
ISSN 2451-7100 

 
 
 
 

IMAL preprints  
http://www.imal.santafe-conicet.gov.ar/publicaciones/preprints/index.php 

 

 

AN EXTENSION OF NEWTON-SOBOLEV SPACES FOR 

CURVES NOT MEASURED BY ARC LENGTH 

By 

 

Miguel A. Marcos 

IMAL PREPRINT # 2014-0016 

Publication date: July 4, 2014 

 

Editorial: Instituto de Matemática Aplicada del Litoral 
IMAL (CCT CONICET Santa Fe – UNL) 
http://www.imal.santafe-conicet.gov.ar 
 
Publications Director:  Dr. Rubén Spies  
E-mail: rspies@santafe-conicet.gov.ar  

 

 

mailto:rspies@santafe-conicet.gov.ar


An extension of Newton-Sobolev spaces for

curves not measured by arc length

Miguel Andrés Marcos ∗

Instituto de Matemática Aplicada del Litoral (CONICET-UNL)
Departamento de Matemática (FIQ-UNL)

Abstract

Newton-Sobolev spaces, as presentend by N. Shanmugalingam, de-

scribe a way to extend Sobolev spaces to the metric setting, for metric

spaces with 'su�cient' paths of �nite length. We generalize some of this

results to spaces where the 'length' of a path is measured di�erently.

1 Introduction

If Ω is an open set in Rn and f is a smooth function de�ned on Ω, the Funda-
mental Theorem of Calculus for Line Integrals implies that for every piecewise
smooth path γ with endpoints x, y we get

|f(x)− f(y)| ≤
ˆ
γ

|∇f |d|s|.

Nonnegative functions that satisfy this inequality in place of |∇f | are referred
to as upper gradients (see for example [HeK]).

In [Sh], N. Shanmugalingam describes, via upper gradients, a way to char-
acterize Sobolev spaces W 1,p in open sets of Rn that extends to metric measure
spaces, de�ning Newton-Sobolev spaces N1,p. If the space has 'su�cient' recti�-
able paths (in the sense that the set of recti�able paths has nonzero p-modulus),
an interesting theory of Sobolev functions can be developed, but if the set of
recti�able paths is negligible, this 'Sobolev space' is just Lp.

Easy enough examples of metric measure spaces with no paths of dimension
1 can be constructed. For instance, take X = R with d(x, y) = |x − y|1/2,
and we get that paths are either 0-dimensional (trivial paths) or 2-dimensional.
While 'classical' Newton-Sobolev theory in such a space would be nonsensical,
a good theory could be developed if we measured path 'length' by Hausdor�
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2-dimensional measure H2.

In this note, following the ideas in [Sh], we develop a more general theory
of Newton-Sobolev spaces by replacing Hausdor� 1-dimensional measure by an
arbitrary measure µ as a way of measuring path 'lengths'.

In sections 2 and 3 we generalize all the machinery needed to construct
Newton-Sobolev spaces. In section 4 we de�ne this spaces and prove they are
complete. In section 5 we de�ne some additional properties, such as Poincaré
inequality, needed to prove some more interesting results, as Lipschitz density
or Sobolev embeddings. We also compare Newton-Sobolev spaces with another
kind of Sobolev space in metric spaces: Hajªasz-Sobolev spaces.

2 µ-arc legth and upper gradients

Given a metric space (X, d) and a (compact) path γ : [a, b]→ X (i.e. a contin-
uous function from [a, b] into X), its length is de�ned as

l(γ) = sup
(ti)i

∑
i

d(γ(ti), γ(ti+1)),

where the supremum is taken over all partitions of [a, b].

We use the notation |γ| for Im(γ). We say that γ̃ is a sub-path of γ if it's
the restriction of of γ to a subinterval [a, b].

The concept of arc legth of a path is similar to, but not equal to, Hausdor�
one-dimensional measure H1 of its image, but they do coincide for injective
paths (see [Fa]). From this result, for injective paths and for Borel nonnegative
measurable functions we get thatˆ

γ

g =

ˆ
|γ|
gdH1,

and from this we can think of changing the measure H1 for another Borel mea-
sure, as Hs.

Let µ be a non-atomic Borel measure in X. De�ne Γµ as the set of all
non trivial injective paths γ in X such that 0 < µ(|γ̃|) < ∞ for all non trivial
subpaths of γ. For nonnegative Borel functions g : X → [0,∞] we de�ne

ˆ
γ

g =

ˆ
|γ|
gdµ.

Now, for a path γ : [a, b] → X in Γµ, we de�ne h(γ) = µ(|γ|) and its µ-arc
length νγ : [a, b]→ R as

νγ(x) = h(γ|[a,x]).

Lemma 2.1. For paths γ : [a, b]→ X in Γµ, we have that νγ is strictly increas-
ing, continuous, onto [0, h(γ)], and besides

h(γ) = h(γ|[a,x]) + h(γ|[x,b]).
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Proof. νγ is clearly increasing. Continuity follows from µ being non-atomic, and
surjectivity follows from it being continuous and increasing.
The fact that νγ is strictly increasing follows from the fact that every non trivial
subcurve of γ has positive measure, as γ ∈ Γµ.

Theorem 2.2. For γ : [a, b]→ X in Γµ, there exists a unique γh : [0, h(γ)]→ X
such that

γ = γh ◦ νγ ,
|γ| = |γh| and ν(γh)(t) = t in [0, h(γ)] (therefore γh = γh ◦ νγh). We call this the
µ-arc length parametrization of γ.

Proof. As νγ : [a, b] → [0, h(γ)] is strictly increasing and onto, it's a bijection
between [a, b] and [0, h(γ)] and we can de�ne

γh = γ ◦ ν−1γ .

We inmediately see that |γ| = |γh|, and

ν(γh)(t) = µ(γh([0, t])) = µ(γ(ν−1γ ([0, t]))) = µ(γ([a, ν−1γ (t)])) = νγ(ν−1γ (t)) = t.

Theorem 2.3. If γ : [0, h] → X is a path in Γµ parametrized by µ-arc length,
then for every Borel set B of [0, h], we have

µ(γ(B)) = l(B).

Furthermore, if g : X → R is nonnegative and Borel measurable, then for each
subpath γ̃ = γ|[a,b] we have ˆ

γ̃

g =

ˆ b

a

g ◦ γ̃.

Finally, we get the same result as with recti�able curves:

Theorem 2.4. Given a function f : X → R and a path γ : [0, h] → X in
Γµ parametrized by µ-arc length, if there exists a Borel measurable nonnegative
ρ : X → R satisfying

|f(γ(s))− f(γ(t))| ≤
ˆ
γ|[s,t]

ρ <∞

for every 0 ≤ s < t ≤ h, then f ◦ γ : [0, h]→ R is absolutely continuous.

Proof. Let ε > 0. As ρ ∈ L1(|γ|, µ), by absolute continuity of the integral there
exists δ > 0 such that for every E ⊂ |γ| with µ(E) < δ we have

´
E
ρdµ < ε.

Then if 0 ≤ a1 < b1 < a2 < b2 < . . . < an < bn ≤ h satisfy
∑
i |bi − ai| < δ,

µ(∪iγ([ai, bi])) =
∑
i

νγ(bi)− νγ(ai) =
∑
i

bi − ai < δ

and therefore∑
i

|f ◦ γ(bi)− f ◦ γ(ai)| ≤
∑
i

ˆ
γ|[ai,bi]

ρ =

ˆ
∪iγ([ai,bi])

ρdµ < ε.
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A nonnegative Borel measurable function ρ satisfying

|f(x)− f(y)| ≤
ˆ
γ

ρ

for every γ ∈ Γµ with endpoints x, y, for every pair of points x, y with f(x), f(y)
�nite is called a µ-upper gradient for f .
As 2.4 shows, a function f is absolutely continuous over every path on which it
has an upper gradient with �nite integral over that path.

3 Modulus of a path family and p-weak upper

gradients

Let now m be a Borel measure on X. As in [Sh], we adjust the de�nition of
modulus of a set of measures in [Fu] to path families.

For every family Γ ⊂ Γµ and 0 < p <∞, we de�ne its p-modulus as

Modp(Γ) = inf

ˆ
X

gpdm

where the in�mum is taken over all nonnegative Borel measurable functions
g : X → R satisfying ˆ

γ

g ≥ 1

for every γ ∈ Γ.

Theorem 3.1. Modp is an outer measure on Γµ.

Proof. The fact that Modp(∅) = 0 and its monotonicity are immediate. For
σ-subaditivity, if Γ = ∪iΓi, given ε > 0 we take gi with

´
γ
gi ≥ 1 for every

γ ∈ Γi and such that ˆ
X

gpi dm ≤Modp(Γi) + 2−iε

Now, if g = supi gi, g satis�es
´
γ
g ≥ 1 for every γ ∈ Γ, and

Modp(Γ) ≤
ˆ
X

gpdm ≤
∑
i

ˆ
X

gpi dm ≤
∑
i

Modp(Γi) + ε.

As expected, we say that a property holds for p-almost every path γ ∈ Γµ if
the set Γ where it doesn't hold has Modp(Γ) = 0. A useful property of sets of
p-modulus zero is the following.

Lemma 3.2. Modp(Γ) = 0 if and only if there exists a nonnegative Borel
measurable function g satisfying

´
X
gpdm <∞ and
ˆ
γ

g =∞

for every γ ∈ Γ.
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Proof. For the 'if' part, for every n, gn = 1
ng satis�es

´
γ
gn = ∞ ≥ 1 for every

γ ∈ Γ. Then

Modp(Γ) ≤
ˆ
X

gpndm =
1

np

ˆ
X

gpdm→ 0.

Now, if Modp(Γ) = 0, then for each n we can �nd gn satisfying
´
γ
gn ≥ 1 for

every γ ∈ Γ and
´
X
gpndm < 4−n. Then if we de�ne g = (

∑
n 2ngpn)1/p, g is

Borel measurable, nonnegative and
´
X
gpdm =

∑
n 2n

´
X
gpndm ≤ 1 < ∞, and

besides ˆ
γ

g ≥
ˆ
γ

2n/pgn ≥ 2n/p

for every n, therefore
´
γ
g =∞ for every γ ∈ Γ.

We also need the following result:

Lemma 3.3. If
´
|gn − g|pdm→ 0, there exists a subsequence (gnk)k such that´

γ
|gnk − g| → 0 for p-almost every γ ∈ Γµ.

Proof. Without loss of generality we assume gn ≥ 0 and
´
gpndm → 0, and we

need to prove
´
γ
gnk → 0 for some subsequence (gnk). We take a subsequence

satisfying ˆ
X

gpnkdm < 2−k(p+1).

Let now Γk = {γ :
´
γ
gnk ≥ 2−k} and Γ = lim supk Γk. Clearly

´
γ

2kgnk ≥ 1 for
each γ ∈ Γk, and therefore

Modp(Γk) ≤
ˆ
X

2kpgpnkdm < 2−k,

and for every j,

Modp(Γ) ≤Modp(∪k>jΓk) ≤
∑
k>j

Modp(Γk) < 2−j

and Modp(Γ) = 0. Finally, if γ 6∈ Γ, there exists j such that for k > j,´
γ
gnk < 2−k and we have what we wanted.

Given a set E ⊂ X we de�ne

ΓE = {γ ∈ Γµ : |γ| ∩ E 6= ∅}

Γ+
E = {γ ∈ Γµ : µ(|γ| ∩ E) > 0}

and we have the following lemma

Lemma 3.4. If m(E) = 0, then Modp(Γ
+
E) = 0.

Proof. Trivial, as g =∞χE satis�es g = 0 m-almost everywhere, but
´
γ
g =∞

for every γ ∈ Γ+
E .
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A nonnegative Borel measurable function ρ satisfying

|f(x)− f(y)| ≤
ˆ
γ

ρ

for p-almost every γ ∈ Γµ is called a p-weak upper gradient for f .
As in Shanmugalingam's case, we don't lose much by restricting ourselves

to weak upper gradients:

Proposition 3.5. If ρ is a p-weak upper gradient for f and ε > 0, there exists
an upper gradient for f ρε such that ρε ≥ ρ and ‖ρ− ρε‖p < ε.

Proof. Let Γ be the set of paths where the inequality for ρ doesn't hold (Modp(Γ) =
0). Then there exists g ≥ 0 Borel measurable with

´
X
gpdm <∞ but

´
γ
g =∞

for every γ ∈ Γ. We de�ne

ρε = ρ+
ε

1 + ‖g‖p
g

and it's clear that ρε ≥ ρ,
´
γ
ρε ≥ 1 for every γ, so ρε is an upper gradient for

f , and �nally

‖ρε − ρ‖p = ε
‖g‖p

1 + ‖g‖p
< ε.

As seen in 2.4, functions with 'small' upper gradients are absolutely contin-
uous on curves. We say that a function f is ACCp or absolutely continuous

over p-almost every path if f ◦ γh : [0, h(γ)] → R is absolutely continuous por
p-almost every γ.

Lemma 3.6. If a function f has a p-weak upper gradient ρ ∈ Lp, it is ACCp.

Proof. Let Γ0 be the set of all paths γ such that |f(x) − f(y)| >
´
γ
ρ and let

Γ1 be the set of all paths with a subpath in Γ0. As ρ is a weak upper gradient,
Modp(Γ0) = 0, but if g satis�es

´
γ
g ≥ 1, it also satis�es

´
γ̃
g ≥ 1 for every

subpath γ̃ of γ, and therefore

Modp(Γ1) ≤Modp(Γ0) = 0.

Let Γ2 be the set of all paths γ with
´
γ
ρ =∞. Then as ρ ∈ Lp, Modp(Γ2) = 0.

For paths not in Γ1 ∪ Γ2, we can apply 2.4 and we conclude the lemma.

We will also need the following lemma later on:

Lemma 3.7. If f is ACCp and f = 0 m-almost everywhere, then the family

Γ = {γ ∈ Γ∗ : f ◦ γ 6≡ 0}

has p-modulus zero.

Proof. Let E = {x : f(x) 6= 0}, then m(E) = 0 and Γ = ΓE . As Γ+
E has

modulus zero (because m(E) = 0), we only need to see that ΓE\Γ+
E also has

modulus zero. But if γ ∈ ΓE\Γ+
E , |γ| ∩ E 6= ∅ but µ(|γ| ∩ E) = 0, therefore

γ−1h (E) has length 0 in R and f ◦γh is nonzero in a set of length 0, and if E 6= ∅
this set is not empty and f ◦ γh cannot be absolutely continuous. Therefore
Modp(ΓE\Γ+

E) = 0.
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4 Extended Newton-Sobolev spaces N 1,p

We de�ne the space Ñ1,p
µ as the space of all functions f with �nite p-norm with

a p-weak upper gradient with �nite p-norm. We equip it with the norm

‖f‖N1,p = ‖f‖p + inf
ρ
‖ρ‖p,

where the in�mum is taken over all p-weal upper gradients of f .

It immediately follows from the de�nition that (Ñ1,p
µ , ‖ · ‖N1,p) is a semi-

normed vector space. Morover, if f, g ∈ Ñ1,p
µ , then |f |,min{f, g},max{f, g} ∈

Ñ1,p
µ . As seen before, every function in Ñ1,p

µ is ACCp.

Ñ1,p
µ is not a normed space, as two distinct functions can be equal almost

everywhere, but also because a function may be in Ñ1,p
µ while a function equal

almost everywhere to it may not. We do have the following as a corolary of 3.7:

Corollary 4.1. If f, g ∈ Ñ1,p and f = g m-a.e., then ‖f − g‖N1,p = 0.

Finally, we de�ne the equivalence relation f ∼ g i� ‖f − g‖N1,p = 0, and the
quotient space N1,p = Ñ1,p/ ∼. We will show, as [Sh], that this is a Banach
space, but �rst a lemma:

Lemma 4.2. Let F ⊂ X be such that

inf
{
‖f‖N1,p : f ∈ Ñ1,p(X) ∧ f |F ≥ 1

}
= 0.

Then Modp(ΓF ) = 0.

Proof. For every n we take vn ∈ Ñ1,p(X) with vn|F ≥ 1 and ‖vn‖N1,p < 2−n,
and take weak upper gradients ρn of vn with ‖ρn‖p < 2−n. Take un =∑n

1 |vk|, gn =
∑n

1 ρk (each gn will be a weak upper gradient of un) and u =∑
|vn| (observe that u|F =∞), g =

∑
ρn.

Every un turns to be in Ñ1,p, and (un), (gn) are Cauchy in Lp, therefore con-
vergent in Lp to functions ũ, g̃ respectively. Then u = ũ, g = g̃ a.e. and we have´
|u|p <∞.

Let E = {x ∈ X : u(x) =∞}, then m(E) = 0 (as
´
X
|u|p <∞) and F ⊂ E.

If we take

Γ =

{
γ :

ˆ
γ

g =∞∨
ˆ
γ

gn 6→
ˆ
γ

g

}
then Modp(Γ) = 0 from 3.2 and 3.3.
If γ 6∈ Γ ∪ Γ+

E (Modp(Γ
+
E) = 0), then there exists y ∈ |γ|\E, and if x ∈ |γ|,

|un(x)| ≤ |un(y)|+
ˆ
γ

gn ≤ |u(y)|+
ˆ
γ

g,

therefore |u(x)| <∞ and γ 6∈ ΓE , and we have

Modp(ΓF ) ≤Modp(ΓE) ≤Modp(Γ ∪ Γ+
E) = 0.
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Theorem 4.3. N1,p is Banach.

Proof. Let (un) be Cauchy in N1,p. By taking subsequences we can assume

‖un − un+1‖N1,p < 2−n
p+1
p

and take weak upper gradients gn of un − un+1 with

‖gn‖p < 2−n.

De�ne

En = {x ∈ X : |un(x)− un+1(x)| ≥ 2−n}, E = lim supEn.

If x 6∈ E, then there exists nx such that |un(x) − un+1(x)| < 2−n for n ≥ nx
and therefore outside of E

u(x) = limun(x)

it's well de�ned.

By Tchebyschev's inequality, µ(En) ≤ 2np‖un − un+1‖pp ≤ 2−n, and

µ(E) ≤
∞∑
n

µ(Ek) ≤ 2−n · 2,

for every n, and on the other hand

inf
{
‖f‖N1,p : f ∈ Ñ1,p(X) ∧ f |E ≥ 1

}
≤
∞∑
n

inf
{
‖f‖N1,p : f ∈ Ñ1,p(X) ∧ f |En ≥ 1

}

≤
∞∑
n

2np‖un − un+1‖pN1,p ≤ 2−n · 2

for every n.

By the previous lemma, Modp(ΓE) = 0, and if we de�ne u|E ≡ 0, as (un) is
Cauchy in Lp and un → u a.e., we have

´
|u|p < ∞. Finally for γ 6∈ ΓE with

endpoints x, y we have

|(u− un)(x)− (u− un)(y)| ≤
∞∑
n

|(uk+1 − uk)(x)− (uk+1 − uk)(y)| ≤
∞∑
n

ˆ
γ

gk,

and we get that
∑∞
n gk is a p-weak upper gradient of u− un (which tends to 0

in Lp), and we have u ∈ N1,p and

‖u− un‖N1,p ≤ ‖u− un‖p + ‖
∞∑
n

gk‖p → 0.
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5 Poincaré Inequality

If there's no relationship between the 'space measure' m and the 'path measure'
µ, most results about N1,p couldn't be proven. The standard way of relating
them is by Poincaré inequality.

We say that X supports a (1, p)-Poincaré inequality if there exists C >
0, λ ≥ 1 such that for every ball B and every pair f, ρ de�ned in B such that
f ∈ L1(B) and ρ is an upper gradient of f in B, we have

 
B

|f − fB |dm ≤ Cdiam(B)

( 
λB

ρp
)1/p

.

In Shanmugalingam's case, this property su�ces for proving that Lipschitz
functions are dense in N1,p. One crucial fact for proving this is that the length
of a path is always greater than or equal to the distance between any pair of
points over the curve, but in our context this may not be the case. We ask the
family Γµ to have the following property:

∃Cµ > 0 : ∀γ ∈ Γµ,∀γ̃ non trivial subpath of γ, diam(|γ̃|) ≤ Cµµ(|γ̃|) (1)

Lemma 5.1. Let f be ACCp such that f |F = 0 m-a.e., for F a closed subset
of X. If ρ is an upper gradient of f , then ρχX\F is a p-weak upper gradient of
f .

Proof. Let Γ0 be the set of paths for which f ◦ γh is not absolutely continuous,
and let E = {x ∈ F : f(x) 6= 0}, so Modp(Γ0 ∪ Γ+

E) = 0. Now, if γ 6∈ Γ0 ∪ Γ+
E

has endpoints x, y:

• If |γ| ⊂ (X\F )∪E, then |f(x)−f(y)| ≤
´
γ
ρ =

´
γ
ρχX\F as µ(|γ|∩E) = 0.

• If x, y ∈ F\E, then f(x) = f(y) = 0 and |f(x)− f(y)| ≤
´
γ
ρχX\F holds

trivially.

• If x ∈ (X\F )∪E (or the same for y) but |γ| is not completely in (X\F )∪E,
as (f ◦ γh)−1({0}) is a closed set of [0, h(γ)] (f ◦ γh is continuous), it has
a minimum a and maximum b (with f ◦ γh(a) = f ◦ γh(b) = 0). Then:

|f(x)−f(y)| ≤ |f(x)−f(γh(a))|+|f(γh(a))−f(γh(b))|+|f(γh(b))−f(y)| ≤

≤
ˆ
γh|[0,a]

ρ+

ˆ
γh|[b,h(γ)]

ρ ≤
ˆ
γ

ρχX\F

as γh([0, a]) and γh([b, h(γ)]) intersect F in a set of µ-measure zero.

Lemma 5.2. If Γµ has property 1, then Lipschitz functions are absolutely con-
tinuous over every curve of Γµ.

Proof. Let γ : [0, h]→ X be a path in Γµ parametrized by µ-arc length, and let
f : X → R be Lipschitz with constant L. If ε > 0 and 0 ≤ a1 < b1 < a2 < b2 <
· · · < an < bn ≤ h satis�es

∑
i |bi − ai| <

ε
LCµ

, then∑
i

|f(γ(bi))− f(γ(ai))| ≤ L
∑
i

d(γ(bi), γ(ai)) ≤ L
∑
i

diam(γ([ai, bi])) ≤

9
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≤ LC
∑
i

µ(γ([ai, bi])) = LC
∑
i

|bi − ai| < ε.

Lemma 5.3. If Γµ has property 1 and f : X → R is a Lipschitz function with
constant L, then CLχsupp(f) is an upper gradient of f . In particular if supp(f)

is compact we have f ∈ Ñ1,p.

Proof. Let γ : [a, b]→ X have endpoints x, y. Consider the following cases:

• |γ| ⊂ supp(f). Then |f(x) − f(y)| ≤ Ld(x, y) ≤ CµLµ(|γ|) =
´
γ
LC =´

γ
CLχsupp(f).

• |γ| ∩ supp(f) = ∅. Then |f(x)− f(y)| = 0 =
´
γ
CLχsupp(f).

• x ∈ supp(f) but |γ| 6⊂ supp(f). Then as (f ◦ γ)−1({0}) is closed in [a, b],
it has minimum a0 > a and maximum b0 ≤ b. We have that γ([a, a0]) and
γ([b0, b]) are subsets of supp(f) and f(γ(a0)) = f(γ(b0)) = 0 so,

|f(x)−f(y)| ≤ |f(x)−f(γ(a0))|+|f(γ(a0))−f(γ(b0))|+|f(γ(b0))−f(y)| ≤

≤ Ld(x, γ(a0)) + Ld(γ(b0), y) ≤

≤ LCµµ(γ([a, a0])) + LCµµ(γ([b0, b]) ≤
ˆ
γ

LCµχsupp(f).

Finally if supp(f) is compact, f, CLχsupp(f) ∈ Lp(m) for every p.

Theorem 5.4. If m is doubling, X supports a (1, p)-Poincaré inequality and
Γµ satis�es property 1, then Lipschitz functions are dense in N1,p.

Proof. Let f ∈ Ñ1,p and let g ∈ Lp be an upper gradient of f . Assume f is
bounded (bounded functions are clearly dense in N1,p). We de�ne

Ek = {x ∈ X : Mgp(x) > kp},

where M is the uncentered Hardy-Littlewood maximal function. As m is dou-
bling, M is weak type 1, 1, and

m(Ek) ≤ C

kp

ˆ
X

gp → 0 as k →∞.

Let Fk = X\Ek (which is closed as Ek is open). If x ∈ Fk, r > 0 and B =
B(x, r),  

B

|f − fB | ≤ Cr(
 
B

gp)1/p ≤ Cr(Mgp(x))1/p ≤ Crk.

Then if we de�ne fn(x) = fB(x,2−nr), we have

|fn+j(x)−fn(x)| ≤
j∑
i=1

|fn+i+1(x)−fn+i(x)| ≤
j∑
i=1

 
B(x,2−(n+i+1)r)

|f−fB(x,2−(n+i)r)| ≤

≤ C
j∑
i=1

 
B(x,2−(n+i)r)

|f − fB(x,2−(n+i)r)| ≤ Ckr2−n
j∑
i=1

2−i ≤ Ckr2−n,
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and therefore fn(x) is Cauchy for each x ∈ Fk. Now, we de�ne for x ∈ Fk,

fk(x) = lim fn(x).

Observe that for Lebesgue points of f in Fk we have fk(x) = f(x). Let's verify
that fk is Lipschitz:
Given x, y ∈ Fk, take r = d(x, y), Bn = B(x, 2−nr), B′n = B(y, 2−nr), and

|fk(x)−fk(y)| ≤
∞∑
n=0

|fn(x)−fn+1(x)|+ |f0(x)−f0(y)|+
∞∑
n=0

|fn(y)−fn+1(y)| ≤

≤
∞∑
n=0

C

 
Bn

|f − fBn |+ C

 
2B0

|f − f2B0 |+
∞∑
n=0

C

 
B′n

|f − fB′n | ≤

≤ Ckr
∞∑
n=0

2−n + Crk ≤ Ckr = Ckd(x, y).

Now, fk can be extended to all of X as a Lipschitz function, and we can assume
it's bounded by Ck.

ˆ
X

|f − fk|p =

ˆ
Ek

|f − fk|p ≤ C
ˆ
Ek

|f |p + Ckpm(Ek)→ 0

as k → ∞, so fk tends to f in Lp. As f y fk are ACCp, (g + C̃k)χEk is a
p-weak upper gradient of f − fk, and as it's in Lp and tends to 0 when k →∞,
f − fk ∈ N1,p for every k and ‖f − fk‖N1,p → 0.

If X is doubling and supports a (1, q) Poincaré inequality for some 1 ≤ q < p,
then we have that every function in N1,p has a Hajªasz gradient in Lp, i.e.
N1,p ↪→ M1,p with ‖ · ‖M1,p ≤ C‖ · ‖N1,p (see [Ha], [KM], [Sh]). The converse
embedding holds true in general for Shanmugalingam's case. In our case we
need property 1.

Lemma 5.5. If Γµ satis�es property 1, then every continuous function f sat-
isfying

|f(x)− f(y)| ≤ d(x, y)(g(x) + g(y))

for every x, y, for some nonnegative measurable function g, then there exists
C > 0 such that Cg is an upper gradient for f .

Proof. Let γ : [0, h] → X be a path in Γµ parametrized by µ-arc length with
endpoints x, y. If

´
γ
g = ∞ we are done. Otherwise, for each n we take γi =

γ|[ in , i+1
n ], 0 ≤ i ≤ n − 1, as γ is a µ-arc length parametrization we have that

µ(|γi|) = µ(|γ|)/n = h/n. For each i, there exists xi ∈ |γi| with g(xi) ≤
ffl
γi
g,

and property 1 implies that d(xi, xi+1) ≤ Cµ(|γi|), then

|f(x1)− f(xn−1)| ≤
∑
i

|f(xi)− f(xi+1)| ≤
∑
i

d(xi, xi+1)(g(xi) + g(xi+1)) ≤

≤ C
∑
i

(ˆ
γi

g +

ˆ
γi+1

g

)
≤
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≤ C
ˆ
γ

g.

Taking n→∞, x0 → x, xn−1 → y and

|f(x)− f(y)| ≤ C
ˆ
γ

g

and we have what we needed.

As continuous functions are dense, we have that

Corollary 5.6. If Γµ satis�es property 1, then M1,p ↪→ N1,p, with ‖ · ‖N1,p
≤

C‖ · ‖M1,p .

Theorem 5.7. If X is doubling and supports a (1, q) Poincaré inequality for
some 1 ≤ q < p, and Γµ satis�es property 1, then M1,p = N1,p, with equivalent
norms.

Finally, as in [Sh], we have the following versions of the classical Sobolev
embedding theorems:

Theorem 5.8. If m is doubling and satis�es

m(B(x, r)) ≥ CrN

for C,N independent of x ∈ X, 0 < r < 2diam(X), and if X supports a (1, p)
Poncaré inequality for p > N , then functions in N1,p are Lipschitz of exponent
α = 1−N/p.

Theorem 5.9. If X is bounded and satis�es

crN ≤ m(B(x, r)) ≤ CrN

with c, C,N independent of x ∈ X, 0 < r < 2diam(X) (i.e. X is Ahlfors N -
regular), and if X supports a (1, q) Poincaré inequality for q > 1, then for p
satisfying q < p < Nq, 1

p∗ = 1
p −

1
Nq we have that every f ∈ N1,p with upper

gradient g,
‖u− uX‖p∗ ≤ Cdiam(X)β−1/q‖g‖p.
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