z|d−1

du dz,

and

J2 = rδρ(x0)N
∫
Qc

|f(z)|
|x0 − z|d−1+δ+N

∫
B(x0,4|x0−z|)

V (u)
|u− z|d−1

du dz.

Since the remaining term can be handled as in the Calderón-Zygmund case, we
proceed as in Lemma 6 when estimating I3 and I4. In fact, splitting into annuli we
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16 B. BONGIOANNI, E. HARBOURE AND O. SALINAS

have

J1 .
‖f‖∞
rd−1

j0∑
j=2

2−j(d−1+δ)

∫
2jB

∫
2j+2B

V (u)
|u− z|d−1

du dz

.
‖f‖∞
rd−2

∫
4Q

V

j0∑
j=2

2−j(d−2+δ)

. ‖f‖∞
(
ρ(x0)
r

)d−2

2−j0(d−2+δ)

. ‖f‖∞,

and

J2 . ‖f‖∞
ρ(x0)N

rd−1+N

∞∑
j=j0−1

2−j(d−1+δ+N)

∫
2jB

∫
2j+2B

V (u)
|u− z|d−1

du dz

. ‖f‖∞
ρ(x0)N−dµ

rd−2+N−dµ

∞∑
j=j0−1

2−j(d−2+δ+N−dµ)

∫
Q

V

. ‖f‖∞
(
ρ(x0)
r

)d−2+N−dµ

2−j0(d−2+N−dµ−δ)

. ‖f‖∞,

thus the claim is proved.
Then,

O12 ≤
2
|B|

∫
B

|b(x)− bB | |Tf2(x)− Tf2(u)| dx

. [b]θ ‖f‖∞,

That O13 . [b]θ ‖f‖∞, is a consequence of (35).
Therefore, the theorem will follow if and only if there exists a constant Cb such

that for any B ∈ Bρ,1 and u ∈ B,

(37)
1
|B|

(∫
B

|b(z)− bB | dz
) ∣∣∣∣∣
∫

4Q\2B
G(u, z)f(z) dz

∣∣∣∣∣ ≤ Cb ‖f‖∞.
But, adding and subtracting K(u, z), the kernel of the classical Riesz Transform or
its adjoint accordingly to the case, estimate (37) will hold if and only if

(38)
1
|B|

(∫
B

|b(z)− bB | dz
) ∣∣∣∣∣
∫

4Q\2B
K(u, z)f(z) dz

∣∣∣∣∣ ≤ Cb ‖f‖∞.
In fact, by using (17) or (20), it is easy to check that

∫
4Q
|G(u, z) −K(u, z)| dz

is bounded independently of the critical ball Q, more precisely∫
4Q

1
|u− z|d

(
|u− z|
ρ(u)

)σ
dz . ρ(x0)−σ

∫
4Q

1
|x0 − z|d−σ

dz . 1.
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Due to the self-improvement of the reverse-Hölder inequality, we may assume
V ∈ RHq for d/2 < q < d. Setting 1/s = 1/d+ 1/q′, we have∫

4Q

1
|u− z|d−1

∫
B(z,|u−z|/4)

V (w)
|w − z|d−1

dw dz

.

(∫
4Q

dz

|z − x0|s(d−1)

)1/s

‖I1(V χ4Q)‖s′

. ρ(x0)1−d/s
′
‖V χ4Q‖q . 1,

where in the last inequality we have used (24) for k = 2.
Note that up to this point we only have used b ∈ BMO∞(ρ).
Now, if we assume that b satisfies the stronger condition b ∈ BMOlog

∞ (ρ), since

(39)

∣∣∣∣∣
∫

4Q\2B
K(u, z)f(z) dz

∣∣∣∣∣ ≤ Cb ‖f‖∞ log(ρ(x0)/r).

we conclude that (38) holds proving the boundedness of Tb.
On the other hand if we suppose that Tb is bounded with b ∈ BMO∞(ρ), then

(38) must hold for each component Ki, i = 1, . . . , d, of K and for any f in L∞.
Choosing f = sg(ui − zi), and adding over i, inequality (38) implies

1
|B|

∫
B

|b(z)− bB | dz
∫

4Q\2B

∑d
i=1 |zi − ui|
|z − u|d+1

dz ≤ Cb

since |z − u| ' |z − x0|, performing the integration, the inequality
1
|B|

∫
B

|b(z)− bB | dz ≤
Cb

1 + log(ρ(x0)/r)
,

must hold for any B ∈ Bρ,1. Since we assume that b ∈ BMO∞(ρ), we conclude
that b ∈ BMOlog

∞ (ρ). �
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