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DYADIC NON LOCAL DIFFUSION. THE POINTWISE

CONVERGENCE TO THE INITIAL DATA

MARCELO ACTIS AND HUGO AIMAR

Abstract. In this paper we solve the initial value problem for the diffusion
induced by a dyadic fractional derivative in R+. The main result concerns

the pointwise estimate of the maximal operator of the diffusion by the Hardy-

Littlewood dyadic maximal operator. As a consequence we obtain the point-
wise convergence for the initial data in Lebesgue spaces.

1. Introduction

If Wt(x) denotes the Weierstrass kernel in Rn, the function u(x, t) = (Wt∗u0)(x)
solves the heat equation ∂u

∂t = ∆u in Rn+1
+ and the initial data is attained pointwise

provided that u0 belongs to some Lp(Rn) (1 ≤ p ≤ ∞). The main analytical tool
involved in the proof of the pointwise convergence is the proof of the boundedness
of the supt>0 |u(x, t)| by the Hardy-Littlewood maximal function.

The above situation can be extended to the case of non local diffusion. In
this case the Laplacian in space variables is substituted by the operator (−∆)s/2,
0 < s < 2. To be precise, for 0 < s < 2, the fractional derivative of order s of f is
given by the kernel representation of the Dirichlet to Neumann operator [2],

Dsf(x) = p.v.

∫
f(x)− f(y)

|x− y|n+s
dy.

The solution of the diffusion problem associated to Ds,{
∂u
∂t = Dsu, in Rn+1

+ ,

u(x, 0) = u0(x), in Rn,
for adequate initial data u0 is provided by the Fourier transform

û(ξ, t) = e−|ξ|
stû0(ξ).

In [1] the authors consider the problem of pointwise convergence to the initial
data for a Schrödinger type non local operator associated to the dyadic tilings of
R+ and the Haar system. As it is well known, see for example [3, 5, 4, 6, 8, 7],
the pointwise convergence to the initial data for the initial value problem for the
Schrödinger operator requires more regularity on u0 than Lp. In particular, in [1]
some kind of Besov regularity for u0 is involved and a Calderón type sharp maximal
operator seems to be natural for that setting.

In this note we aim to consider the diffusion problem associated to the fractional
derivative introduced in [1]. In particular we shall prove that the dyadic Hardy-
Littlewood maximal function still dominates the situation and that the pointwise
convergence to the initial data does not need any regularity. As in the Euclidean
case, Lp integrability suffices.

2010 Mathematics Subject Classification. Primary 35C10, 35K57 Secondary 42B37, 42C40.
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2 M. ACTIS AND H. AIMAR

Let us be precise. Let D =
⋃
j∈Z Dj be the family of all dyadic intervals in R+.

If I belongs to Dj , then I = Ijk = [(k−1)2−j , k2−j) for some k ∈ Z+ and |I| = 2−j ,
where the vertical bars denote Lebesgue measure in R.

The family D is organized in generations: for each I ∈ Dj there exists 2 disjoint
intervals I+ and I− in Dj+1 both contained in I, which are precisely the left and
right halves of I, respectively. We shall say that I+ and I− are “children” of I. An
“ancestor” of I is any J ∈ D such that I ⊆ J . Given I and Q in D , we shall say
that J is the “first common ancestor” of them, if J is an ancestor of both I and Q
which is contained in every common ancestor of them.

The dyadic distance δ(x, y) from x to y, both in R+, is defined as zero when
x = y and as the measure of the smallest dyadic interval J ∈ D containing both x
and y. Notice that for any two points x and y in R+ δ(x, y) is well defined since for
|j| large enough and j negative the interval [0, 2−j) is dyadic and contains x and
y. As it is easy to see |x− y| ≤ δ(x, y) but 1

δ(x,y) is still singular in the sense that∫
R+

dy
δ(x,y) = +∞ even when

∫
(0,1)

dy
δ(x,y)1−ε and

∫
(1,∞)

dy
δ(x,y)1+ε are both finite for

ε > 0. See Lemma 2 in §2.
For I ∈ D we shall write hI to denote the Haar function supported on I. In

other words hI = |I|− 1
2 (χI− − χI+), where χE denotes the indicator function of

the set E. The system {hI : I ∈ D} known as the Haar system is an orthogonal
basis for Lp(R) and an unconditional basis for Lp(R), 1 < p < ∞. With 〈f, hI〉
we denote the inner product

∫
R+ fhIdx as far as it is well defined. The fractional

dyadic derivative of order σ ∈ (0, 1) is defined by

Dσf(x) =

∫
R+

f(x)− f(y)

δ(x, y)1+σ
dy,

provided that the integral is absolutely convergent. In this case we say that f is
differentiable of order σ in the dyadic sense. Notice that this is the case if for
example f is a bounded Lipschitz function in the classical sense, since |x − y| ≤
δ(x, y). Later on we shall deal with the Besov classes for which Dσ is well defined.
The dyadic Hardy-Littlewood maximal operator is defined for a locally integrable
function f defined on R+ by

Mdyf(x) = sup
x∈I∈D

1

|I|

∫
I

|f(y)| dy

We are now in position to state our main result.

Theorem 1. Let 0 < σ < 1, 1 ≤ p ≤ ∞ and u0 ∈ Lp(R+) be given. Then,

(A) the function u defined in R+ × R+ by

u(x, t) =
∑
I∈D

e−bσ|I|
−σt〈u0, hI〉hI(x)

for fixed t is differentiable of order σ in the dyadic sense as a function of x
and solves the problem

(1.1)

{
∂u
∂t = Dσu, x ∈ R+, t > 0,

u(x, 0) = u0(x), x ∈ R+,

where the initial condition is satisfied in the sense of Lp(R+);
(B) there exists a constant C > 0 such that

u∗(x) = sup
t>0
|u(x, t)| ≤ CMdyu0(x);

(C) limt→0+ u(x, t) = u0(x) for almost every x ∈ R+.
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DYADIC NON LOCAL DIFFUSION 3

The paper is organized as follows. In Section 2 we obtain the spectral analysis
of the operator

Dσf =

∫
f(x)− f(y)

δ(x, y)1+σ
dy

in terms of the Haar system. Section 3 is devoted to obtain the maximal estimate
contained in statement (B) of Theorem 1. Finally, Section 4 contains the proof of
Theorem 1.

2. The dyadic fractional differential operator

The first result in this section is an elementary lemma which reflects the one
dimensional character of R+ equipped with the distance δ.

Lemma 2. Let 0 < ε < 1, and let I be a given dyadic interval in R+. Then, for
x ∈ I, we have ∫

I

dy

δ(x, y)1−ε
= cε|I|ε

and ∫
R+\I

dy

δ(x, y)1+ε
= Cε|I|−ε,

where cε = 2ε+1

2ε−1 and Cε = 1
2ε+1

1
2ε−1 .

Proof. Observe that the ball Bδ(x, r) is the largest dyadic interval I containing x
with length less than r. Then, for I ∈ Dj and x ∈ I we have∫

I

dy

δ(x, y)1−ε
=

∫
Bδ(x,2−j+1)

dy

δ(x, y)1−ε

=

∞∑
k=j−1

∫
{y: 2−k−1≤δ(x,y)<2−k}

dy

δ(x, y)1−ε

=
∞∑

k=j−1

|{y : δ(x, y) = 2−k−1}|2−(k+1)(ε−1)

= 2

∞∑
k=j−1

2−(k+1)ε =
2ε+1

2ε − 1
|I|ε.

The proof of the second identity follows the same lines. �

Let us notice that the indicator function of a dyadic interval I ∈ D is a Lipschitz

function with respect to the distance δ. In fact |χI(x)− χI(y)| ≤ δ(x,y)
|I| . Hence for

0 < σ < 1, the integral ∫
R+

χI(x)− χI(y)

δ(x, y)1+σ
dy

is absolutely convergent since for any dyadic interval J we have∫
R+

χI(x)− χI(y)

δ(x, y)1+σ
dy ≤

∫
J

χI(x)− χI(y)

δ(x, y)1+σ
dy +

∫
Jc

χI(x)− χI(y)

δ(x, y)1+σ
dy

≤ 1

|I|

∫
J

1

δ(x, y)σ
dy +

∫
Jc

1

δ(x, y)1+σ
dy.

Now, for 0 < σ < 1 we are in position to define the operator Dσ on the linear
span S(H) of the Haar system H, which is contained in the linear span of the
indicator functions of dyadic intervals, by

(2.1) Dσf =

∫
R+

f(x)− f(y)

δ(x, y)1+σ
dy.
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4 M. ACTIS AND H. AIMAR

In [1] the authors prove that Haar functions are the eigenfunctions of Dσ. How-
ever we will give a simpler alternative proof.

Theorem 3. Let σ ∈ R be such that 0 < σ < 1, then for each hI ∈ H we have

(2.2) DσhI(x) = bσ|I|−σhI(x),

with bσ = 1 + Cσ.

Proof. Notice that for I, J ∈ D , with I ∩ J = ∅, we have that

(2.3) δ(x, y) = C, for all x ∈ I and all y ∈ J.

Moreover, the constant C = |Ĩ|, where I0 is the first common ancestor of I and J .
Take hI ∈ H. Suppose first that x /∈ I. Since hI is supported on I, then

hI(x) = 0. Hence∫
hI(x)− hI(y)

δ(x, y)1+σ
dy =

∫
R+\I

−hI(y)

δ(x, y)1+σ
dy +

∫
I

−hI(y)

δ(x, y)1+σ
dy,

The first integral of the right hand side is zero since hI(y) ≡ 0 for all y ∈ R+\I.
For the second integral, since x /∈ I and y ∈ I, we apply (2.3) to obtain∫

I

−hI(y)

δ(x, y)1+σ
dy = −C(I)−1−σ

∫
I

hI(y)dy = 0

Therefore, we have proved (2.2) for x /∈ I.
Suppose now that x ∈ I. Let us denote with I∗ the child of I which contains x.

Then ∫
I

hI(x)− hI(y)

δ(x, y)1+σ
dy =

∫
I∗

hI(x)− hI(y)

δ(x, y)1+σ
dy +

∫
I\I∗

hI(x)− hI(y)

δ(x, y)1+σ
dy.

Since hI is constant in each child of I, then the integral over I∗ is null. Note that
in the integral over I\I∗ we have δ(x, y) = |I|, then∫

I\I∗

hI(x)− hI(y)

δ(x, y)1+σ
dy = |I|−1−σ

∫
I\I∗

hI(x)− hI(y)dy

= |I|−1−σ
∫
I

hI(x)− hI(y)dy

= |I|−1−σ
[∫

I

hI(x)dy −
∫
I

hI(y)dy

]
= |I|−1−σhI(x)|I|
= |I|−σhI(x).(2.4)

Finally, applying Lemma 2, we have that∫
R+\I

hI(x)− hI(y)

δ(x, y)1+σ
dy = hI(x)

∫
R+\I

δ(x, y)−1−σdy

= hI(x)Cσ|I|−σ.(2.5)

Hence, from (2.4) and (2.5) we obtain

DσhI =

∫
I

hI(x)− hI(y)

δ(x, y)1+σ
dy +

∫
R+\I

hI(x)− hI(y)

δ(x, y)1+σ
dy

= |I|−σhI(x) + Cσ|I|−σhI(x)

= (1 + Cσ)|I|−σhI(x).

Then we have proved (2.2) for x /∈ I, and the proof is completed. �
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DYADIC NON LOCAL DIFFUSION 5

We want to point out that Theorem 3 allows us to give an alternative definition
of Dσ. In fact, given f ∈ S(H) there exists a finite subset Fn of D such that

f(x) =
∑
I∈Fn

〈f.hI〉hI(x).

Then, from the linearity of equation (2.2) we have that

Dσf(x) =
∑
I∈Fn

bσ|I|−σ 〈f.hI〉hI(x).

Notice that the well definition of the above expression follows from the fact that
the right hand side is the sum of a finite number of terms. Hence, we can extend
Dσ to every f ∈ Lp in the following way

(2.6) Dσf(x) =
∑
I∈D

bσ|I|−σ 〈f.hI〉hI(x),

provided that the series converges.

3. Maximal function estimates for the solution

The results in Section 2 show that, for u0 ∈ S(H), the function

(3.1) u(x, t) :=
∑
I∈D

e−bσ|I|
−σt〈u0, hI〉hI(x).

solves the problem {
∂u
∂t = Dσu, x ∈ R+, t > 0,

u(x, 0) = u0(x), x ∈ R+,

at least formaly. To start with the analysis of the way in which the initial condition
is attained, in this section we shall get bounds for the maximal operator associated
to u(x, t).

Let us start rewriting as an integral the inner product in 3.1, and changing the
integration order to obtain

u(x, t) =

∫
R+

[∑
I∈D

e−bσ|I|
−σthI(y)hI(x)

]
u0(y)dy.

We shall use kt(x, y) to denote the kernel in the above equation. More precisely,

(3.2) kt(x, y) =
∑
I∈D

e−bσ|I|
−σthI(y)hI(x).

Then, if Kt denotes the operator with kernel kt, we have that

u(x, t) =

∫
R+

kt(x, y)u0(y)dy =: Ktu0(x).

The aim of this section is to prove that

(3.3) K∗u0(x) := sup
t>0
|Ktu0(x)| ≤ CMdyu0(x),

for every u0 ∈ Lp(R+), where Mdy denotes the dyadic Hardy-Littlewood maximal
operator. In order to do this, we shall construct a decreasing function ϕ : R+ → R+

such that ϕ ∈ L1(0,∞) and

|kt(x, y)| = 1

t1/σ
ϕ

(
δ(x, y)

t1/σ

)
.

Notice first that for fixed x and y in R, only remains in (3.2) the terms in which I
contains both x and y. We shall denote I0 the first common ancestor of x and y,
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6 M. ACTIS AND H. AIMAR

and let ` be such that I0 ∈ D`. Also we shall denote Ij the dyadic interval in D`−j

containing I0. Then

kt(x, y) =
∑
j≥0

e−bσ|I
j |−σthIj (y)hIj (x)

= e−bσ|I
0|−σthI0(y)hI0(x)

+
∑
j≥1

e−bσ|I
j |−σthIj (y)hIj (x)

Let us observe that, for every j ≥ 1, x and y belong to the same child of Ij , so that
hIj (y) = hIj (x). Moreover,

hIj (y)hIj (x) =
∣∣Ij∣∣−1 .

Hence,

kt(x, y) = e−bσ|I
0|−σthI0(y)hI0(x) +

∑
j≥1

e−bσ|I
j |−σt

|Ij |
.

Now, notice that δ(x, y) = |I0| and that |Ij | = 2j |I0|. Also, since x and y belong
to different children of I0, we have that hI0(y)hI0(x) = −|I0|−1. Then, we obtain
that

kt(x, y) = −e−bσδ(x,y)
−σtδ(x, y)−1 +

∑
j≥1

e−bσ(2
jδ(x,y))−σt

2jδ(x, y)

=
1

δ(x, y)

−e−bσδ(x,y)−σt +
∑
j≥1

2−je−bσ(2
jδ(x,y))−σt

 .
Hence, defining ϕ : R+ → R as

ϕ(s) =
1

s

−e−bσs−σ +
∑
j≥1

2−je−bσ(2
js)−σ

 ,
we have that

kt(x, y) =
1

t1/σ
ϕ

(
δ(x, y)

t1/σ

)
.

In order to see that ϕ ∈ L1(R+), we shall obtain two different bounds for ϕ. One
of them will provide the integrability of ϕ on (1,∞), and the other in [0, 1]. To
obtain the first bound, observe first that

ϕ(s) ≤ 1

s

∑
j≥1

2−j
[
1− e−bσs

−σ
]
,

which follows easily from the facts that
∑
j≥1 2−j = 1 and that |e−x| ≤ 1 for

x ∈ R+. Then, from the Taylor series for the exponential function we obtain

ϕ(s) ≤ 1

s

∑
j≥1

2−j
[
bσ
sσ

]
=

bσ
s1+σ

,

that give us the integrability of ϕ on (1,∞).
Finally, notice that

ϕ(s) ≤ 1

s

e−bσs−σ +
∑
j≥1

2−je−bσ(2
js)−σ
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DYADIC NON LOCAL DIFFUSION 7

≤ 1

s

e−bσs−σ +
∑
j≥1

2−je−bσs
−σ


≤ 2e−bσs

−σ

s
.

The above inequality implies that ϕ ∈ L∞(R+), and therefore ϕ is locally integrable.
Hence,

|Ktu0(x)| ≤
∫
R+

|kt(x, y)||u0(y)| dy

=

∫
R+

1

t1/σ
ϕ

(
δ(x, y)

t1/σ

)
|u0(y)| dy

=
∞∑

j=−∞

1

t1/σ

∫
{y:t1/σ2j≤δ(x,y)<t1/σ2j+1}

ϕ

(
δ(x, y)

t1/σ

)
|u0(y)| dy

≤
∞∑

j=−∞
2j+1ϕ(2j)

1

t1/σ2j+1

∫
Bδ(x,t1/σ2j+1)

|u0(y)| dy.

Since |Bδ(x, r)| < r and each Bδ is a dyadic interval, we have

|Ktu0(x)| ≤
∞∑

j=−∞
2j+1ϕ(2j)

1

|Bδ(x, t1/σ2j+1)|

∫
Bδ(x,t1/σ2j+1)

|u0(y)| dy

≤
∞∑

j=−∞
2j+1ϕ(2j)Mdyu0(x)

= 4Mdyu0(x)

∞∑
j=−∞

∫
{y:2j−1≤y<2j}

ϕ(2j) dy

≤ 4Mdyu0(x)

∫
R+

ϕ(y) dy,

≤ 4‖ϕ‖L1Mdyu0(x).

Therefore, taking supremum in t we obtain

sup
t>0
|Ktu0(x)| ≤ 4‖ϕ‖L1Mdyu0(x),

which completes the proof of (3.3).

4. Proof of Theorem 1

Proof of (A). Let us start by noticing that if a = {aI}I∈D is a bounded sequence
of scalars then, from the equivalence of the Lp norm of f and the Lp norm of its

square function S(f) =
(∑

I∈D |〈f, hI〉|2|hI |2
) 1

2 , the operator

Taf(x) =
∑
I∈D

aI〈f, hI〉hI

is bounded in Lp with ‖Ta‖ ≤ C‖a‖`∞ = C supI∈D |aI |.
For t > 0 fixed the sequence {e−bσ|I|−σt} is bounded, hence u(x, t) belongs to Lp

as a function of x and ‖u‖Lp ≤ C‖u0‖Lp . Also, for fixed t > 0,

Dσu(x, t) =
∑
I∈D

bσ|I|−σ 〈u, hI〉hI(x)
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8 M. ACTIS AND H. AIMAR

=
∑
I∈D

bσ|I|−σe−bσ|I|
−σt〈u0, hI〉hI(x).

belongs to Lp as a function of x, since bσ|I|−σe−bσ|I|
−σt ≤ 1

te . Morover ‖Dσu‖Lp ≤
C
t ‖u0‖Lp .

To prove that the differential equation in (1.1) holds, let us start showing that
for t > 0 fixed

(4.1) sup
I∈D

∣∣∣∣∣e−bσ|I|
−σ(t+h) − e−bσ|I|−σt

h
+ bσ|I|−σe−bσ|I|

−σt

∣∣∣∣∣ −→ 0,

when h→ 0. This is equivalent to

sup
I∈D

∣∣∣∣∣e−bσ|I|
−σt

h

[
e−bσ|I|

−σh − 1 + bσ|I|−σh
]∣∣∣∣∣ −→ 0,

when h→ 0. Using the Taylor’s series of the exponential function we have that∣∣∣∣∣e−bσ|I|
−σt

h

[
e−bσ|I|

−σh − 1 + bσ|I|−σh
]∣∣∣∣∣

≤

∣∣∣∣∣e−bσ|I|
−σt

h

[
h2 max

0≤s≤h

∣∣∣(bσ|I|−σ)2e−bσ|I|
−σs
∣∣∣]∣∣∣∣∣

=

∣∣∣∣ b2σ
|I|−2σ

e−bσ|I|
−σth

∣∣∣∣
≤
∣∣∣∣ b2σ
|I|−2σ

e−bσ|I|
−σt

∣∣∣∣ |h| .
Hence, to obtain (4.1) it suffices to see that

sup
I∈D

∣∣∣∣ b2σ
|I|−2σ

e−bσ|I|
−σt

∣∣∣∣ <∞.
Since ∣∣∣∣ b2σ

|I|−2σ
e−bσt|I|

−σ
∣∣∣∣ ≤ 4(te)−2,

the first equation of (1.1) holds.
Finally, to prove the pointwise convergence to the initial data in Lp, i.e.

(4.2) u(x, t)
Lp−→ u0(x), cuando t→ 0,

we need to proceed in a different way since for every fixed t > 0

sup
I∈D

∣∣∣e−bσ|I|−σt − 1
∣∣∣ = 1

However, we will use the fact that for every F ∈ Lp the projection operator

Pif =
∑
j<i

∑
I∈Dj

〈f, hI〉hI

converges to f in Lp when i tends to infinity, or equivalently,∑
j≥i

∑
I∈Dj

〈f, hI〉hI
Lp−→ 0,

when i tends to infinity. For a fixed ε > 0, let us choose ` large enough such that

(4.3)

∥∥∥∥∥∥∥
∑
j>`

∑
I∈Dj

|〈u0, hI〉|2|hI |2
 1

2

∥∥∥∥∥∥∥
Lp

< ε.
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DYADIC NON LOCAL DIFFUSION 9

Observe that for every I ∈ Dj with j ≤ ` we have that |I| ≤ 2−`, so we can choose
t0 small enough such that

(4.4) |e−bσ|I|
−σt − 1| = 1− e−bσ|I|

−σt ≤ 1− e−bσ2
`σt < ε,

for every t < t0. Now, observe that

‖u− u0‖Lp -

∥∥∥∥∥∥
(∑
I∈D

|e−bσ|I|
−σt − 1||〈u0, hI〉|2|hI |2

) 1
2

∥∥∥∥∥∥
Lp

≤

∥∥∥∥∥∥∥
∑
j≤`

∑
I∈Dj

|e−bσ|I|
−σt − 1||〈u0, hI〉|2|hI |2

 1
2

∥∥∥∥∥∥∥
Lp

+

∥∥∥∥∥∥∥
∑
j>`

∑
I∈Dj

|e−bσ|I|
−σt − 1||〈u0, hI〉|2|hI |2

 1
2

∥∥∥∥∥∥∥
Lp

.

Therefore, from (4.3) and (4.4) we obtain

‖u− u0‖Lp - ε

∥∥∥∥∥∥∥
∑
j≤`

∑
I∈Dj

|〈u0, hI〉|2|hI |2
 1

2

∥∥∥∥∥∥∥
Lp

+ 2

∥∥∥∥∥∥∥
∑
j>`

∑
I∈Dj

|〈u0, hI〉|2|hI |2
 1

2

∥∥∥∥∥∥∥
Lp

- ε‖u0‖Lp + 2ε,

then (4.2) holds and the proof of (A) is complete.

Proof of (B). This part of the theorem has already been proved in section 3 in the
proof of the estimate (3.3).

Proof of (C). The pointwise convergence to the initial data, as usual, is an imme-
diate consequence of the boundedness on Lp of the maximal operator u∗ and the
pointwise convergence in a dense subset of Lp. We will sketch a brief proof for sake
of completeness.

Since we already know that Ktf → f in the Lp sense as t → 0+, in order to
prove the pointwise convergence, define

E = {f ∈ Lp : lim
t→0+

Ktf exists for almost every x ∈ R+}.

Notice that S(H) ⊆ E ⊆ Lp. Since S(H) is dense in Lp, then we only need to prove
that E is a closed subset of Lp. Let {fn} be a sequence contained in E such that
fn converges in Lp to a function f . To see that f ∈ E it is enough to prove that
for all ε > 0 we have

(4.5) |Eε| :=
∣∣∣∣{x : lim sup

t→0+
Ktf(x)− lim inf

t→0+
Ktf(x) > ε

}∣∣∣∣ = 0.

For every n we can write

|Eε| ≤
∣∣∣∣{x : lim sup

t→0+
Ktfn(x)− lim inf

t→0+
Ktfn(x) >

ε

3

}∣∣∣∣
+

∣∣∣∣{x : lim sup
t→0+

Kt(fn − f)(x) >
ε

3

}∣∣∣∣+

∣∣∣∣{x : lim inf
t→0+

Kt(fn − f)(x) >
ε

3

}∣∣∣∣ .
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The first term is zero since fn ∈ E. For the other two terms we will use the
boundedness on Lp of the maximal operator K∗ which follows from the item (B).
Notice that for every function g we have that∣∣∣∣lim sup

t→0+
Ktg(x)

∣∣∣∣ ≤ K∗g(x).

Then, since K∗ is bounded on Lp and therefore weakly bounded on Lp, we obtain∣∣∣∣{x : lim sup
t→0+

Kt(fn − f)(x) >
ε

3

}∣∣∣∣ - 1

εp
‖fn − f‖Lp .

Similarly we can show that∣∣∣∣{x : lim inf
t→0+

Kt(fn − f)(x) >
ε

3

}∣∣∣∣ - 1

εp
‖fn − f‖Lp .

Hence,

|Eε| -
1

εp
‖fn − f‖Lp .

When n tends to infinity we have (4.5). Then E is closed and therefore E = Lp.
This means that for every u0 ∈ Lp we have that

lim
t→0+

u(x, t) = lim
t→0+

Ktu0 exists.

But we already know that u(x, t) → u0(x) when t → 0+ in Lp, then (C) follows,
which completes the proof. �
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