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Existence, uniqueness and regularity for a

dissolution-diffusion model

Maŕıa Emilia Castillo Pedro Morin

Abstract

We perform a mathematical analysis of a model for drug dissolution-
diffusion in non erodible nor swellable devices. We deduce a model and
obtain a coupled nonlinear system which contains a parabolic equation
for the dissolved drug and an ordinary differential equation for the solid
drug, which is assumed evenly distributed in the whole domain into micro-
spheres which can differ in size. We analyze the existence, uniqueness, and
regularity properties of the system. Existence is proved using Galerkin ap-
proximations. Uniqueness is obtained in the non-saturated case, and lack
of uniqueness is shown when the initial concentration of dissolved drug is
higher than the saturation density in a region. A square root function ap-
pears in the equation for the solid drug, and is responsible for the lack of
uniqueness in the oversaturated case. The regularity results are sufficient
for the optimal a priori error estimates of a finite element discretization
of the system, which is presented in [CM].

1 Introduction

Numerous mathematical approaches have been proposed to give an adequate
theoretical background to the modeling of drug release from polymeric de-
vices [SS, SP]. The interest in this kind of systems has increased in the medical
and pharmaceutical industry, because controlled drug-release (CDR) systems
allow for predictable release kinetics, small fluctuations of plasma drug level,
diminishing amount of toxic secondary effects, among other advantages [ECDD,
BSBK].

We focus here on a model based on a diffusion equation including a contin-
uum dissolution source described by the Noyes-Whitney equation; other models
are based on a moving dissolution front separating a region of coexisting solid
and dissolved drug from a region of completely dissolved drug; see [CLG] for a
detailed description of other models.

Up to now, all mathematical studies have consisted in finding exact solu-
tions for simple geometries using Fourier analysis, or simplified quasi-stationary
assumptions, such as fast or slow dissolution rates (see [CG] and references
therein). The goal of this article is to study the well-posedness of a dissolution-
diffusion problem, modeling the kinetics of a drug inside a polymeric device,
avoiding the assumption of fast or slow dissolution. We prove existence of so-
lutions, and study uniqueness and regularity properties. An algorithm for the
numerical approximation of the solutions to the problem can be found in [CM],
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where the regularity estimates obtained here are instrumental for obtaining op-
timal a priori error estimates.

The rest of the article is organized as follows. In Section 2 we deduce the
mathematical model and prove existence of solutions in Section 3. Uniqueness
of solutions is discussed in 4 where uniqueness is proved under the assumption
that the initial concentration of dissolved drug is less than or equal to the maxi-
mum solubility, and the existence of multiple solutions is proved when the initial
concentration of dissolved drug is above saturation. Finally, in Section 5 regu-
larity estimates are obtained for both state variables, concentration of dissolved
drug C and area of solid particles per unit volume a.

2 Mathematical Model and Weak formulation

We start this section by briefly deducing a model for drug dissolution-diffusion
in a non-erodible polymeric device. We consider a model for one drug, which
can be either in a solid or in a dissolved state. We assume that the solid
drug is distributed in particles of equal density, evenly dispersed in the whole
device, which can differ in mass and volume, but keep a spherical shape when
dissolved [CLG]. We also assume that they are so small that do not affect the
diffusion of the dissolved drug, which thus evolves by diffusion with constant
coefficient.

Under these assumptions we can state the mathematical model on a domain
Ω ⊂ R3, occupied by the polymeric device. If C denotes the concentration of
dissolved drug, following the same steps used to obtain the diffusion equation
with Fick’s law we arrive at the following equation:

∂C

∂t
−D∆C = −∂m

∂t
, x ∈ Ω, t > 0, (2.1)

where D is the drug diffusion coefficient and m is the mass of solid drug per unit
volume, so that −∂m∂t is the mass of solid drug being dissolved per unit volume
per unit time.

Following [CLG], we use the Noyes-Whitney model for the dissolution of
the microspheres, i.e., we assume that the microspheres dissolve at a rate pro-
portional to the product of their surface area and the difference between the
saturation solubility Cs and the concentration around them. If a denotes the
area of the microspheres of solid drug per unit volume, this can be stated math-
ematically as

∂m

∂t
(x, t) = −kDa(x, t)(Cs − C(x, t)), x ∈ Ω, t > 0, (2.2)

where kD is the dissolution rate constant of the solid drug particles. Using
relations between ratio, area and mass of a sphere and (2.2), we can rewrite (2.2)
as

∂a

∂t
= − 4kD

√
πN1/2

ρs︸ ︷︷ ︸
β

√
a(Cs − C), x ∈ Ω, t > 0, (2.3)

where N represents the number of particles per unit volume and ρs is the in-
trinsic density of the solid drug particles.
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Statement of the problem. Adding initial conditions and boundary condi-
tions of Neumann and Robin type we arrive at the following problem:

∂C

∂t
−D∆C = kDa(Cs − C), in Ω× (0, tF ),

∂a

∂t
= −β

√
a(Cs − C), in Ω× (0, tF ),

C(·, 0) = C0(·), in Ω,

a(·, 0) = a0(·), in Ω

D
∂C

∂n
= 0, on ΓN × (0, tF ),

D
∂C

∂n
= kB(CB − C), on ΓB × (0, tF ).

(2.4)

This problem is stated over Ω ⊂ Rd (d = 1, 2, 3), which is an open, bounded
and connected set with Lipschitz boundary Γ = ΓB ∪ ΓN . ΓB is the nontrivial
part of the boundary where drug is released to the surrounding medium, and
ΓN = Γ\ΓB is the insulated part; CB denotes the drug concentration in the
bulk medium, kB the external mass transfer coefficient, ∂C

∂n = ∇C · n and n
denotes the exterior unit normal to ∂Ω. We assume also that

D, kD, kB , CB ∈ (0,+∞), β ∈ L∞(Ω), β ≥ 0, (2.5)

C0, a0 ∈ L∞(Ω), C0, a0 ≥ 0. (2.6)

Proceeding as usual, integrating by parts in Ω, we arrive at the following weak
formulation of the problem.

Definition 1. The pair (C, a) is a weak solution of (2.4) if C ∈ L2(0, tF ;H1(Ω))
with Ct ∈ L2(0, tF ;H−1(Ω)), a ∈ H1(0, tF ;L2(Ω)) and for a.e. t ∈ [0, tF ]
〈Ct(t), v〉+ B[C(t), v] = kD

ˆ
Ω

a(t)(Cs − C(t))v + kBCB

ˆ
ΓB

v, ∀v ∈ H1(Ω),

ˆ
Ω

at(t)w =

ˆ
Ω

β(C(t)− Cs)
√
a(t)w, ∀w ∈ L2(Ω),

C(0) = C0, a(0) = a0,
(2.7)

where 〈f, v〉 stands for the evaluation of the functional f ∈ H−1(Ω) in v ∈
H1(Ω) and

B : H1(Ω)×H1(Ω)→ R, B[C, v] := D

ˆ
Ω

∇C∇v + kB

ˆ
ΓB

Cv.

The space L2(Ω) is the space of Lebesgue measurable functions on Ω which
are square integrable, H1(Ω) denotes the usual Sobolev space of functions in
L2(Ω) with weak derivatives of first order in L2(Ω) and H−1(Ω) is the dual
space of H1(Ω). The spaces Lp(0, tF ;X) denote the usual spaces of weakly

measurable functions f : [0, tF ]→ X, such that
´ tF

0
‖f(t)‖pX dt <∞. The space

H1(0, tF ;X) denotes the space of functions in L2(0, tF ;X) with weak derivative
of first order in L2(0, tF ;X); see [T, Chapter 3] for details and main results.
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Remark 2. The following Friedrich inequality holds for a constant CF depending
on ΓB and Ω:

‖v‖2L2(Ω) ≤ C2
F

(
‖∇v‖2L2(Ω) + ‖v‖2L2(ΓB)

)
, ∀v ∈ H1(Ω). (2.8)

As an immediate consequence, the bilinear form B is coercive and bounded,
i.e., there exist positive constants C1, C2 such that, for all v, w ∈ H1(Ω),

C1‖v‖2H1(Ω) ≤ B[v, v] and B[v, w] ≤ C2‖v‖H1(Ω)‖w‖H1(Ω).

3 Building solutions

In this section we prove the existence of weak solutions to (2.4). We will do so
by constructing Galerkin approximations and passing to the limit, following the
main steps from [E] for the heat equation. Problems with similar features have
been studied in [AV, DS]. The proofs in [AV] are based on a regularization of the
non-Lipschitz term and hinge upon using powerful tools from [LSU]. The proofs
from [DS] are based on an iteration at the infinite-dimensional level. These
proofs do not directly apply to our problem. Our more elementary approach
allows us to prove also higher regularity results and obtain an explicit formula
in terms of C for the area of solid particles a.

3.1 Galerkin approximations.

We consider a sequence {Tn} of conforming and shape regular triangulations of
Ω, such that

⋃
T∈Tn T = Ω, and hn := maxT∈Tn hT → 0 when n → ∞, where

hT denotes the diameter of T , which could be curved at the boundary.
We define the following finite-dimensional spaces:

Vn = {v ∈ H1(Ω) : v|T ∈P1, ∀T ∈ Tn},

Wn = {w ∈ L2(Ω) : w|T ∈P0, ∀T ∈ Tn},

where P` is the space of polinomials of degree less than or equal to `. We also
assume that the triangulations are nested so that for all n ∈ N, Vn ⊂ Vn+1,
Wn ⊂Wn+1, ∪∞n=1Vn is dense in H1(Ω) and ∪∞n=1Wn is dense in L2(Ω).

For a fixed n ∈ N, we define the Galerkin approximations as follows: Let
Cn : [0, tF ] → Vn, an : [0, tF ] → Wn be solutions of the following system of
ordinary differential equations on [0, tF ],

(Cn,t, v) + B[Cn, v] = kD

ˆ
Ω

an(Cs − Cn)v + kBCB

ˆ
ΓB

v, ∀v ∈ Vn (3.1)

ˆ
Ω

an,tw =

ˆ
Ω

β
(
min{Cn, C̄0} − Cs

)
Φn(an)w, ∀w ∈Wn (3.2)

Cn(0) = C0
n, an(0) = a0

n +
2

n2
, (3.3)

Hereafter (·, ·) denotes the inner product in L2(Ω), C̄0 = max
{
‖C0‖L∞(Ω), Cs

}
,

C0
n and a0

n denote the L2(Ω)-projections of C0 and a0 on Vn and Wn, respec-
tively. Using min{Cn, C̄0} instead of Cn in (3.2) permits to obtain easily a
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bound for an. To avoid the non-lipschitzcity of the square root, we have used
Φn, defined by

Φn(α) =

{√
α− 1

n , if α > 1/n2,

0, if α ≤ 1/n2.
(3.4)

The term 2
n2 in (3.3) allows us to find a formula to the solution an over each ele-

ment of the triangulation using the first branch in the definition of Φn. This fact
will help us to show the existence of two solutions when a0 ≡ 0 (see Section 4.2).

Remark 3. If C0 ∈ H1(Ω) in (2.6) we could define also Cn(0) as the H1-
projection of C0 on Vn or as the Ritz projection RnC(0) of C(0) which is
defined by:

RnC(0) ∈ Vn : B[RnC(0), v] = B[C(0), v], ∀v ∈ Vn. (3.5)

The same arguments that we will use in what follows apply to both choices of
Cn(0), yielding analogous bounds.

Stability and global existence of Galerkin approximations. We first
prove some useful stability bounds for the Galerkin approximations, and then
conclude their global existence.

Proposition 4. If (Cn, an) is a solution of (3.1)–(3.3) in [0, tF ) for some
tF > 0, then the following estimates hold with constants C4, C5 independent of
n and tF :

‖Cn‖2L∞(0,tF ;L2(Ω)),C4‖Cn‖2L2(0,tF ;H1(Ω))

≤ ‖C0‖2L2(Ω) + C5|Ω|tF ‖an‖2L∞(0,tF ;L∞(Ω)) + kBC
2
B |ΓB |tF , (3.6)

‖an‖L∞(0,tF ;L∞(Ω)) ≤
(
‖a0‖L∞(Ω) + 2

)
etF

+

(
‖β‖2L∞(Ω)

4

(
C̄0 − Cs

)2)
(etF − 1),

(3.7)

and

‖an,t‖2L2(0,tF ;L∞(Ω))

≤ ‖an‖L∞(0,tF ;L∞(Ω))‖β‖2L∞(Ω)|Ω|
2/3‖min

{
Cn, C̄0

}
− Cs‖2L2(0,tF ;H1(Ω)).

(3.8)

Proof. Since an(t) ∈ Wn, an(t) is constant over each element T ∈ Tn. Then,
denoting αT (t) = an(t)|T , we write (3.2) as

α′T (t) = Φn(αT (t))

 
T

β
(
min

{
Cn, C̄0

}
− Cs

)
dx, T ∈ Tn, t ∈ (0, tF ). (3.9)

On the one hand, since αT (0) ≥ 2/n2 > 0 and Φn(α) = 0 if α ≤ 1/n2, it
turns out that αT (t) ≥ 1/n2 for all t ∈ [0, tF ).

On the other hand, since min{Cn, C̄0}−Cs ≤ C̄0−Cs and β(x),Φn(αT (t)) ≥
0 we get,

α′T (t) ≤ Φn(αT (t))

 
T

β
(
C̄0 − Cs

)
dx.
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Applying Cauchy-Schwarz inequality to the above expression and recalling that
0 ≤ φn(α) ≤

√
α, we obtain,

α′T (t) ≤ αT (t) +
‖β‖2L∞(Ω)

4

(
C̄0 − Cs

)2
,

d

dt

(
e−tαT (t)

)
= e−t (αT

′(t)− αT (t)) ≤ e−t
(
‖β‖2L∞(Ω)

4

(
C̄0 − Cs

)2)
.

Integrating from 0 to t and multiplying by et we arrive at

αT (t) ≤ αT (0)et +

(
‖β‖2L∞(Ω)

4

(
C̄0 − Cs

)2)
(et − 1), (3.10)

for all t in [0, tF ) and T ∈ Tn. Since αT (t) ≥ 0, an(t)(x) = αT (t) if x ∈ T , and
αT (0) =

ffl
T
a0 + 2/n2 we have that

‖an‖L∞(0,tF ;L∞(Ω)) ≤
(∥∥a0

∥∥
L∞(Ω)

+ 2
)
etF

+

(
‖β‖2L∞(Ω)

4

(
C̄0 − Cs

)2)
(etF − 1),

We have thus proved the desired bound (3.7) for an. The argument above is
based on the mere existence of Cn and not on additional assumptions of Cn.
This could be done thanks to the presence of min{Cn, C̄0} instead of Cn in the
equation for the temporal derivative of an.

To prove the estimate for Cn, we set v = Cn in (3.1), and get

1

2

d

dt
‖Cn‖2L2(Ω) + B[Cn, Cn] + kD

ˆ
Ω

anC
2
n = kDCs

ˆ
Ω

anCn + kBCB

ˆ
ΓB

Cn.

The definition of B[·, ·] and Cauchy-Schwarz inequality yield, for any ε > 0,

1

2

d

dt
‖Cn‖2L2(Ω) +D

ˆ
Ω

|∇Cn|2 +
kB
2

ˆ
ΓB

C2
n

≤ kDCs
4ε

ˆ
Ω

a2
n + εkDCs

ˆ
Ω

C2
n + kB

C2
B

2
|ΓB |,

where we have dropped the term kD
´

Ω
anC

2
n ≥ 0 from the left-hand side. There-

fore, by Friedrich inequality (2.8),

1

2

d

dt
‖Cn‖2L2(Ω) +

D

2

ˆ
Ω

|∇Cn|2 +

[
min

{
D
2 ,

kB
2

}
C2
F

− εkDCs

]ˆ
Ω

C2
n

≤ kDCs
4ε

ˆ
Ω

a2
n + kB

C2
B

2
|ΓB |.

Setting ε = 1
2

min
{

D
2 ,

kB
2

}
C2

F kDCs
so that C3 :=

min
{

D
2 ,

kB
2

}
C2

F
− εkDCs > 0, we get

1

2

d

dt
‖Cn‖2L2(Ω) +

D

2

ˆ
Ω

|∇Cn|2 + C3

ˆ
Ω

C2
n

≤ C2
F k

2
DC

2
s

2 min
{
D
2 ,

kB
2

} ˆ
Ω

a2
n + kB

C2
B

2
|ΓB |.
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Defining C4 := min{D, 2C3} and C5 =
C2

F k
2
DC

2
s

2 min
{

D
2 ,

kB
2

} , the above inequality be-

comes:
d

dt
‖Cn‖2L2(Ω) + C4‖Cn‖2H1(Ω) ≤ C5

ˆ
Ω

a2
n + kBC

2
B |ΓB |.

Integrating with respect to t, we obtain, for t ∈ [0, tF ):

‖Cn(t)‖2L2(Ω) + C4

ˆ t

0

‖Cn‖2H1(Ω) ≤ ‖Cn(0)‖2L2(Ω) + C5

ˆ t

0

ˆ
Ω

a2
n + kBC

2
B |ΓB |t.

In view of (3.7) and recalling that Cn(0) is the L2-projection of C0 on Vn, the
asserted estimates (3.6) follow.

Going back to (3.9) we observe

|α′T (t)| = |Φn(αT (t))|
∣∣∣∣ 
T

β
(
min

{
Cn, C̄0

}
− Cs

)
dx

∣∣∣∣ ,
≤
√
αT (t)‖β‖L∞(Ω)|T |1/3

(ˆ
T

|min{Cn(t), C̄0} − Cs|4
)1/4

,

≤ ‖an‖1/2L∞(0,t;L∞(Ω))‖β‖L∞(Ω)|Ω|1/3‖min{Cn(t), C̄0} − Cs‖H1(Ω),

by Sobolev embedding theorem; and (3.8) follows.

Existence and uniqueness of a local solution to (3.1)–(3.3) is guaranteed
by standard theory for ordinary differential equations from [CL, Theorem 2.3,
Chapter 1, pag 10] because the right-hand side of (3.1)–(3.3) is Lipschitz con-
tinuous. The bounds from the previous proposition, with the results on con-
tinuation of solutions from [CL, Theorem 4.1, Chapter 1, pag 15] yield global
existence and uniqueness of solution to (3.1)–(3.3). We state this as follows:

Theorem 5. Problem (3.1)–(3.3) has a unique solution (Cn, an) in [0,∞), for
each n ∈ N and the bounds (3.6)–(3.8) hold for any tF > 0.

Having proved existence and stability bounds for (Cn, an) the next step
consists in proving that a subsequence converges to some candidate (C, a).

3.2 Limiting process for Cn.

By Proposition 4, {Cn} is a bounded sequence in L2(0, tF ;H1(Ω)), which is
a reflexive Banach space. Then there exists a weak convergent subsequence
{Cnk

}, which we keep calling {Cn}, and C ∈ L2(0, tF ;H1(Ω)) such that

Cn ⇀ C in L2(0, tF ;H1(Ω)).

Following ideas from the proof of [T, Theorem 3.2, p. 283] we can prove that
there exist γ > 0 such that {Cn} is bounded in Hγ

[0,tF ](R;H1(Ω), L2(Ω)). Due to

[T, Theorem 2.2, p. 274] this space is compactly embedded in L2(0, tF ;L2(Ω))
and we thus conclude that there exists a subsequence of {Cn} which we still call
{Cn}, that converges to C in L2(0, tF ;L2(Ω)).

Remark 6. This argument using the fractional order spaceHγ
[0,tF ](R;H1(Ω), L2(Ω))

is necessary to prove existence in the most general case of C0 ∈ L2(Ω). It can
be avoided if we assume C0 ∈ H1(Ω). In the latter, choosing Cn(0) as the
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H1(Ω)-projection of C0 into Vn, the sequences Cn, Cn,t are uniformly bounded
in L∞(0, tF ;H1(Ω)) and L2(0, tF ;L2(Ω), respectively (see Theorem 20 below).
This also implies the existence of a subsequence converging strongly to C in
L2(0, tF ;L2(Ω)).

3.3 Limiting process for an.

The goal of this subsection is to prove the following important result.

Theorem 7. The sequence {an} has a subsequence which we still call {an} that
satisfies:

√
an →

√
a, and an → a, in L2(0, tF ;L2(Ω)),

where, for t ∈ [0, tF ],

a(t) =

(√
a0 +

1

2

ˆ t

0

β
(
min

{
C(τ), C̄0

}
− Cs

)
dτ

)2

+

.

Remark 8. Since L∞(0, tF ;L∞(Ω)) ⊂ L2(0, tF ;L2(Ω)) and L2(0, tF ;L2(Ω)) is
a reflexive Banach space, using (3.7) we have the existence of a subsequence of
{an} converging weakly to some function a. It is important to notice though,
that this weak convergence does not imply

√
an ⇀

√
a, and the converse is not

true either. It is sufficient to consider the example an(x) = (10 + sinnx)2, for
x ∈ [0, 1], for which

√
an ⇀ ã ≡ 10, and

an = 100 +
1

2
− cos 2nx

2
+ 2 sinnx ⇀ 100 +

1

2
6= ã2.

In order to prove Theorem 7 we need to use other properties of {an} be-
sides weak convergence. We will show that {an} converges pointwise to a and
conclude the assertion by Lebesgue dominated convergence theorem, using the
estimates (3.7) and (3.6).

We now prove some intermediate results and postpone the proof of Theo-
rem 7 to the end of this section. We start analyzing the convergence of the
initial data.

Proposition 9.
√
an(0)→

√
a0 in L2(Ω) when n→∞.

Proof. Recall that an(0) = a0
n + 2/n2, where a0

n is the L2(Ω)-projection of a0

on Wn. Then an(0) =
∑
T∈Tn αTχT + 2/n2 with αT =

ffl
T
a0. Then

ˆ
Ω

(√
an(0)−

√
a0
)2

dx =
∑
T∈Tn

ˆ
T

(√
αT +

2

n2
−
√
a0

)2

dx

≤
∑
T∈Tn

ˆ
T

(
αT − 2

√
αT
√
a0 + a0 +

2

n2

)
dx

≤ 2
∑
T∈Tn

ˆ
T

√
a0
(√

a0 −
√
αT

)
dx+

2|Ω|
n2

,
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where in the last inequality we have used that
∑
T∈Tn

´
T

(
αT − a0

)
dx = 0.

Next we observe that
√
αT = 1

|T |1/2
(´
T
a0
)1/2 ≥ 1

|T |
´
T

√
a0, whence

ˆ
T

√
a0
(√

a0 −
√
αT

)
dx ≤

ˆ
T

√
a0

(√
a0 − 1

|T |

ˆ
T

√
a0

)
dx.

Consequently by Hölder and Cauchy-Schwartz inequalities
ˆ

Ω

(√
an(0)−

√
a0
)2

dx ≤ 2
∑
T∈Tn

ˆ
T

√
a0

(√
a0 − 1

|T |

ˆ
T

√
a0

)
dx+

2|Ω|
n2

≤ 2

(ˆ
Ω

a0

)1/2
(∑
T∈Tn

ˆ
T

(√
a0 − 1

|T |

ˆ
T

√
a0

)2

dx

)1/2

+
2|Ω|
n2

= 2

(ˆ
Ω

a0

)1/2
(ˆ

Ω

(√
a0 −

∑
T∈Tn

1

|T |

ˆ
T

√
a0 dyχT (x)

)2

dx

)1/2

+
2|Ω|
n2

.

The assertion follows from the fact that
∑
T∈Tn

1
|T |

´
T

√
a0 dy χT (x) is the L2(Ω)-

projection of
√
a0 in Wn.

We define now Σ :=
⋃
n∈N

⋃
T∈Tn ∂T , i.e., the set of points belonging to

the sides of the elements of all the triangulations of the sequence. Its Lebesgue
measure is zero because it is a countable union of sets with Lebsegue measure
zero. Besides, given n ∈ N fixed and x ∈ Ω \ Σ, there exists a unique T =
T (x, n) ∈ Tn such that x ∈ T . We will hereafter omit the subindex T and for a
given x ∈ Ω \ Σ, we will consider the elements Tn such that x ∈ Tn ∈ Tn. For
example, αn(t) will denote αnT (x,n)(t) := an(t)(x) = an(t)|T (x,n) where T (x, n)
is the only element T ∈ Tn such that x ∈ T . By Proposition 9 the sequence{√

αn(0)
}
n∈N

is convergent, and thus αn(0)→ α0, as n→∞ for some α0 ∈ R.

From (3.2) and (3.3),

αn(t)′ = fn(t)Φn(αn(t)), t > 0, with αn(0) =

 
T

a0 +
2

n2
>

1

n2
,

with Φn as in (3.4), and fn(t) :=
ffl
T
β
(
min

{
Cn, C̄0

}
− Cs

)
. It is straightfor-

ward to check that the solution αn(t) to this scalar IVP satisfies the following
(algebraic) equation for each t > 0:

√
αn(t) =

√
αn(0)− 1

n
log

(√
αn(t)− 1

n√
αn(0)− 1

n

)
+

1

2

ˆ t

0

fn(τ) dτ. (3.11)

For t fixed, let us call Xn :=
√
αn(t) and `n :=

√
αn(0) + 1

2

´ t
0
fn(τ) dτ , then,

rewritting (3.11) in terms of Xn and `n, it reads:

Xn +
1

n
log

(
Xn − 1

n√
αn(0)− 1

n

)
= `n. (3.12)

The following lemma, whose proof is postponed to the end of this section, states
existence and uniqueness of Xn satisfying (3.12) for each n and asserts conver-
gence of Xn when `n → ` and αn(0)→ α0.
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Lemma 10. Let {`n}, {αn(0)} ⊂ R be sequences such that `n → ` and
√
αn(0)→√

α0, with
√
αn(0) > 1

n . Then, for each n, there exists a unique Xn ∈
(

1
n ,∞

)
such that

Xn +
1

n
log

(
Xn − 1

n√
αn(0)− 1

n

)
= `n, (3.13)

and moreover Xn −→ `+ =

{
`, if ` ≥ 0,

0, if ` < 0,
when n tends to ∞.

Proposition 11 below states that `n :=
√
αn(0) + 1

2

´ t
0
fn(τ) dτ converges to

` :=
√
a0(x) + 1

2

´ t
0
β
(
min

{
C, C̄0

}
− Cs

)
dτ when n → ∞. This allows us to

prove Theorem 7.

Proof of Theorem 7. By Proposition 11 there is a subsequence {`nk
}k∈N, which

we keep calling {`n}n∈N, such that `n → ` for almost all (x, t) in Ω× [0, tF ], as
n→∞. Therefore, by Lemma 10 we have that

Xn =
√
an(x, t) =

Nn
W∑

T∈Tni=1

αni (t)χTn
i

(x)

→
(√

a0(x) +
1

2

ˆ t

0

β
(
min

{
C, C̄0

}
− Cs

)
dτ

)
+

,

for almost all (x, t) in Ω × [0, tF ] . By (3.7) and the dominated convergence
theorem, we conclude that

√
an →

(√
a0(x) +

1

2

ˆ t

0

β
(
min

{
C, C̄0

}
− Cs

)
dτ

)
+

,

and an →
(√

a0(x) +
1

2

ˆ t

0

β
(
min

{
C, C̄0

}
− Cs

)
dτ

)2

+

= a,

(3.14)

with convergence in L2(0, tF ;L2(Ω)).

Proposition 11. When n→∞,

∑
T∈Tn

(√
αn(0) +

1

2

ˆ t

0

 
T

β
(
min

{
Cn, C̄0

}
− Cs

)
dy dτ

)
χT (x)

→
√
a0(x) +

1

2

ˆ t

0

β
(
min

{
C, C̄0

}
− Cs

)
dτ.

in L2(Ω× [0, tF ]).

Proof. Convergence of
∑
T∈Tn

√
αn(0)χT to

√
a0 in L2(Ω), and consequently in

L2(Ω× [0, tF ]) was shown in Proposition 9.
To prove the convergence of the second term, it is sufficient to see that

gn(x, t) :=
∑
T∈Tn

ˆ t

0

 
T

β(y) min
{
Cn(y, τ), C̄0

}
dy dτχT (x)

→
ˆ t

0

β(x) min
{
C(x, τ), C̄0

}
dτ =: g(x, t),

10
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in L2(Ω × [0, tF ]). If we define Xn = {v ∈ L2(0, tF ;L2(Ω)) : v(·, t) ∈ Wn},
then ∪∞n=1Xn is dense in L2(0, tF ;L2(Ω)). If Pn denotes the L2(Ω × (0, tF ))-

projection on Xn, then gn(·, t) =
´ t

0
Pn

(
βmin{Cn(·, τ), C̄0}

)
dτ and by Hölder

inequality we obtain

‖gn(·, t)− g(·, t)‖L2(Ω)

≤ t1/2F

∥∥Pn

(
βmin

{
Cn, C̄0

})
− βmin

{
C, C̄0

}∥∥
L2(Ω×(0,tF ))

≤ t1/2F

∥∥Pn

[
βmin

{
Cn, C̄0

}
− βmin

{
C, C̄0

}]∥∥
L2(Ω×(0,tF ))

+ t
1/2
F

∥∥Pn

(
βmin

{
C, C̄0

})
− βmin

{
C, C̄0

}∥∥
L2(Ω×(0,tF ))

.

Since Cn → C in L2(0, tF ;L2(Ω)) we have that βmin
{
Cn, C̄0

}
→ βmin

{
C, C̄0

}
in L2(Ω× [0, tF ]), because β ∈ L∞(Ω). Finally,

‖gn(·, t)− g(·, t)‖L2(Ω) → 0, as n→∞, (3.15)

uniformly in t ∈ [0, tF ], which readily implies that

‖gn(·, t)− g(·, t)‖L2(0,tF ;L2(Ω)) → 0, as n→∞,

and the assertion follows.

We end this section by proving Lemma 10, which was used in the proof of
Theorem 7, the main goal of this section.

Proof of Lemma 10. The mapping gn :
(

1
n ,∞

)
→ R, defined by gn(x) = x +

1
n log

(
x− 1

n√
αn(0)− 1

n

)
is onto R and also one-to-one since g′n(x) = 1+ 1

n

√
αn(0)− 1

n

x− 1
n

>

0 for all x ∈
(

1
n ,∞

)
. Therefore, there exists a unique Xn satisfying (3.13).

In order to show convergence of {Xn} to `+ we consider three cases: ` < 0,
` > 0 and ` = 0.
1 If ` < 0, then there exists N0 such that, for n ≥ N0, `n <

`
2 and thus

1

n
log

(
Xn − 1

n√
αn(0)− 1

n

)
= `n −Xn <

`

2
− 1

n
<
`

2
, for n ≥ N0.

Then, log

(
Xn− 1

n√
αn(0)− 1

n

)
< n `2 , and thus 1

n < Xn <
1
n +

(√
αn(0)− 1

n

)
en

`
2 for

n ≥ N0, which implies Xn → 0 = `+ (recall that ` < 0).
2 If ` > 0, there exists N0 such that, for all n ≥ N0, 1

n < `
2 < `n < 3`

2 .

Using the monotonicity of gn and analyzing separately the cases `n <
√
αn(0),

`n =
√
αn(0), `n >

√
αn(0), one can easily prove that

0 < γ ≤
Xn − 1

n√
αn(0)− 1

n

≤ 4`n, ∀n ≥ N0,

with γ independent of n, whence

Xn = `n −
1

n
log

(
Xn − 1

n√
αn(0)− 1

n

)
→ ` = `+, when n→∞.
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3 If ` = 0, we show that Xn → 0 by contradiction. Assume that {Xn} does
not converge to zero, then there exists a subsequence {Xnk

}k∈N bounded below
by a constant γ > 0. Consequently, if γ̃ denotes an upper bound for

√
αn(0), it

turns out that

0 <
γ

2γ̃
≤
γ − 1

nk

γ̃ − 1
nk

≤
Xnk

− 1
nk√

αnk(0)− 1
nk

,

for all k ∈ N such that nk > 2 max{1/γ, 1/γ̃}. Then,

γ ≤ Xnk
= `nk

− 1

nk
log

Xnk
− 1

nk√
αnk(0)− 1

nk

≤ `nk
− 1

nk
log

γ

2γ̃
→ 0, as k →∞.

This is a contradiction that stems from the assumption that Xn does not con-
verge to zero.

3.4 Existence of a weak solution

We summarize the most relevant results until here in the following theorem.

Theorem 12. Let (Cn, an), n ∈ N, be solutions of (3.1)–(3.3). Then there exist
C ∈ L2(0, tF ;H1(Ω)), a ∈ L2(0, tF ;L2(Ω)) and a subsequence of {(Cn, an)}
which we still call {(Cn, an)} such that, as n→∞,

Cn → C in L2(0, tF ;L2(Ω)), Cn ⇀ C in L2(0, tF ;H1(Ω)), (3.16)
√
an →

√
a and an → a in L2(0, tF ;L2(Ω)). (3.17)

Also, the limit a can be written in terms of C as follows:

a(x, t) =

(√
a0(x) +

1

2

ˆ t

0

β
(
min{C, C̄0} − Cs

)
dτ

)2

+

. (3.18)

The goal of this section is to show that (C, a) is a weak solution to (2.4),
i.e. it satisfies Definition 1. In order to pass to the limit in equation (3.1), we
consider first scalar functions ψ ∈ C∞[0, tF ] with ψ(tF ) = 0 and v ∈ ∪∞n=1Vn,
i.e., v ∈ Vn0

, for some n0. We multiply (3.1) by ψ(t), integrate with respect to
t and integrate by parts to obtain, for n ≥ n0,

−
ˆ tF

0

(Cn(t)ψ′(t), v) dt− (Cn(0), v)ψ(0)

= −
ˆ tF

0

B[Cn, v]ψ(t) dt+ kD

ˆ tF

0

((Cs − Cn)an, v)ψ(t) dt

+ kB

ˆ tF

0

((CB , v))ψ(t) dt.

(3.19)

where, as before, (·, ·) denotes the inner product in L2(Ω), and ((·, ·)) denotes
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the inner product in L2(ΓB). From (3.16) we have, as n→∞,

ˆ tF

0

(Cn(t)ψ′(t), v) dt →
ˆ tF

0

(C(t)ψ′(t), v) dt,

(Cn(0), v)ψ(0) → (C0, v)ψ(0),ˆ tF

0

B[Cn, v]ψ(t) dt →
ˆ tF

0

B[C, v]ψ(t) dt,

ˆ tF

0

((CB , v))ψ(t) dt →
ˆ tF

0

((CB , v))ψ(t) dt.

In order to see that the interaction term
´ tF

0
((Cs − Cn)an, v)ψ(t) dt tends to´ tF

0
((Cs − C)a, v)ψ(t) dt we observe that, by Hölder inequality,∣∣∣∣ˆ tF

0

((Cs − Cn)an, v)ψ(t) dt−
ˆ tF

0

((Cs − C)a, v)ψ(t) dt

∣∣∣∣
≤
∣∣∣∣ˆ tF

0

ˆ
Ω

((Cs − C)− (Cs − Cn))anv dxψ(t) dt

∣∣∣∣
+

∣∣∣∣ ˆ tF

0

ˆ
Ω

(Cs − C)(an − a)v dxψ(t) dt

∣∣∣∣,
≤ ‖Cn − C‖L2(0,tF ;L2(Ω))‖an‖L2(0,tF ;L2(Ω))‖vψ‖L∞(0,tF ;L∞(Ω))

+ ‖Cs − C‖L2(0,tF ;L2(Ω))‖an − a‖L2(0,tF ;L2(Ω))‖vψ‖L∞(0,tF ;L∞(Ω)).

Consequently,
´ tF

0
((Cs−Cn)an, v)ψ(t) dt→

´ tF
0

((Cs−C)a, v)ψ(t) dt as n→∞
due to (3.16) and (3.17).

Therefore, for ψ ∈ C∞[0, tF ] with ψ(tF ) = 0 and v ∈ ∪∞n=1Vn,

−
ˆ tF

0

(C(t), v)ψ′(t) dt− (C0, v)L2(Ω)ψ(0)

= −
ˆ tF

0

B[C, v]ψ(t) dt+ kD

ˆ tF

0

((Cs − C)a, v)ψ(t) dt

+ kB

ˆ tF

0

((CB , v))ψ(t) dt.

(3.20)

Since each term in (3.20) depends linearly and continuously on v, for the H1(Ω)
norm, and ∪∞n=1Vn is dense in H1(Ω), (3.20) is valid for all v ∈ H1(Ω).

Since (3.20) holds for the particular case of ψ ∈ C∞c (0, tF ), we obtain the
following identity, which is valid in the distribution sense on (0, tF ), for all
v ∈ H1(Ω):

d

dt
(C, v) = −D(∇C,∇v)− kB((C, v))− kD(aC, v) + kDCs(a, v) + kB((CB , v)).

Then, using that H1(Ω) is reflexive, and applying Lemma 1.1 from [T, pag
250] with X = H−1(Ω), we conclude that Ct ∈ L2(0, tF ;H−1(Ω)) and C satisfies
the first equation of (2.7), i.e., for all v ∈ H1(Ω) and almost every t ∈ [0, tF ]:

〈Ct, v〉+ B[C, v] = kD

ˆ
Ω

a(Cs − C)v + kBCB

ˆ
ΓB

v. (3.21)

13

Prep
rin

t

 
IMAL PREPRINT # 2014-0014

                          ISSN 2451-7100 
Publication date: July 04,  2014



It remains to check the initial condition for C. Lemma 1.2 [T, pag. 260] en-
ables us to assert that C agrees with a continuous function from [0, tF ] to L2(Ω).
Taking v ∈ H1(Ω) fixed, we multiply the above equation by ψ ∈ C∞(0, tF ) with
ψ(tF ) = 0, integrate with respect to t to obtain:

ˆ tF

0

〈Ct, v〉ψ dt = −
ˆ tF

0

B[C, v]ψ(t) dt

+ kD

ˆ tF

0

((Cs − C)a, v)ψ(t) dt+ kB

ˆ tF

0

((CB , v))ψ(t) dt.

Using statement (iii) from Lemma 1.1 [T, pag 250] and integrating by parts, we
have:

−
ˆ tF

0

(C, v)ψ′ dt− (C(0), v)ψ(0) = −
ˆ tF

0

B[C, v]ψ(t) dt

+ kD

ˆ tF

0

((Cs − C)a, v)ψ(t) dt+ kB

ˆ tF

0

((CB , v))ψ(t) dt.

Comparing the above equation with (3.20), we obtain (C(0) − C0, v)ψ(0) = 0,
and thus

(C(0)− C0, v) = 0, ∀v ∈ H1(Ω).

and finally C(0) = C0.
Let us see now the equation for a. From (3.2), using the convergences as-

serted in Theorem (12),

(at, w) =
(
β
(
min

{
C, C̄0

}
− Cs

)√
a+, w

)
, ∀w ∈ L2(Ω),

at almost every t ∈ [0, tF ]. Since a, at ∈ L2(0, tF ;L2(Ω)), Lemma 1.1 from [T,
pag 250], implies that a is a.e. equal to a continuous function in C([0, tF ];L2(Ω)).
Then, evaluation of the expression (3.18) give us a(0) = a0 in L2(Ω).

Thus far, we have proved that the pair (C, a) satisfies C ∈ L2(0, tF ;H1(Ω))
with Ct ∈ L2(0, tF ;H−1(Ω)), a ∈ H1(0, tF ;L2(Ω)) and a.e. t ∈ [0, tF ] it holds
〈Ct, v〉+ B[C, v] = kD

ˆ
Ω

a(Cs − C)v + kBCB

ˆ
ΓB

v, ∀v ∈ H1(Ω),

ˆ
Ω

atw =

ˆ
Ω

β(min
{
C, C̄0

}
− Cs)

√
a+w, ∀w ∈ L2(Ω),

C(0) = C0, a(0) = a0.

(3.22)

The only difference between this system and (2.7) is the appearance of
√
a+

instead of
√
a and min

{
C, C̄0

}
instead of C in the second equation. Thus, in

order to prove that (C, a) is as solution to (2.7) it is sufficient to prove that
a ≥ 0 and C ≤ C̄0. This is the goal of the following proposition.

Proposition 13. Let a ∈ L2(0, tF ;L2(Ω)), at ∈ L2(0, tF ;L2(Ω)) and C ∈
L2(0, tF ;H1(Ω)), Ct ∈ L2(0, tF ;H−1(Ω)) satisfy (3.22), then a ≥ 0 and C ≤
C̄0, so that a+ = a and min{C, C̄0} = C in Ω× [0, tF ].

Proof. 1 Writing a = a+ − a− and testing the second equation in (3.22) with
w = a− we have that,ˆ

Ω

ata− =

ˆ
Ω

β(min{C, C̄0} − Cs)
√
a+a− = 0,
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because a+ and a− have disjoint supports. Besides,

ˆ
Ω

ata− =

ˆ
Ω

(a+ − a−)t a− =

ˆ
Ω

(−a−)t a− = −1

2

d

dt
‖a−(t)‖2L2(Ω).

Therefore, 1
2
d
dt ‖a−(t)‖2L2(Ω) = 0 and ‖a−(t)‖2L2(Ω) = ‖a−(0)‖2L2(Ω) =

∥∥a0
−
∥∥
L2(Ω)

=

0, because a0 ≥ 0, whence a− ≡ 0 and a ≥ 0.
2 Setting v =

(
C − C̄0

)
+

in the first equation in (3.22), and taking into account

that C̄0 = max
{
‖C0‖L∞(Ω), Cs

}
is a constant, we obtain the following equality:

〈
(
C − C̄0

)
t
,
(
C − C̄0

)
+
〉+D

ˆ
Ω

∣∣∣∇ (C − C̄0

)
+

∣∣∣2+kB

ˆ
ΓB

(C − CB)
(
C − C̄0

)
+

=

ˆ
Ω

kDa(Cs − C)
(
C − C̄0

)
+
,

or equivalently

1

2

d

dt

∥∥∥(C − C̄0

)
+

∥∥∥2

L2(Ω)
+D

∥∥∥∇ (C − C̄0

)
+

∥∥∥2

L2(Ω)
+kB

ˆ
ΓB

(C−CB)
(
C − C̄0

)
+

=

ˆ
Ω

kDa(Cs − C)
(
C − C̄0

)
+
.

Since CB ≤ Cs ≤ C̄0, at those points where
(
C − C̄0

)
+
6= 0 we have C− C̄0 > 0

and then

• C > C̄0 ≥ CB yields (C − CB)
(
C − C̄0

)
+
≥ 0;

• C > C̄0 ≥ Cs implies (Cs − C)
(
C − C̄0

)
+
≤ 0.

We thereupon conclude that

1

2

d

dt

∥∥∥(C − C̄0

)
+

∥∥∥2

L2(Ω)
≤ 0,

and thus, for all t > 0,

0 ≤
∥∥∥(C(t)− C̄0

)
+

∥∥∥
L2(Ω)

≤
∥∥∥(C(0)− C̄0

)
+

∥∥∥
L2(Ω)

=
∥∥∥(C0 − C̄0

)
+

∥∥∥
L2(Ω)

= 0,

which readily implies C̄0 − C ≥ 0 for almost every x ∈ Ω and t > 0.

In an analogous way, one can prove that C0 ≥ CB (resp. C0 ≥ 0) implies
that C ≥ CB (resp. C ≥ 0) for almost all t > 0 and almost all x ∈ Ω.

Remark 14. It is important to notice that the same assertion of Proposition 13
holds if we assume that (C, a) is a weak solution of the original problem (2.4).
More precisely, if a ∈ L2(0, tF ;L2(Ω)), with at ∈ L2(0, tF ;L2(Ω)) and C ∈
L2(0, tF ;H1(Ω)), with Ct ∈ L2(0, tF ;H−1(Ω)) satisfy (2.7), then a ≥ 0 and
C ≤ C̄0. Also, if C0 ≥ CB (resp. C0 ≥ 0) then C ≥ CB (resp. C ≥ 0) for almost
all t > 0 and almost all x ∈ Ω.

We summarize the results obtained until here in the following theorem:
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Theorem 15 (Existence). Let Ω ⊂ Rd be a bounded domain with Lipschitz
boundary ∂Ω = ΓN∪ΓB, and D, kD, kB and CB positive constants, β ∈ L∞(Ω),
β ≥ 0, 0 ≤ CB ≤ Cs, and C0, a0 ∈ L∞(Ω), a0, C0 ≥ 0. Then there ex-
ists a weak solution of (2.4), i.e., there exists a pair (C, a) of functions with
a ∈ L2(0, tF ;L2(Ω)), and C ∈ L2(0, tF ;H1(Ω)), satisfying Definition 1. Fur-
thermore, the following estimates are valid:

0 ≤ C ≤ C̄0, 0 ≤ a, a.e. (x, t) ∈ Ω× [0, tF ], (3.23)

and we have a formula for a

a(t) =

(√
a0 +

1

2

ˆ t

0

β (C(τ)− Cs) dτ

)2

+

. (3.24)

If, moreover, C0 ≥ CB, then C ≥ CB.

4 Uniqueness

In this section we will study the uniqueness of solution to problem (2.7). We will
consider two situations that only differ in an assumption on C0 related to the
concentration of maximum solubility Cs (or saturation). In the first situation,
in which C0 ≤ Cs in Ω we will prove uniqueness, and in the second situation, in
which C0 > Cs in some region of Ω we will show that there could exist at least
two solutions.

4.1 Initial concentration below saturation

Theorem 16 (Uniqueness). If C0 ≤ Cs problem (2.7) has a unique solution.

Proof. Let (C1, a1) and (C2, a2) be solutions of (2.7). Then
ˆ

Ω

(a1 − a2)tw =

ˆ
Ω

β((C1 − Cs)
√
a1 − (C2 − Cs)

√
a2)w

=

ˆ
Ω

β(C1 − C2)
√
a1w +

ˆ
Ω

β(Cs − C2)(
√
a2 −

√
a1)w,

for all w ∈ L2(Ω) and almost all t ∈ [0, tF ]. Taking w = a1 − a2 we obtain:

1

2

d

dt
‖a1 − a2‖2L2(Ω) =

ˆ
Ω

β
√
a1(C1 − C2)(a1 − a2)

+

ˆ
Ω

β(Cs − C2)(
√
a2 −

√
a1)(a1 − a2).

(4.1)

From the assumption, C̄0 = max{‖C0‖L∞(Ω), Cs} = Cs, so that by Remark 14,
0 ≤ C1, C2 ≤ Cs a.e., and Cs − C2 ≥ 0. Also, as a consequence of the second
equation in (2.7), 0 ≤ a1 ≤ ‖a0‖L∞(Ω). Due to the monotonicity of the square
root, (

√
a2 −

√
a1)(a1 − a2) ≤ 0, and the second term of (4.1) is less than or

equal to zero. Hence

d

dt
‖a1 − a2‖2L2(Ω) ≤

ˆ
Ω

(C1 − C2)2 + ‖a0‖L∞(Ω)‖β‖2L∞(Ω)︸ ︷︷ ︸
C

ˆ
Ω

(a1 − a2)2. (4.2)
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Analogously,

〈(C1−C2)t, v〉+B[C1−C2, v] = kD

ˆ
Ω

(Cs−C2)(a1−a2)v−kD
ˆ

Ω

(C1−C2)a1v.

Taking v = C1−C2 and applying [T, Lemma 1.2, Chapter 3, pag 260] we obtain:

1

2

d

dt
‖C1 − C2‖2L2(Ω) ≤ kD

ˆ
Ω

(Cs − C2)(a1 − a2)(C1 − C2).

As we already observed, 0 ≤ C2 ≤ Cs and thus 0 ≤ Cs − C2 ≤ Cs, so that

d

dt
‖C1 − C2‖2L2(Ω) ≤ k

2
DC

2
s

ˆ
(C1 − C2)2 +

ˆ
(a1 − a2)2. (4.3)

Adding (4.2) and (4.3) we obtain

d

dt

[
‖a1 − a2‖2L2(Ω) + ‖C1 − C2‖2L2(Ω)

]
≤ max

{
1 + k2

DC
2
s , 1 + C

}︸ ︷︷ ︸
C̃

[
‖a1 − a2‖2L2(Ω) + ‖C1 − C2‖2L2(Ω)

]
.

By Gronwall inequality, for all t ∈ [0, tF ] it holds:

‖(a1 − a2)(t)‖2L2(Ω) + ‖(C1 − C2)(t)‖2L2(Ω)

≤ eC̃t
[
‖(a1 − a2)(0)‖2L2(Ω) + ‖(C1 − C2)(0)‖2L2(Ω)

]
,

and taking into account that (a1, C1) and (a2, C2) coincide at t = 0, we obtain:

‖(a1 − a2)(t)‖2L2(Ω) + ‖(C1 − C2)(t)‖2L2(Ω) ≤ 0,

then, a1(t) = a2(t) and C1(t) = C2(t) in L2(Ω) sense for all t ∈ [0, tF ].

4.2 Initial concentration above saturation

In this section we show that if C0 > Cs in some region of the domain, then there
could be at least two solutions of problem (2.7). Consider the situation where
there exists a set of positive measure Ω0 ⊂ Ω where C0 > Cs+ ε > Cs, for some
ε > 0, and a0 ≡ 0 in Ω. On the one hand, the construction from Section 3 leads
to a solution (C1, a1) of (2.7) that satisfies the following: Given a set of positive
measure Ω1 ⊂⊂ Ω0, there exists t1 > 0 such that

C1(x, t) > Cs, a1(x, t) =

(
1

2

ˆ t

0

β (C1 − Cs) dτ

)2

+

, x ∈ Ω1, 0 ≤ t < t1,

The first claim is a consequence of the continuity of C and the second one follows
from formula (3.24). As a consequence, a1 > 0 in Ω1 for 0 < t < t1.

On the other hand, we define a2 ≡ 0 and let C2 be the weak solution of the
following classical initial/boundary problem obtained taking a ≡ 0 in (2.4):

Ct −D∆C = 0, in Ω× [0, tF ],
C(x, 0) = C0(x) in Ω,
D∇C · n = 0 on ΓN × [0, tF ],
D∇C · n = kB(CB − C) on ΓB × [0, tF ].

(4.4)

Then (C2, a2) is also a solution of (2.7), which is clearly different from (C1, a1).
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Remark 17. It is neccesary that C0 > Cs in some region of the domain. In the
previous subsection we consider the case C0 ≤ Cs, and we showed uniqueness
of solution, regardless of the initial condition for a; with the only assumption
a0 ≥ 0. If C0 ≤ Cs and a0 ≡ 0, the problem (2.4) has a unique solution and it
is the pair conformed by a ≡ 0 and C the unique solution of (4.4).

We conjecture that there could be multiple solutions when C0 > Cs in a
subset of positive Lebesgue measure even if a0 > 0 almost everywhere in Ω. We
believe that the following situation is feasible: If a0 is small where C0 < Cs, then
a will decrece and could be attain zero value in finite time in that region. At
the same time, by diffusion, the concentration C could grow up in that region.
Then, it could happen that at a certain time t > 0 there will be a region of
positive measure contained in Ω, where a(·, t) = 0 and C(·, t) > Cs. From this
point on there could be two solutions like the ones presented above.

5 Regularity

In this section we present regularity results for the solution (C, a) of prob-
lem (2.7) under the hypothesis that guarantee unique solution; from now on
we assume, without stating it explicitely, that C0 ≤ Cs, so that C̄0 = Cs.
Theorem 15 implies that 0 ≤ C ≤ Cs, 0 ≤ a ≤ ‖a0‖L∞(Ω) and (3.24) holds.

A similar bound holds for the Galerkin approximations an from Section 3.
Since min{Cn, Cs} − Cs = −(Cs − Cn)+, the right-hand side of equation (3.9)
for the time derivative of αnT = an(t)|T is ≤ 0. Then, from the definition of
an(0) in (3.3) we conclude that,

‖an‖L∞(0,tF ;L∞(Ω)) ≤ ‖a0‖L∞(Ω) + 2 =: A0, (5.1)

From now on we assume that the assumptions of Theorems 15 and 16 hold
and (C, a) denotes the unique weak solution to (2.4). In each of the statements
that follow, we only mention the additional assumptions that imply further
regularity.

Proposition 18. The time derivative of
√
a exists and satisfies

(
√
a)t = −1

2
(Cs − C)χ{√a>0} ∈ L

2(0, tF ;L2(Ω)),

that is,
√
a ∈ H1(0, tF ;L2(Ω)); also (

√
a)t ∈ L∞(0, tF ;L∞(Ω)).

Proof. From (3.24) we have that
√
a =

(√
a0 − 1

2

´ t
0
β(Cs − C) dτ

)
+

. Since

C ∈ L2(0, tF ;H1(Ω)),

∂

∂t

√
a = −1

2
β(Cs − C)χ{

√
a0− 1

2

´ t
0
β(Cs−C) dτ>0} = −1

2
β(Cs − C)χ{√a>0},

in the weak sense in Ω×(0, tF ), which in turn implies that
√
a ∈ H1(0, tF ;L2(Ω))

and (
√
a)t = − 1

2 (Cs − C)χ{√a>0}. Besides, for a fixed t

‖(
√
a)t‖L∞(Ω) ≤

1

2
‖β‖L∞(Ω)‖(Cs − C)‖L∞(Ω) ≤

1

2
Cs‖β‖L∞(Ω),

due to Theorem 15, whence (
√
a)t ∈ L∞(0, tF ;L∞(Ω)).
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In the next proposition we prove that the spatial regularity of a and
√
a is

higher if
√
a0 and β are also more regular. It is worth mentioning though, that

since there are no space derivatives in the equation for a, there is no regularizing
effect. On the other hand, the appearance of

√
a on the right-hand side of the

equation for at is responsible of two issues. The value of a reaches zero at finite
time, and the space regularity of

√
a (resp. a) cannot be higher than H1(Ω)

(resp. H2(Ω)) after that time instant.

Proposition 19. If
√
a0, β ∈ L∞(Ω) ∩H1(Ω), then

√
a, a ∈ L2(0, tF ;H1(Ω)).

Proof. From the assumption on β and the fact that C ∈ L2(0, tF ;H1(Ω)) ∩
L2(0, tF ;L∞(Ω)), we have β (Cs − C) ∈ L2(0, tF ;H1(Ω)), and

´ t
0
β(Cs − C) ∈

L∞(0, tF ;H1(Ω)), with ∂
∂xi

´ t
0
β(Cs − C) =

´ t
0

∂
∂xi

(β(Cs − C)). Thus, for a
fixed t ∈ [0, tF ], due to (3.24)

∂

∂xi

√
a =

(
∂

∂xi

√
a0 − 1

2

ˆ t

0

∂

∂xi
(β(Cs − C)(τ)) dτ

)
χ{√a>0},

and
√
a ∈ L2(0, tF ;H1(Ω)).

Since a = (
√
a)2 and

√
a(t) ∈ L∞(Ω) ∩H1(Ω), for each t, we have ∂

∂xi
a =

2
√
a ∂
∂xi

√
a. Now,

√
a ∈ L∞(0, tF ;L∞(Ω)) ∩ L2(0, tF ;H1(Ω))yields ∂

∂xi
a ∈

L2(0, tF ;L2(Ω)) and thus a ∈ L2(0, tF ;H1(Ω)).

Theorem 20. If C0 ∈ H1(Ω), then

C ∈ L∞(0, tF ;H1(Ω)), Ct ∈ L2(0, tF ;L2(Ω)),

and the following estimate holds

C1‖C(t)‖2L∞(0,tF ;H1(Ω)), ‖Ct‖
2
L2(0,tF ;L2(Ω))

≤ 4k2
D

C5

C4
A4

0|Ω|tF

+ 4k2
DA

2
0

(
kB
C4

C2
B |ΓB |tF +

1

C4
‖C0‖2H1(Ω) + C2

s |Ω|tF
)

+ 4C2‖C0‖2H1(Ω) + 2(2C2 + C1)C2
B |Ω|.

Proof. Let (Cn, an) be the solution of problem (3.1)–(3.3) with C0
n taken as the

H1-projection of C0 on Vn. This choice of C0
n also leads to a sequence satisfying

analogous bounds to those of Section 3 and to a subsequence converging to the
same solution (C, a). Since CB is constant (3.1) also reads

(Cn,t, v) + B [(Cn − CB) , v] = kD

ˆ
Ω

an (Cs − Cn) v, ∀v ∈ Vn.

Thus, testing with v = (Cn − CB)t = Cn,t,

‖Cn,t‖2 +
1

2

d

dt
B [Cn − CB , Cn − CB ] = kD

ˆ
Ω

an (Cs − Cn)Cn,t

≤ k2
D

2
‖an‖2L∞(0,tF ;L∞(Ω))‖Cs − Cn‖

2
L2(Ω) +

1

2
‖Cn,t‖2L2(Ω).
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Integrating from 0 to t, with t ≤ tF , using estimate (5.1) and Remark 2,

ˆ t

0

‖Cn,t‖2L2(Ω) + C1‖Cn(t)− CB‖2H1(Ω) ≤ 2k2
DA

2
0‖Cn‖2L2(0,t;L2(Ω))

+ 2k2
DA

2
0C

2
s |Ω|t

+ C2‖Cn(0)− CB‖2H1(Ω).

Combining this with (3.6), (5.1) and the fact that ‖Cn(0)‖H1(Ω) ≤ ‖C0‖H1(Ω),

ˆ t

0

‖Cn,t‖2L2(Ω) +
C1

2
‖Cn(t)‖2H1(Ω) − C1C

2
B |Ω|

≤ 2k2
DA

2
0

(
1

C4
‖C0‖2H1(Ω) +

C5

C4
A2

0|Ω|tF +
kB
C4

C2
B |ΓB |tF

)
+ 2k2

DA
2
0C

2
s |Ω|tF + 2C2‖C0‖2H1(Ω) + 2C2C

2
B |Ω|.

This last bound carries over to the limit as n→∞ yielding the desired assertion.

Assuming more regularity of C0 and compatibility with the boundary con-
ditions we can prove higher regularity of the concentration variable C.

Proposition 21. Let C0 ∈ H2(Ω), D ∂C0

∂n = 0 on ΓN , D ∂C0

∂n = kB(CB−C0) on
ΓB, then Ct ∈ L∞(0, tF ;L2(Ω))∩L2(0, tF ;H1(Ω)) and Ctt ∈ L2(0, tF ;H−1(Ω)).

Proof. Let (Cn, an) denote the solution of problem (3.1)–(3.3) with C0
n = RN (C0)

taken the Ritz projection of C0 on Vn, defined in (3.5).
As we observed in the proof of the previous proposition, for all t ≥ 0,

(Cn,t, v) + B[Cn − CB , v] = (kDan (Cs − Cn) , v), ∀v ∈ Vn. (5.2)

At t = 0, using that B[C0
n, v] = B[C0, v] for all v ∈ Vn,

(Cn,t(0), v) = (kDan(0) (Cs − Cn(0)) , v)−B[C0 − CB , v], ∀v ∈ Vn.

Since C0 ∈ H2(Ω), integration by parts and the compatibility assumption on
C0 imply

|B(C0 − CB , v)| ≤ D‖C0‖H2(Ω)‖v‖L2(Ω).

Since ‖an(0)‖L∞(Ω) ≤ ‖a0‖L∞(Ω) we conclude that there exists a constant C,
depending on ‖a0‖L∞(Ω), ‖C0‖H2(Ω) and the problem parameters D, kD, Cs,
CB such that

‖Cn,t(0)‖L2(Ω) ≤ C. (5.3)

Taking derivatives respect to t in (5.2) and denoting with C̃n = Cn,t and ãn =
an,t, the following equation holds:

(C̃n,t, v) + B[C̃n, v] = kD

ˆ
Ω

ãn(Cs − Cn)v − kD
ˆ

Ω

anC̃nv, ∀v ∈ Vn. (5.4)

Then

(C̃n,t, C̃n) + B[C̃n, C̃n] = kD

ˆ
Ω

ãn(Cs − Cn)C̃n − kD
ˆ

Ω

anC̃
2
n.
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The coercivity of the bilinear form B and the fact that an ≥ 0, imply

1

2

d

dt
‖C̃n‖2L2(Ω) + C1‖C̃n‖2H1(Ω) ≤ kD

ˆ
Ω

ãn(Cs − Cn)C̃n.

Integrating with respect to time and invoking Hölder inequality,

1

2
‖C̃n(t)‖2L2(Ω) + C1

ˆ t

0

‖C̃n‖2H1(Ω)

≤ 1

2

∥∥∥C̃n(0)
∥∥∥2

L2(Ω)
+ kD

ˆ t

0

(ˆ
Ω

ã2
n(Cs − Cn)2

)1/2(ˆ
Ω

C̃2
n

)1/2

.

Employing Cauchy inequality,

‖C̃n(t)‖2L2(Ω) + C1

ˆ t

0

‖C̃n‖H1(Ω)

≤
∥∥∥C̃n(0)

∥∥∥2

L2(Ω)
+
k2
D

C1

ˆ t

0

(ˆ
Ω

ã2
n(Cs − Cn)2

)
≤
∥∥∥C̃n(0)

∥∥∥2

L2(Ω)
+
k2
D

C1
‖ãn‖2L2(0,tF ;L∞(Ω))‖Cs − Cn‖

2
L∞(0,tF ;L2(Ω)),

Using estimates of Proposition 4 and (5.3),

‖C̃n‖2L∞(0,tF ;L2(Ω)) + C4‖C̃n‖2L2(0,tF ;H1(Ω)) ≤ C̃,

with C̃ a constant independent of n but solely depending on ‖C0‖H2(Ω), ‖a0‖L∞(Ω)

and problem parameters. Therefore {C̃n} is a bounded sequence in the reflexive
space L2(0, tF ;H1(Ω)), whence it has a subsequence converging weakly to Ct.
This implies that Ct ∈ L∞(0, tF ;L2(Ω)) ∩ L2(0, tF ;H1(Ω)).

Proceeding as we did to prove (3.21) we arrive at

〈Ctt, v〉+ B[Ct, v] = kD

ˆ
Ω

at(Cs − C)v − kD
ˆ

Ω

aCtv, ∀v ∈ H1(Ω),

and the proposition is proved.

If we assume further regularity of ∂Ω and that ΓB and ΓN are separated we
can prove more space regularity for C.

Theorem 22. Assume C0 ∈ H2(Ω), and D ∂
∂nC

0 = 0 on ΓN , D ∂
∂nC

0 =
kB(CB−C0) on ΓB. If Ω ⊂ Rd has a boundary Γ ∈ C1,1 such that Γ = ΓB∪ΓN
and dist{ΓB , ΓN} > 0, then C ∈ L∞(0, tF ;H2(Ω)).

Remark 23. The assumption dist{ΓB , ΓN} > 0 is only necessary for the exis-
tence of θ ∈ C∞(Rd) such that θ |ΓB

= 1 and θ |ΓN
= 0. This will allow for an

extension of the boundary values which will in turn permit the use of elliptic
regularity to conclude the assertion of the theorem. Many commercial devices
have their outer boundary releasing drug to the bulk medium, whereas they
have an inner boundary touching a solid elastic core, which is insulating; this
assumption is thus fulfilled in practical applications.
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Proof. By Theorem 20 we know that C ∈ L∞(0, tF ;H1(Ω)), Ct ∈ L2(0, tF ;L2(Ω))
and for almost every t ∈ [0, tF ], and every v ∈ H1(Ω){

〈Ct, v〉+ B[C, v] + kD
´

Ω
aCv = kD

´
Ω
aCsv + kBCB

´
ΓB

v,

C(0) = C0.

Let us define f := kDCsa−Ct − kDaC. Theorem 20 implies that f(t) ∈ L2(Ω)
for almost every t ∈ [0, tF ], for which C(t) is a weak solution of the following
(elliptic) problem: 

−D∆C = f, in Ω

D
∂C

∂n
= 0, on ΓN ,

D
∂C

∂n
= −kB(C − CB), on ΓB .

Since dist{ΓB , ΓN} > 0, there exists θ ∈ C∞(Rd) such that θ|ΓB
= 1 and

θ|ΓN
= 0. Let us define g := −kB(C − CB)θ. Then g(t) ∈ H1(Ω) for almost

every t ∈ [0, tF ] because C(t) ∈ L∞(Ω)∩H1(Ω) for almost every t ∈ [0, tF ] and
θ ∈ C∞(Rd).

Moreover, for almost all t ∈ [0, tF ], ‖g‖H1(Ω) ≤ C‖C‖H1(Ω) + C̃ where C, C̃
depend on θ, CB and kB . By construction, g|ΓB

= −kB(C−CB) and g|ΓN
= 0,

and then C(t) is weak solution to−D∆C + C = f̃ := f + C, in Ω

D
∂C

∂n
= g, on ∂Ω.

Finally by Corollary 2.2.2.6 [Gr, pag 92], we have that C ∈ H2(Ω) and

‖C‖H2(Ω) ≤ ˜̃C
(
‖f + C‖L2(Ω) + ‖g‖H1(Ω)

)
≤ C

(
‖f‖L2(Ω) + ‖C‖L2(Ω) + C1‖C‖H1(Ω) + C̃

)
,

where ˜̃C depend on Ω and D. By Proposition 21 and Theorem 20, we have
‖C‖L∞(0,tF ;H2(Ω)) is finite.

It is interesting to note that regularity results for this problem have a limi-
tation due to the presence of

√
a. This terms implies that a vanishes in positive

measure sets at finite time, and a(t) does not belong to H3(Ω) even if a0 belongs
to H∞(Ω).

Remark 24. A finite element method for solving (2.4) is presented in [CM]. This
method consists simply in an implicit Euler time discretization of the Galerkin
approximation presented in this article. Optimal a priori error estimates are
obtained and presented in [CM] which depend on the regularity results presented
here.
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