IMAL preprints

http://www.imal.santafe-conicet.gov.ar/publicaciones/preprints/index.php

MEAN VALUE FORMULAS FOR SOLUTIONS OF SOME DEGENERATE ELLIPTIC EQUATIONS AND APPLICATIONS

By
Hugo Aimar, Gastón Beltritti and Ivana Gómez

IMAL PREPRINT \# 2013-0013
Publication date: August 05, 2013

Editorial: Instituto de Matemática Aplicada del Litoral IMAL (CCT CONICET Santa Fe - UNL) http://www.imal.santafe-conicet.gov.ar

Publications Director: Dr. Rubén Spies
E-mail: rspies@santafe-conicet.gov.ar

MEAN VALUE FORMULAS FOR SOLUTIONS OF SOME DEGENERATE ELLIPTIC EQUATIONS AND APPLICATIONS

HUGO AIMAR, GASTÓN BELTRITTI, AND IVANA GÓMEZ

Abstract

We prove a mean value formula for weak solutions of $\operatorname{div}\left(|y|^{a} \operatorname{grad}\right.$ $u)=0$ in $\mathbb{R}^{n+1}=\left\{(x, y): x \in \mathbb{R}^{n}, y \in \mathbb{R}\right\},-1<a<1$ and balls centered at points of the form $(x, 0)$. We obtain an explicit nonlocal kernel for the mean value formula for solutions of $(-\triangle)^{s} f=0$ on a domain D of \mathbb{R}^{n}. When D is Lipschitz we prove a Besov type regularity improvement for the solutions of $(-\triangle)^{s} f=0$.

Introduction

In [2], L. Caffarelli and L. Silvestre show how the fractional powers of $-\triangle$ in \mathbb{R}^{n} can be obtained as Dirichlet to Neumann type operators in the extended domain \mathbb{R}^{n+1}. The operator in the extended domain is given by $L_{a} u=\operatorname{div}\left(|y|^{a} \operatorname{grad} u\right)$, where $a \in(-1,1), u=u(x, y), x \in \mathbb{R}^{n}, y \in \mathbb{R}$ and div and grad are the standard divergence and gradient operators in $\mathbb{R}^{n+1}=\left\{(x, y): x \in \mathbb{R}^{n}, y \in \mathbb{R}\right\}$. The exponent a is related to the fractional power of the Laplacian $(-\triangle)^{s}$ through $2 s=1-a$. Notice that when $a=0$ the operator L_{a} is the Laplacian in \mathbb{R}^{n+1} and $s=\frac{1}{2}$.

Since for $a \in(-1,1)$ the weight $w(x, y)=|y|^{a}$ belongs to the Muckenhoupt class $A_{2}\left(\mathbb{R}^{n+1}\right)$, the regularity theory developed by Fabes, Kenig and Serapioni in 6], can be applied. The fact that w is in $A_{2}\left(\mathbb{R}^{n+1}\right)$ follows easily from the fact that it is a product of the weight which is constant and equal to one in \mathbb{R}^{n} times the $A_{2}(\mathbb{R})$ weight $|y|^{a}$ for $a \in(-1,1)$. In particular Harnack's inequality and Hölder regularity of solutions are available.

It seems to be clear that, when $a \neq 0$, the weight $w(x, y)=|y|^{a}$ introduces a bias which prevents us from expecting mean values on spherical objects in \mathbb{R}^{n+1}. Except at $y=0$, where the symmetry of w with respect to the hyperplane $y=0$ may bring back to spheres their classical role. In [5] some generalizations of classical mean value formulas are also considered.

By choosing adequate test functions we shall prove the mean value formula, for balls centered at the hyperplane $y=0$, for weak solutions v of $L_{a} v=0$.

The above considerations would only allow mean values for solutions with balls centered at such small sets as the hyperplane $y=0$ of \mathbb{R}^{n+1}. But it turns out that this suffice to get mean value formulas for solutions of $(-\triangle)^{s} f=0$.

[^0]In 11 a mean value formula is proved as Proposition 2.2.13, see also [8. In order obtain improvement results for the Besov regularity of solutions of $(-\triangle)^{s} f=0$ in the spirit of [3] and [1], our formula seems to be more suitable because we can get explicit estimates for the gradients of the mean value kernel. Regarding Besov regularity of harmonic functions see also [7].

The paper is organized in three sections. In the first one we prove mean value formulas for solutions of $L_{a} u=0$ at the points on the hyperplane $y=0$ of \mathbb{R}^{n+1}. The second section is devoted to apply the result in Section 1 in order to obtain a nonlocal mean value formula for solutions of $(-\triangle)^{s} f=0$ on domains of \mathbb{R}^{n}. Finally, in Section 3, we use the above results to obtain a Besov regularity improvement for solutions of $(-\triangle)^{s} f=0$ in Lipschitz domains of \mathbb{R}^{n}. At this point we would like to mention the recent results in [10] in relation with the rate of convergence of nonlinear approximation methods observed by Dahlke and DeVore in the harmonic case.

1. Mean value formula for solutions of $L_{a} u=0$

Let D be a domain in \mathbb{R}^{n}. Let Ω be the open set in \mathbb{R}^{n+1} given by $\Omega=D \times(-d, d)$ with d the diameter of D. Notice that for $x \in D$ and $r>0$ such that $B(x, r) \subset D$, then $S((x, 0), r) \subset \Omega$ where B denotes balls in \mathbb{R}^{n} and S denotes the balls in \mathbb{R}^{n+1}. With $H^{1}\left(|y|^{a}\right)$ we denote the Sobolev space of those functions in $L^{2}\left(|y|^{a} d x d y\right)$ for which ∇f belongs to $L^{2}\left(|y|^{a} d x d y\right)$.

A weak solution v of $L_{a} v=0$ in Ω is a function in the weighted Sobolev space $H^{1}\left(|y|^{a}\right)$, such that

$$
\iint_{\Omega} \nabla v \cdot \nabla \psi|y|^{a} d x d y=0
$$

for every test function ψ supported in Ω.
The main result of this section is contained in the next statement. As in 2 we shall use X to denote the points (x, y) in \mathbb{R}^{n+1} with $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}$. For $x \in D$ with $\delta(x)$ we shall denote the distance from x to ∂D.

Theorem 1. Let v be a weak solution of $L_{a} v=0$ in Ω. Let $\varphi(X)=\eta(|X|)$, $\eta \in C_{0}^{\infty}\left(\mathbb{R}^{+}\right)$supported in the interval $\left[\frac{1}{4}, \frac{3}{4}\right]$ and $\iint_{\mathbb{R}^{n+1}} \varphi(X)|y|^{a} d X=1$ be given. If $x \in D$ and $0<r<\delta(x)$, then

$$
v(x, 0)=\iint_{\Omega} \varphi_{r}(x-z,-y) v(z, y)|y|^{a} d z d y
$$

with

$$
\varphi_{r}(X)=\frac{1}{r^{n+1+a}} \varphi\left(\frac{X}{r}\right) .
$$

Proof. Set $A=\int_{0}^{\infty} \rho \eta(\rho) d \rho$ and $\zeta(t)=\int_{0}^{t} \rho \eta(\rho) d \rho-A$. Notice that $\zeta(t) \equiv 0$ for $t \geq \frac{3}{4}$ and $\zeta(t) \equiv-A$ for $0 \leq t \leq \frac{1}{4}$. The function $\psi(X)=\zeta(|X|)$ is, then, in $C^{\infty}\left(\mathbb{R}^{n+1}\right)$ and has compact support in the ball $S((0,0), 1)$. It is easy to check that $\nabla \psi(X)=\varphi(X) X$. Take now $x \in D$ and $0<r<\delta(x)$. Set $\varphi_{r}(Z)=$ $r^{-n-1-a} \varphi\left(r^{-1} Z\right), Z \in \mathbb{R}^{n+1}$, and define

$$
\Phi_{x}(r)=\iint_{\Omega} \varphi_{r}(X-Z) v(Z)|y|^{a} d Z
$$

where $X=(x, 0), Z=(z, y), d Z=d z d y$ and v is a weak solution of $L_{a} v=0$ is Ω. As usual, we aim to prove that $\Phi_{x}(r)$ is a constant function of r and that $\lim _{r \rightarrow 0} \Phi_{x}(r)=v(X)$. From the results in [6] with $w(Z)=|y|^{a}$, which belongs to the Muckenhoupt class $A_{2}\left(\mathbb{R}^{n+1}\right)$ when $-1<a<1$, we know that v is Hölder continuous on each compact subset of Ω. Then the convergence $\Phi_{x}(r) \rightarrow v(X)=$ $v(x, 0)$ as $r \rightarrow 0$, follows from the fact that

$$
\iint \varphi_{r}(Z)|y|^{a} d Z=\frac{1}{r^{a+1+n}} \iint \varphi\left(\frac{z}{r}, \frac{y}{r}\right)|y|^{a} d z d y=1 .
$$

In order to prove that $\Phi_{x}(r)$ is constant as a function of r we shall take its derivative with respect to r for fixed x. Notice first that

$$
\Phi_{x}(r)=\iint_{S((0,0), 1)} \varphi(Z) v(X-r Z)|y|^{a} d z d y
$$

Since $\nabla v \in L^{2}\left(|y|^{a} d X\right)$ we have

$$
\begin{aligned}
\frac{d}{d r} \Phi_{x}(r) & =-\iint_{S((0,0), 1)} \varphi(Z) \nabla v(X-r Z) \cdot Z|y|^{a} d Z \\
& =-\iint_{S((0,0), 1)} \nabla v(X-r Z) \cdot \nabla \psi(Z)|y|^{a} d Z \\
& =-\frac{1}{r^{a+1+n}} \iint_{\Omega} \nabla v(Z) \cdot \nabla \psi\left(\frac{X-Z}{r}\right)|y|^{a} d Z \\
& =\iint_{\Omega} \nabla v(Z) \cdot \nabla\left[\frac{1}{r^{n+a}} \psi\left(\frac{X-Z}{r}\right)\right]|y|^{a} d Z
\end{aligned}
$$

which vanishes since $\frac{1}{r^{n+\alpha}} \psi\left(\frac{X-Z}{r}\right)$ as a function of Z is a test function for the fact that v solves $L_{a} v=0$ in Ω.

2. Mean value formula for solutions of $(-\triangle)^{s} f=0$

In this section we shall use the results and we shall closely follow the notation in [2]. Take $f \in L^{1}\left(\mathbb{R}^{n}, \frac{d x}{(1+|x|)^{n+2 s}}\right)$ with $(-\triangle)^{s} f=0$ on the domain $D \in \mathbb{R}^{n}$. Then, with $u(x, y)=\left(P_{y}^{a} * f\right)(x)$ and $P_{y}^{a}(x)=C y^{1-a}\left(|x|^{2}+y^{2}\right)^{-\frac{n+1-a}{2}}$ the function

$$
v(x, y)=\left\{\begin{array}{cc}
u(x, y) & \text { in } D \times \mathbb{R}^{+} \\
u(x,-y) & \text { in } D \times \mathbb{R}^{-}
\end{array}\right.
$$

is a weak solution of $L_{a} v=0$ in $D \times \mathbb{R}$. In particular v is Hölder continuous in $D \times \mathbb{R}$ from the results in [6]. Theorem 1 guarantees that, for $0<r<\delta(x)$ and $x \in D$,

$$
\begin{equation*}
f(x)=u(x, 0)=v(x, 0)=\iint \varphi_{r}(X-Z) v(Z)|y|^{a} d Z \tag{2.1}
\end{equation*}
$$

where, as before, $X=(x, 0)$ and $Z=(z, y)$. On the other hand, the definitions of v and u provide the formula

$$
\begin{equation*}
v(Z)=v(z, y)=\left(P_{|y|}^{a} * f\right)(z) \tag{2.2}
\end{equation*}
$$

Replacing (2.2) in 2.1 , provided that the interchange of the order of integration holds, we obtain the main result of this section.

4

Theorem 2. Let $0<s<1$ be given. Assume that D in an open set in \mathbb{R}^{n} on which $(-\triangle)^{s} f=0$. Then for every $x \in D$ and every $0<r<\delta(x)$ we have that $f(x)=\left(\Phi_{r} * f\right)(x)$, where $\Phi_{r}(x)=r^{-n} \Phi\left(\frac{x}{r}\right), \Phi(x)=\int_{y \in \mathbb{R}} \int_{z \in \mathbb{R}^{n}} \varphi(z,-y) P_{|y|}^{a}(x-$ $z)|y|^{a} d z d y, \varphi_{r}(x, y)=r^{-(n+1+a)} \varphi\left(\frac{x}{r}, \frac{y}{r}\right)$, φ is a $C^{\infty}\left(\mathbb{R}^{n+1}\right)$ radial function supported in the unit ball of \mathbb{R}^{n+1} with $\iint_{\mathbb{R}^{n+1}} \varphi(x, y)|y|^{a} d x d y=1$ and P_{y}^{a} is a constant times $y^{1-a}\left(|x|^{2}+y^{2}\right)^{-\frac{n+1-a}{2}}$.

Proof. Inserting 2.2 in 2.1 we have

$$
\begin{aligned}
f(x) & =v(x, 0)=\iint \varphi_{r}(x-z,-y) v(z, y)|y|^{a} d z d y \\
& =\iint \varphi_{r}(x-z, y)\left(P_{|y|}^{a} * f\right)(z)|y|^{a} d z d y \\
& =\int_{y \in \mathbb{R}} \int_{z \in \mathbb{R}^{n}} \varphi_{r}(x-z,-y)\left(\int_{\bar{z} \in \mathbb{R}^{n}} P_{|y|}^{a}(z-\bar{z}) f(\bar{z}) d \bar{z}\right)|y|^{a} d z d y \\
& =\int_{\bar{z} \in \mathbb{R}^{n}}\left(\int_{y \in \mathbb{R}} \int_{z \in \mathbb{R}^{n}} \varphi_{r}(x-z,-y) P_{|y|}^{a}(z-\bar{z})|y|^{a} d z d y\right) f(\bar{z}) d \bar{z} \\
& =\int_{\bar{z} \in \mathbb{R}^{n}} \Phi_{r}(x, \bar{z}) f(\bar{z}) d \bar{z}
\end{aligned}
$$

with $\Phi_{r}(x, \bar{z})=\int_{y \in \mathbb{R}} \int_{z \in \mathbb{R}^{n}} \varphi_{r}(x-z,-y) P_{|y|}^{a}(z-\bar{z})|y|^{a} d z d y$. The last equality in the above formula follows from the fact that $\frac{f(\bar{z})}{\left(1+|\bar{z}|^{2}\right)^{\frac{n+1-a}{2}}}$ is integrable in \mathbb{R}^{n}, since

$$
\int_{y \in \mathbb{R}} \int_{z \in \mathbb{R}^{n}}|\varphi(x-z,-y)| P_{|y|}^{a}(z-\bar{z})|y|^{a} d z d y \leq \frac{C}{\left(1+|\bar{z}|^{2}\right)^{\frac{n+1-a}{2}}}
$$

for some positive constant C. In fact, on one hand

$$
\begin{align*}
\int_{y \in \mathbb{R}} \int_{z \in \mathbb{R}^{n}} & |\varphi(x-z,-y)| P_{|y|}^{a}(z-\bar{z})|y|^{a} d z d y \\
& \leq \int_{-1}^{1}\|\varphi(x-\cdot, y)\|_{L^{\infty}}\left\|P_{|y|}^{a}(\cdot-\bar{z})\right\|_{L^{1}}|y|^{a} d y \leq C \tag{2.3}
\end{align*}
$$

on the other, for $|\bar{z}-x|>2$ we have

$$
\begin{align*}
\int_{y \in \mathbb{R}} \int_{z \in \mathbb{R}^{n}} \mid & \left.\varphi(x-z,-y)\left|P_{|y|}^{a}(z-\bar{z})\right| y\right|^{a} d z d y \\
& \leq C \iint_{S((x, 0), 1)} \frac{|y|}{\left(y^{2}+|z-\bar{z}|^{2}\right)^{\frac{n+1-a}{2}}} d z d y \\
& \leq \frac{C}{|x-\bar{z}|^{n+1-a}} \tag{2.4}
\end{align*}
$$

So that $\Phi_{r}(x, \bar{z}) \leq \frac{C(r)}{(1+|x-\bar{z}|)^{n+1-a}} \leq \frac{C(x, r)}{(1+|x|)^{n+1-a}}$, hence $\int \Phi_{r}(x, \bar{z}) f(\bar{z}) d \bar{z}$ is absolutely convergent. It remains to prove that $\Phi_{r}(x, \bar{z})=\frac{1}{r^{n}} \Phi\left(\frac{x-\bar{z}}{r}\right)$ with $\Phi(x)=$ $\int_{y \in \mathbb{R}} \int_{z \in \mathbb{R}^{n}} \varphi(z,-y) P_{|y|}^{a}(x-z)|y|^{a} d z d y$. Let us compute $\Phi\left(\frac{x-\bar{z}}{r}\right)$ changing variables.

First in \mathbb{R}^{n} with $\nu=x-r z$, then in \mathbb{R} with $t=r y$,

$$
\begin{aligned}
\Phi\left(\frac{x-\bar{z}}{r}\right) & =\int_{y \in \mathbb{R}} \int_{z \in \mathbb{R}^{n}} \varphi(z,-y) P_{|y|}^{a}\left(\frac{x-\bar{z}-r z}{r}\right)|y|^{a} d z d y \\
& =\int_{y \in \mathbb{R}} \int_{\nu \in \mathbb{R}^{n}} \frac{1}{r^{n}} \varphi\left(\frac{x-\nu}{r},-y\right) P_{|y|}^{a}\left(\frac{\nu-\bar{z}}{r}\right)|y|^{a} d \nu d y \\
& =\int_{t \in \mathbb{R}} \int_{\nu \in \mathbb{R}^{n}} \frac{1}{r^{n+1+a}} \varphi\left(\frac{x-\nu}{r},-\frac{t}{r}\right) P_{\left|\frac{t}{r}\right|}^{a}\left(\frac{\nu-\bar{z}}{r}\right)|t|^{a} d \nu d t \\
& =r^{n} \int_{t \in \mathbb{R}} \int_{\nu \in \mathbb{R}^{n}} \varphi_{r}(x-\nu,-t) P_{|t|}^{a}(\nu-\bar{z})|t|^{a} d \nu d t \\
& =r^{n} \Phi_{r}(x, \bar{z}),
\end{aligned}
$$

as desired.

We collect in the next result some basic properties of the mean value kernel Φ.
Proposition 3. The function Φ defined in the statement of Theorem 2 satisfies the following properties.
(a) $\Phi(x)$ is radial;
(b) $(1+|x|)^{n+1-a}|\Phi(x)|$ is bounded;
(c) $\int_{\mathbb{R}^{n}} \Phi(x) d x=1$;
(d) $\sup _{r>0}\left|\left(\Phi_{r} * f\right)(x)\right| \leq c M f(x)$, where M is the Hardy-Littlewood maximal operator in \mathbb{R}^{n};
(e) if $\Psi^{i}(x)=\frac{\partial \Phi}{\partial x_{i}}(x)$, then $\Psi^{i}(0)=0$ and $\int \Psi^{i}(x) d x=0$;
(f) for some constant $C>0,\left|\Psi^{i}(x)\right| \leq \frac{C}{|x|^{n+2-a}}$ for $|x|>2$;
(g) $\left|\nabla \Psi^{i}\right|$ is bounded on \mathbb{R}^{n} for every $i=1, \ldots, n$.

Proof. Let ρ be a rotation of \mathbb{R}^{n}, then

$$
\begin{aligned}
\Phi(\rho x) & =\int_{y \in \mathbb{R}} \int_{z \in \mathbb{R}^{n}} \varphi(z,-y) P_{|y|}^{a}(\rho x-z)|y|^{a} d z d y \\
& =\int_{y \in \mathbb{R}} \int_{z \in \mathbb{R}^{n}} \varphi\left(\rho^{-1} z,-y\right) P_{|y|}^{a}\left(\rho^{-1}(\rho x-z)\right)|y|^{a} d z d y \\
& =\int_{y \in \mathbb{R}} \int_{z \in \mathbb{R}^{n}} \varphi\left(\rho^{-1} z,-y\right) P_{|y|}^{a}\left(x-\rho^{-1} z\right)|y|^{a} d z d y \\
& =\int_{y \in \mathbb{R}} \int_{\bar{z} \in \mathbb{R}^{n}} \varphi(\bar{z},-y) P_{|y|}^{a}(x-\bar{z})|y|^{a} d \bar{z} d y \\
& =\Phi(x)
\end{aligned}
$$

which proves (a). Part (b) has already been proved in (2.3) and (2.4). By taking $f \equiv 1$ in Theorem 2 we get (c). From (a) and (c) the estimate of the maximal operator is a classical result (see 12). Item (e) follows from the fact that Φ is radial and smooth and from (c).

Let us now show that $\left|\Psi^{i}(x)\right| \leq \frac{C}{|x|^{n+2-a}}$ for $|x|>2$. In fact,

$$
\begin{align*}
\left|\Psi^{i}(x)\right| & =2\left|\int_{0}^{\infty} \int_{z \in \mathbb{R}^{n}} \frac{\partial \varphi}{\partial x_{i}}(z, y) P_{y}^{a}(x-z) y^{a} d z d y\right| \\
& =2\left|\int_{0}^{1} \int_{z \in B(0,1)} \varphi(z, y) \frac{\partial}{\partial x_{i}}\left(P_{y}^{a}(x-z) y^{a}\right) d z d y\right| \\
& \leq C \int_{0}^{1} \int_{z \in B(0,1)}|\varphi(z, y)| \frac{1}{|x-z|^{n+2-a}} d z d y \\
& \leq \frac{C}{(|x|-1)^{n+2-a}} \int_{0}^{1} \int_{z \in B(0,1)}|\varphi(z, y)| d z d y \\
& \leq \frac{C}{|x|^{n+2-a}} . \tag{2.5}
\end{align*}
$$

By taking the derivatives of the function φ the proof of (g) proceeds as in 2.3.
3. Maximal estimates for gradients of solutions of $(-\triangle)^{s} f=0$ in open domains and the improvement of Besov regularity

The mean value formula proved in Section 2 for solutions of $(-\triangle)^{s} f=0$ in an open domain D of \mathbb{R}^{n} can be used to obtain improvement of Besov regularity of f. Here we illustrate how Theorem 2 can be used to get a result in the lines introduced by Dahlke and DeVore for harmonic functions. We shall prove the following result.

Theorem 4. Let D be a bounded Lipschitz domain in \mathbb{R}^{n}. Let $0<s<1$. Let $1<p<\infty$ and $0<\lambda<\frac{n-1}{n}$ be given. Assume that $f \in B_{p}^{\lambda}\left(\mathbb{R}^{n}\right)$ and that $(-\triangle)^{s} f=0$ on D, then $f \in B_{\tau}^{\alpha}(D)$ with $\frac{1}{\tau}=\frac{1}{p}+\frac{\alpha}{n}$ and $0<\alpha<\lambda \frac{n}{n-1}$.

Here $B_{p}^{\lambda}\left(\mathbb{R}^{n}\right)$ and $B_{\tau}^{\alpha}(D)$ denote the standard Besov spaces on \mathbb{R}^{n} and on D with $p=q$ for the usual notation $B_{p, q}^{\lambda}$ of this scale. Among the several descriptions of these spaces the best suited for our purposes is the characterization through wavelet coefficients 9].

It is worthy noticing that in contrast with the local cases associated to the harmonic functions in [3] and the temperatures in [1], now the B_{p}^{λ} regularity is required on the whole space \mathbb{R}^{n} and that the improvement is only in D.

The basic scheme is that in 3, and the central tool is then the estimate contained in the next statement.

Lemma 5. Let D be a domain of \mathbb{R}^{n}. Let $0<\lambda<1$ and $1<p<\infty$. For $f \in B_{p}^{\lambda}\left(\mathbb{R}^{n}\right)$ with $(-\triangle)^{s} f=0$ on D, we have

$$
\left(\int_{D}\left|\delta(x)^{1-\lambda} \nabla f(x)\right|^{p} d x\right)^{\frac{1}{p}} \leq C\|f\|_{B_{p}^{\lambda}\left(\mathbb{R}^{n}\right)}
$$

where $\delta(x)$ is the distance from x to the boundary of $D, \nabla f$ is the gradient of f and C is a constant.

The main difference between the local case in [3] and our nonlocal setting is precisely provided by the fact that since our mean value kernel is not localized in D, the Calderón maximal operator needs to be taken on the whole \mathbb{R}^{n}, not only on D.

The result is itself a consequence of a pointwise estimate of the gradient of f in terms of the sharp Calderón maximal operator and [4]. The result is contained in the next statement and follows from the mean value formula in Theorem 2, and the basic properties of the mean value kernel Φ_{r} and its first order partial derivatives contained in Proposition 3 .

Lemma 6. Let D and λ be as in Lemma5 and let $x \in D$ and $0<r<\delta(x)$. Then

$$
|\nabla f(x)| \leq C r^{\lambda-1} M^{\sharp, \lambda} f(x),
$$

with

$$
M^{\sharp, \lambda} f(x)=\sup \frac{1}{|B|^{1+\frac{\lambda}{n}}} \int_{B}|f(y)-f(x)| d y
$$

where the supremum is taken on the family of all balls of \mathbb{R}^{n} containing x.

Proof. From the definition of Φ it is clear that $\frac{\partial}{\partial x_{i}} \Phi_{r}(x)=\frac{1}{r} \Psi_{r}^{i}(x)$ with $\Psi^{i}(x)=$ $2 \int_{0}^{\infty} \int_{z \in \mathbb{R}^{n}} \frac{\partial \varphi}{\partial z_{i}}(z, y) P_{y}^{a}(x-z) y^{a} d z d y, i=1, \ldots, n$. Since from (e) in Proposition 3 we have that $\Psi^{i}(0)=0$, then

$$
\begin{equation*}
\left|\Psi_{r}^{i}(x)\right|=\left|\Psi_{r}^{i}(x)-\Psi_{r}^{i}(0)\right| \leq|x| \sup _{\xi \in \mathbb{R}^{n}}\left|\nabla \Psi_{r}^{i}(\xi)\right| \leq \frac{C}{r^{n+1}}|x| \tag{3.1}
\end{equation*}
$$

from (g) in Proposition 3 . This is a good estimate in a neighborhood of 0 . Applying the mean value formula for f we get the result after the following estimates,

$$
\begin{aligned}
\left|\frac{\partial f(x)}{\partial x_{i}}\right| & =\left|\frac{\partial}{\partial x_{i}}\left(\Phi_{r} * f\right)(x)\right| \\
& =\left|\frac{1}{r} \int_{\mathbb{R}^{n}} f(x-z) \Psi_{r}^{i}(z) d z\right| \\
& =\left|\frac{1}{r} \int_{\mathbb{R}^{n}}(f(x-z)-f(x)) \Psi_{r}^{i}(z) d z\right| \\
& =\left|\frac{1}{r} \int_{\mathbb{R}^{n}}(f(z)-f(x)) \Psi_{r}^{i}(x-z) d z\right| \\
& \leq \frac{1}{r} \int_{B(x, 2 r)}|f(z)-f(x)|\left|\Psi_{r}^{i}(x-z)\right| d z+\frac{1}{r} \int_{B^{c}(x, 2 r)}|f(z)-f(x)|\left|\Psi_{r}^{i}(x-z)\right| d z \\
& =I+I I
\end{aligned}
$$

We shall bound I using (3.1),

$$
\begin{aligned}
I & =\frac{1}{r} \int_{B(x, 2 r)}|f(z)-f(x)|\left|\Psi_{r}^{i}(x-z)\right| d z \\
& \leq \frac{C}{r^{n+2}} \int_{B(x, 2 r)}|f(z)-f(x)||x-z| d z \\
& =\frac{C}{r^{n+2}} \sum_{j=0}^{\infty} \int_{\left\{z: 2^{-j-1} \leq \frac{|x-z|}{2 r}<2^{-j}\right\}}|f(z)-f(x)||x-z| d z \\
& \leq \frac{C}{r^{n+2}} \sum_{j=0}^{\infty} \int_{B\left(x, 2^{-j+1} r\right)}|f(z)-f(x)| 2^{-j+1} r d z \\
& =\frac{C}{r^{n+1}} \sum_{j=0}^{\infty} 2^{-j+1}\left(2^{-j+1} r\right)^{n+\lambda} \frac{1}{\left(2^{-j+1} r\right)^{n+\lambda}} \int_{B\left(x, 2^{-j+1} r\right)}|f(z)-f(x)| d z \\
& \leq C r^{\lambda-1} \sum_{j=0}^{\infty}\left(2^{-j+1}\right)^{n+\lambda+1} M^{\sharp, \lambda} f(x) \\
& =C r^{\lambda-1} M^{\sharp, \lambda} f(x) .
\end{aligned}
$$

Now from (f) in Proposition 3

$$
\begin{aligned}
I I & =\frac{1}{r} \int_{B^{c}(x, 2 r)}|f(z)-f(x)|\left|\Psi_{r}^{i}(x-z)\right| d z \\
& \leq \frac{C}{r} \sum_{j=0}^{\infty} \int_{\left\{z: 2^{j} \leq \frac{|x-z|}{2 r}<2^{j+1}\right\}}|f(z)-f(x)| \frac{r^{2-a}}{|x-z|^{n+2-a}} d z \\
& \leq C r^{1-a} \sum_{j=0}^{\infty} \int_{\left\{z: 2^{j} \leq \frac{|x-z|}{2 r}<2^{j+1}\right\}}|f(z)-f(x)| \frac{1}{\left(2^{j+1} r\right)^{n+2-a}} d z \\
& \leq \frac{C}{r^{n+1}} \sum_{j=0}^{\infty}\left(2^{j+1}\right)^{-n-2+a} \frac{\left(r 2^{j+2}\right)^{n+\lambda}}{\left(r 2^{j+2}\right)^{n+\lambda}} \int_{B\left(x, 2^{j+2} r\right)}|f(z)-f(x)| d z \\
& \leq C r^{\lambda-1}\left(\sum_{j=0}^{\infty}\left(2^{j+2}\right)^{\lambda-2+a}\right) M^{\sharp, \lambda} f(x) \\
& =C r^{\lambda-1} M^{\sharp, \lambda} f(x)
\end{aligned}
$$

and the Lemma is proved.

Proof of Theorem 4. Follows closely the lines of the proof of Theorem 3 in [3]. The only point in which the nonlocal character of our situation becomes relevant is contained in the first estimates on page 11 in [3]. On the other hand, our upper restriction on λ is only a consequence of the fact that we are using only estimates for the first order derivatives. Our restriction guarantees the convergence of the series involved in the above mentioned estimates in [3].

Let us finally remark that after a fine tuning of the function φ larger values of λ can be achieved.

References

[1] Hugo Aimar and Ivana Gómez, Parabolic Besov regularity for the heat equation, Constr. Approx. 36 (2012), no. 1, 145-159. MR 2926308
[2] Luis Caffarelli and Luis Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), no. 7-9, 1245-1260. MR 2354493 (2009k:35096)
[3] Stephan Dahlke and Ronald A. DeVore, Besov regularity for elliptic boundary value problems, Comm. Partial Differential Equations 22 (1997), no. 1-2, 1-16. MR 97k:35047
[4] Ronald A. DeVore and Robert C. Sharpley, Maximal functions measuring smoothness, Mem. Amer. Math. Soc. 47 (1984), no. 293, viii+115. MR 85g:46039
[5] Eugene B. Fabes and Nicola Garofalo, Mean value properties of solutions to parabolic equations with variable coefficients, J. Math. Anal. Appl. 121 (1987), no. 2, 305-316. MR 872228 (88b:35088)
[6] Eugene B. Fabes, Carlos E. Kenig, and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7 (1982), no. 1, 77-116. MR 84i:35070
[7] David Jerison and Carlos E. Kenig, The inhomogeneous Dirichlet problem in Lipschitz domains, J. Funct. Anal. 130 (1995), no. 1, 161-219. MR 96b:35042
[8] N. S. Landkof, Foundations of modern potential theory, Springer-Verlag, New York, 1972, Translated from the Russian by A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 180. MR 0350027 (50 \# 2520)
[9] Yves Meyer, Wavelets and operators, Cambridge Studies in Advanced Mathematics, vol. 37, Cambridge University Press, Cambridge, 1992, Translated from the 1990 French original by D. H. Salinger. MR 1228209 (94f:42001)
[10] Ricardo H. Nochetto, Enrique Otárola, and Abner J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis, Available in http://arxiv.org/abs/1302.0698, 2013.
[11] Luis Silvestre, Regularity of the obstacle problem for a fractional power of the laplace operator, Ph.D. thesis, The University of Texas at Austin, 2005.
[12] Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095 (44 \#7280)
[13] Pablo Raúl Stinga and José Luis Torrea, Extension problem and Harnack's inequality for some fractional operators, Comm. Partial Differential Equations 35 (2010), no. 11, 20922122. MR 2754080 (2012c:35456)

Instituto de Matemática Aplicada del Litoral (IMAL), CONICET-UNL
Güemes 3450, S3000GLN Santa Fe, Argentina.
E-mail address: haimar@santafe-conicet.gov.ar
E-mail address: gbeltritti@santafe-conicet.gov.ar
E-mail address: ivanagomez@santafe-conicet.gov.ar

[^0]: 1991 Mathematics Subject Classification. Primary 26A33, 35J70. Secondary 35B65, 46E35.
 Key words and phrases. Degenerate Elliptic Equations; Fractional Laplacian; Mean Value Formula; Besov Spaces; Gradient Estimates.

 The research was supported by CONICET, ANPCyT (MINCyT) and UNL.

