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Abstract

Let w be an A∞-Muckenhoupt weight in R. Let L2(wdx) denote the space of square
integrable real functions with the measure w(x)dx and the weighted scalar product

⟨f, g⟩w =
´
R fg wdx. By regularization of an unbalanced Haar system in L2(wdx)

we construct absolutely continuous Riesz bases with supports as close to the dyadic

intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. The
main tool used in the proof is Cotlar's Lemma.

Keyword: Riesz bases, Haar wavelets, basis perturbations, Muckenhoupt weights,
Cotlar's Lemma.
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1 Introduction and statement of the main result

A sequence {fk, k ∈ Z} in a Hilbert space H is said to be a Bessel sequence with bound
B if the inequality ∑

k∈Z
|⟨f, fk⟩|2 ≤ B ∥f∥2H

holds for every f ∈ H. If {fk, k ∈ Z} is a Bessel sequence with bound B and {ek, k ∈ Z} is
an orthonormal basis for the separable Hilbert space H, then the operator T on H de�ned
by

Tf :=
∑
k∈Z

⟨f, fk⟩ek

is bounded on H with bound B. Conversely if T is bounded on H, then {fk, k ∈ Z} is a
Bessel sequence with bound ∥T∥.

When {fk, k ∈ Z} itself is an orthonormal basis and ek = fk, T is the identity. Of
particular interest is the case of H = L2 when the Bessel system and the orthonormal basis
are built on scaling and translations of the underlying space. In such cases the operator
T has a natural decomposition as T =

∑
j∈Z Tj . Sometimes the orthonormal basis can be

chosen in such a way that the Tj 's become almost orthogonal in the sense of Cotlar. We
aim to use Cotlar's Lemma to produce smooth and localized Riesz bases for L2(R, wdx)
when w is a Muckenhoupt weight.
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To introduce the problem let us start by some simple illustrations. Let ψ be a Daubechies
compactly supported wavelet in R. Assume that suppψ ⊂ [−N,N ]. The system {ψ̃j

k(x) =

2
j
2ψ(2jx3 − k) : j, k ∈ Z} is a compactly supported orthonormal basis for L2(R, 3x2dx).

More generally if w(x) is a non-negative locally integrable function in R and W (x) =´ x
0 w(y)dy, then the system ψ

j
k(x) = 2

j
2ψ(2jW (x)−k) is an orthonormal basis for L2(wdx).

In fact, changing variables

ˆ
R
ψ
j
k(x)ψ

l
m(x)w(x)dx = 2

l+j
2

ˆ
R
ψ(2jW (x)− k)ψ(2lW (x)−m)w(x)dx

=

ˆ
R
ψj
k(z)ψ

l
m(z)dz

and we have the orthonormality of the system {ψj
k : j ∈ Z, k ∈ Z} in L2(R, wdx). As it is

easy to verify in the case of w(x) = 3x2, for j �xed the length of the supports of ψ
j
k tend

to zero as |k| → +∞. On the other hand for k = 0 the scaling parameter is 2−
1
3 .

Notice also that if w is bounded above and below by positive constants the sequence

ψ
j
k is an orthonormal basis for L2(wdx) with a metric control on the sizes of the supports

provided by the scale.
A Riesz basis in L2(wdx) is a Schauder basis {fk} such that there exist two constants

A and B called the Riesz bounds of {fk} for which

A
∑

|ck|2 ≤
∥∥∥∑ ckfk

∥∥∥2
L2(wdx)

≤ B
∑

|ck|2

for every sequence {ck}. In this note we aim to give su�cient conditions on a weight w
de�ned on R more general than 0 < c1 ≤ w(x) ≤ c2 < ∞, in order to construct, for every
δ > 0, a system Ψ = {ψj

k(x)} with the following properties,

(i) Ψ is a Riesz basis for L2(wdx) with bounds (1− δ) and (1 + δ),

(ii) each ψj
k is absolutely continuous,

(iii) for each j and k in Z, ψj
k is supported on a neighborhood Iϵ of I = Ijk = [2−jk, 2−j(k+

1)] such that

0 <
|Iϵ|
|I|

− 1 < δ.

As we have shown in the above example with w(x) = 3x2, we have that {ψj
k} satis�es

(i) and (ii) but not (iii).
An orthonormal basis in L2(R, wdx) satisfying (iii) but not (ii) when w is locally inte-

grable is the following unbalanced version of the Haar system (see [11]). Let D = ∪j∈ZDj

be the family of standard dyadic intervals in R. For I ∈ Dj we have that |I| = 2−j . We
shall frequently use aI and bI to denote the left and right points of I respectively, for each
I ∈ D, de�ne

hwI (x) =
1√
w(I)

{√
w(Ir)

w(Il)
χIl(x)−

√
w(Il)

w(Ir)
χIr(x)

}
(1.1)

where w(E) =
´
E w dx, Il is the left half of I and Ir is its right half. Notice that with the

above notation hwI is the standard Haar basis hI for L2(R) when w = 1.
The real numbers with the usual distance and measure dµ = wdx with w a Mucken-

houpt weight, is a space of homogeneous type. Some constructions of wavelet type bases
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on spaces of homogeneous type are contained in [2] and [3]. Those in [2] are not regular
and those in [3] are not compactly supported.

In this note we prove that A∞ Muckenhoupt condition su�ces to build a Riesz basis
satisfying properties (i), (ii) and (iii).

Aside from Cotlar's Lemma other fundamental tools that we shall use are the basic
properties of Muckenhoupt weights and the result due to Favier and Zalik [7] related to
small Bessel perturbation of Riesz bases.

In [9] N. Govil and R. Zalik gave a spline based regularization method of the Haar
system to produce regular and compactly supported Riesz basis with bounds as close to
one as desired and supported on small neighborhoods of the dyadic intervals. In [1] the
same type of result is obtained regularizing by convolution. In both cases the main tool is
contained in Theorem 5 in [7].

Let us start by the basic de�nitions needed to state our main result. A locally integrable
nonnegative function w de�ned on R is said to be an A∞ Muckenhoupt weight if for some
1 < p <∞ we have that (ˆ

J
wdx

)(ˆ
J
w

− 1
p−1dx

)p−1

≃ |J |p

with constants which do not depend on the interval J . The typical nontrivial examples
of A∞ weights are the powers of the distance to a �xed point . In particular w(x) = |x|α
belong toA∞ for every α > −1. For the general theory of Muckenhoupt weights, introduced
by B. Muckenhoupt in [10], see the book [8].

A simple and well known result for A∞ weights that implies the doubling condition for
the measure w(x)dx, due to B. Muckenhoupt, is the inequality(

|E|
|J |

)p

≤ C
w(E)

w(J)
(1.2)

which holds for some constant C and every measurable subset E of any interval J , provided
that w ∈ Ap. From (1.2) it follows easily that the function W (x) =

´ x
0 w(y)dy de�nes a

one to one and onto change of variables on R with Jacobian w.
In order to produce a regularization of the system hwI by (1.1) we �rst use the change

of variables de�ned by W−1 to obtain another orthonormal basis {Hw
I } in the spaces L2

with respect to the translation invariant measure dx. Next we regularize by convolution
with a smooth and compactly supported function φ the functions Hw

I to produce a Riesz
basis for L2(R, dx) which we shall denote by {Hw,ϵ

I }. Finally in order to obtain the desired
regularization hw,ϵ

I of {hwI } we go back to L2(R, wdx) by using backwards the change of
variables W . Since the regularizing function φ can be assumed to be as smooth as desired,
the regularity of each hw,ϵ

I is only limited by the regularity of W (x) which is at least locally
absolutely continuous. Let us precisely de�ne the three families {Hw

I }, {H
w,ϵ
I } and {hw,ϵ

I }.
For each I ∈ D set Hw

I = hwI ◦W−1. Notice that

Hw
I (x) =

1√
|I ′|


√

|I ′r|∣∣I ′l ∣∣χI′l
(x)−

√∣∣I ′l ∣∣
|I ′r|

χI′r(x)

 (1.3)

where I ′ = {W (y), y ∈ I}. Now take a function φ to be C∞, nonnegative, non increasing
to the right of 0, even and supported in (−1, 1) with

´
R φ = 1. With the standard notation

φt(x) =
1
tφ(

x
t ), t > 0, de�ne

Hw,ϵ
I (x) =

(
φϵw(I) ∗Hw

I

)
(x). (1.4)
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Finally, set hw,ϵ
I (x) =

(
Hw,ϵ

I ◦W
)
(x) for ϵ positive small enough.

The main result in this note is contained in the following statement.

Theorem 1.1. Let w be a weight in A∞(R). Then there exists ϵ0 > 0 depending only on

w such that

a) for each positive ϵ < ϵ0 , the system {hw,ϵ
I . I ∈ D} is a Riesz basis for L2(wdx) of

absolutely continuous functions,

b) the Riesz bounds of {hw,ϵ
I , I ∈ D} can be taken as close to one as desired by taking ϵ

small enough,

c) for each dyadic interval I = [aI , bI ] the support of hw,ϵ
I is an interval Iϵ = [aϵI , b

ϵ
I ] with

aϵI ↗ aI , b
ϵ
I ↘ bI when ϵ→ 0 and for some constant C, 0 < |Iϵ|

|I| − 1 < Cϵ
1
p if w ∈ Ap.

Let us point out that the regularity of each hw,ϵ
I can be better than absolute continuity

if w is smooth.
In Section 2 we give the basic result used in Section 3 in order to prove Theorem 1.1 .

2 Preliminaries and basic results

In this section we introduce three basic results from functional and harmonic analysis
which we shall use in Section 3 to prove Theorem 1.1. We shall refer to them as Coifman-
Fe�erman inequality, Cotlar's Lemma and Favier-Zalik stability, respectively.

Aside from (1.2) another important property of A∞ weights that we shall use in the
proof Theorem 1.1 is contained in the next statement which is proved as Theorem 2.9 page
401 in [8] and originally proved in [4].

Coifman-Fe�erman. If w ∈ Ap, 1 < p <∞ then there exist positive and �nite constants

C, γ such that the inequality
w(E)

w(J)
≤ C

(
|E|
|J |

)γ

(2.1)

holds for every interval J and every measurable subset E of J .

The original proof of Cotlar's Lemma is contained in [5]. For more easily available
proofs see [6] or [11].

Cotlar's Lemma. Let {Ti : i ∈ Z} be a sequence of bounded operators in a Hilbert

space H. Assume that they are almost orthogonal in the sense that there exists a sequence

s : Z → (0,∞) with
∑

k∈Z
√
s(k) = A <∞ such that

∥T ∗
i Tj∥+

∥∥TiT ∗
j

∥∥ ≤ s(i− j)

for every i, j ∈ Z. Then ∥∥∥∥∥
N∑

i=−N

Ti

∥∥∥∥∥ ≤ A

for every positive integer N .

The third result, due to S. Favier and R. Zalik, deals with the perturbation of Riesz
bases and is contained in Theorem 5 of [7]. A basis {fn} for a Hilbert space H is said to
be a Riesz basis with bounds A and B if the inequalities

A ∥f∥2 ≤
∑

|⟨fn, f⟩|2 ≤ B ∥f∥2
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hold for every f ∈ H.

Favier-Zalik stability. Let {fn} be a Riesz basis on Hilbert space H with bounds A and

B. Let {gn} in a Hilbert space H be such that {fn − gn} is a Bessel sequences with bound

M < A, then {gn} is a Riesz base with bound [1−
(
M
A

) 1
2 ]2A and [1−

(
M
B

) 1
2 ]2B.

As a consequence of inequality (1.2) in the next result we show some overlapping
properties which shall be crucial in the proof of Theorem 1.1

Lemma 2.1. Let w be a weight in Ap. For a given dyadic interval I, set aI , bI and cI to

denote the left endpoint of I, the right endpoint of I and the center of I respectively. As

before Il and Ir denote the left and right halves of I. Then

a) with C the constant in (1.2) and ϵ < (12)
p 1
2C we have that 2ϵw(I) < w(Il) and 2ϵw(I) <

w(Ir);

b) with C as above and ϵ < 1
C

1
3p we also have that

∑
I∈Dj χW ϵ(I)(x) ≤ 2 for every j ∈ Z,

where W ϵ(I) is the ϵw(I) neighborhood of the interval W (I), in other words W ϵ(I) =
(W (aI)− ϵw(I),W (bI) + ϵw(I)).

Proof. a) Using (1.2) with J = I, E = Il we obtain

w(Il)

w(I)
≥ 1

C

(
|Il|
|I|

)p

=
1

C2p
> 2ϵ.

The same inequality is true for Ir instead of Il.
b) Let us consider I, K and J three consecutive intervals in Dj with bI = aK and

bK = aJ . Let M be the interval obtained as the union of I, J and K. From (1.2) we see
that

ϵ <
1

C

1

3p
=

1

C

(
|K|
|M |

)p

≤ w(K)

w(M)

Hence ϵ(w(I) + w(J)) ≤ ϵw(M) ≤ ϵw(K) = W (aJ) −W (bI), so that W (bI) + ϵw(I) <
W (aJ)− ϵw(J). Then, no point x ∈ R can belong to more than two of the intervals W ϵ

I .

3 Proof of Theorem 1.1

Along this section w is a weight in Ap(R) for some 1 < p < ∞. We shall use the
standard inner product notation ⟨·, ·⟩ for the scalar product in L2(dx). Instead we shall
write ⟨·, ·⟩w to denote the inner product in L2(wdx).

Notice �rst that {hwI : I ∈ D} de�ned in (1.1) is an orthonormal basis for L2(R, wdx).
In fact, for j ∈ Z, set

Vj = {f ∈ L2(wdx) : f is constant on each I ∈ Dj},

and observe that
∪

j∈Z Vj is dense in L
2(wdx). By (2.1) wdx is doubling and hence

´
Rw =

∞. Thus, we have
∩

j∈Z Vj = {0}. For I ∈ D �xed, the two dimensional vector space
of those functions f de�ned on I which are constant on each half Il and Ir of I has
{ χI√

w(I)
, hwI } as an orthonormal basis with the L2(wdx) inner product. For j ∈ Z, we

de�ne Wj as the L
2(wdx) orthogonal complement of Vj in Vj+1. In other words, as usual,

Vj+1 = Vj ⊕Wj .
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From the above mentioned properties of the multiresolution {Vj : j ∈ Z} we see that

L2(wdx) =
⊕
j∈Z

Wj .

Since, for j ∈ Z �xed, the family {hwI : I ∈ Dj} is an orthonormal basis of Wj we get that
{hwI : I ∈ D} is an orthonormal basis for L2(wdx).

Given a set E ⊂ R we shall write E′ to denote the image of E by W . In other words
E′ = {W (x), x ∈ E}. Let D =

∪
j∈ZDj be the family of all dyadic intervals in R, where

Dj collects all the dyadic intervals with length 2−j . We write D′ =
∪

j∈ZD′
j to denote the

family of all the images I ′ of intervals I ∈ D through W .
For each I ∈ D we shall use Hw

I to denote the composition hwI ◦ W−1. It is easy

to see that Hw
I (x) = 1√

|I′|

{√
|I′r|
|I′l |

χI′l
(x)−

√
|I′l |
|I′r|
χI′r(x)

}
and that {Hw

I , I ∈ D} is an

orthonormal basis of L2(R, dx). In fact, for f ∈ L2(dx) we have ⟨f,Hw
I ⟩ = ⟨f ◦W,hwI ⟩w

for every I ∈ D. Moreover∑
I∈D

|⟨f,Hw
I ⟩|

2 =
∑
I∈D

|⟨f ◦W,hwI ⟩w|
2 = ∥f ◦W∥2L2(wdx) = ∥f∥2L2(dx) .

Next we regularize by convolution the function Hw
I for I ∈ D in order to get Hw,ϵ

I

de�ned by Hw,ϵ
I = φϵw(I) ∗ Hw

I ; I ∈ D and φ as described in the introduction and ϵ as
small as in Lemma 2.1.

In order to prove a) in Theorem 1.1 we apply Favier-Zalik stability criteria, hence we
shall estimate the Bessel bound in L2(dx) for the di�erence bϵI = Hw

I −Hw,ϵ
I between the

basic element Hw
I and its regularization Hw,ϵ

I .
Here we apply the strategy described in the introduction by taking as {fk} the sequence

{bϵI} and as the orthonormal basis {ek} the sequence Hw
I . Precisely, de�ne

Tϵf =
∑
I∈D

⟨f, bϵI⟩Hw
I

and Tjf =
∑

J∈Dj ⟨f, bϵJ⟩Hw
J , then Tϵ =

∑
j Tj . Since

∑
I∈D |⟨f, bϵI⟩|

2 =
∥∥∑

I∈D⟨f, bϵI⟩Hw
I

∥∥2
2
=∥∥∥∑j∈Z Tjf

∥∥∥2
2
in order to prove that {bϵI : I ∈ D} is a Bessel sequence with small bound, we

apply Cotlar's Lemma to the sequence {Tj} of operators in L2(R). Let us then start by esti-
mating ∥T ∗

i Tj∥ and
∥∥∥TiT ∗

j

∥∥∥ where T ∗
i is the adjoint of Ti given by T ∗

j f =
∑

J∈Dj ⟨f,Hw
J ⟩bϵJ .

Since the family {Hw
I , I ∈ D} is orthonormal, then for i ̸= j we have T ∗

i Tjf =∑
J∈Dj , I∈Di⟨f, bϵJ⟩⟨Hw

J ,H
w
I ⟩bϵI = 0. On the other hand, for i = j,

∥∥∥T ∗
j Tjf

∥∥∥
2
= ∥Tjf∥22 =∑

J∈Dj |⟨f, bϵJ⟩|
2 .

Since Hw
J is piecewise constant, for ϵ small enough the support of bϵJ splits in three

intervals each of them centered at the images through W of the two endpoints aJ , bJ of
J and of its center cJ . All of them have the same length 2ϵw(J). Precisely, with Sϵ

J =

suppbϵJ we have that Sϵ
J =

∪3
m=1 S

ϵ,m
J , where Sϵ,1

J = ( W (aJ)−w(J)ϵ , W (aJ) +w(J)ϵ ),

Sϵ,2
J = ( W (cJ)−w(J)ϵ , W (cJ)+w(J)ϵ ) and S

ϵ,3
J = ( W (bJ)−w(J)ϵ , W (bJ)+w(J)ϵ ).

Now, from Schwartz inequality we have that

|⟨f, bϵJ⟩|
2 ≤

(ˆ
Sϵ
J

|f |2
)(ˆ

|bϵJ |
2

)
.
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In order to estimate
´
|bϵI |

2, let us �rst notice that |bϵI | ≤ |Hw
I | +

∣∣Hw,ϵ
I

∣∣ ≤ 2 |Hw
I |≤

2√
w(I)

max {
√

w(Ir)
w(Il)

,
√

w(Il)
w(Ir)

}, which is bounded by a constant C, depending only on w,

times w(I)−
1
2 . Then

´
|bϵI |

2 ≤ C2

w(I) |S
ϵ
I | = 6C2ϵ.

Then, from b) in Lemma 2.1 we have∥∥T ∗
j Tjf

∥∥ ≤ 6C2ϵ
∑
J∈Dj

ˆ
Sϵ
J

|f |2 ≤ 6C2ϵ
∑
J∈Dj

ˆ
W ϵ(J)

|f |2

≤ 6C2ϵ

ˆ
R

∑
J∈Dj

χW ϵ(J)

 |f |2 ≤ 12C2ϵ ∥f∥22 .

Hence
∥∥∥T ∗

j Tj

∥∥∥ ≤ 12C2ϵ, and since ∥T ∗
i Tj∥ = 0 for i ̸= j, any s(k) with s(0) ≤ 12C2ϵ

and s(k) ≥ 0 for k ̸= 0 is admissible for the estimate ∥T ∗
i Tj∥ ≤ s(i−j) required by Cotlar's

Lemma.
The behavior of the sequence

∥∥∥TiT ∗
j

∥∥∥ is more subtle since TiT
∗
j f =

∑
I∈Di

∑
J∈Dj

⟨f,Hw
J ⟩⟨bϵJ , bϵI⟩Hw

I , and now the function bϵJ are not orthogonal. In this case the Lipschitz
smoothness of each bϵJ outside its points of discontinuity, and its mean vanishing properties
will play a central role. These two properties are stated in the following claims which we
shall proof later.

Claim 1. For each I ∈ D with I = [aI , bI) centered at cI , on each one of the segments

σ1 = (−∞,W (a)), σ2 = (W (a),W (cI)), σ3 = (W (cI),W (b)) and σ4 = (W (b),∞) the

function bϵI is Lipschitz with norm bounded by a constant times (ϵw(I))−
3
2 .

Claim 2. On each one of the three connected components Sϵ,m
I of its support we have´

Sϵ,m
I

bϵI = 0, m = 1, 2, 3.

Let us assume that Claims 1 and 2 hold and let us continue with the proof of theorem.

In order to estimate
∥∥∥TiT ∗

j

∥∥∥ observe that since {Hw
I , I ∈ D} is an orthonormal basis

we have

∥∥TiT ∗
j f
∥∥2
2
=
∑
I∈Di

∑
J∈Dj

⟨f,Hw
J ⟩⟨bϵI , bϵJ⟩

2

. (3.1)

Assume �rst that j > i. For a �xed I ∈ Di, we consider the partition of Dj provided
by the three sets, A(I) = {J ∈ Dj : Sϵ

J ∩ Sϵ
I = ∅}; B(I) = {J ∈ Dj \ A : bϵI is continuous

and not identically zero on Sϵ
J} and C(I) = Dj \ (A(I) ∪ B(I)). Since for J ∈ A we have

that ⟨bϵI , bϵJ⟩ = 0, then

∥∥TiT ∗
j f
∥∥2
2
=
∑
I∈Di

 ∑
J∈B(I)∪C(I)

⟨f,Hw
J ⟩⟨bϵI , bϵJ⟩

2

≤
∑
I∈Di

 ∑
J∈B(I)∪C(I)

|⟨f,Hw
J ⟩|

2

 ∑
J∈B(I)∪C(I)

|⟨bϵI , bϵJ⟩|
2


=
∑
I∈Di

 ∑
J∈B(I)∪C(I)

|⟨f,Hw
J ⟩|

2

 ∑
J∈C(I)

|⟨bϵI , bϵJ⟩|
2
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+
∑
I∈Di

 ∑
J∈B(I)∪C(I)

|⟨f,Hw
J ⟩|

2

 ∑
J∈B(I)

|⟨bϵI , bϵJ⟩|
2


= I1 + I2.

In order to estimate I1 notice that C(I) has at most six elements. On the other hand,
from (2.1)

|⟨bϵI , bϵJ⟩| ≤
ˆ
Sϵ
J

|bϵI(x)| |bϵJ(x)| dx

≤ C
ϵw(J)

(w(I)w(J))
1
2

≤ Cϵ
1

2(j−i) γ
2

,

hence

I1 ≤ Cϵ22−γ(j−i)
∑
I∈Di

∑
j∈B(I)∪C(I)

|⟨f,Hw
J ⟩|

2

≤ Cϵ22−γ(j−i)
∑
J∈Dj

|⟨f,Hw
J ⟩|

2 ♯{I ∈ Di : J /∈ A(I)} ≤ Cϵ22−γ(j−i) ∥f∥22 ,

which has again the desired form to apply Cotlar's Lemma with s(j − i) = Cϵ2−
γ
2
(j−i).

Since for J ∈ B(I) the function bϵJ is Lipschitz on the support of bϵI from Claims 2 and
1 and applying again (2.1) we get

∑
J∈B

|⟨bϵI , bϵJ⟩|
2 =

∑
J∈B

∣∣∣∣∣
3∑

m=1

ˆ
Sϵ,m
J

bϵJ(x) (b
ϵ
I(x)− bϵI(x

m
J )) dx

∣∣∣∣∣
2

≤
∑
J∈B

C

(ϵw(I))3

(
3∑

m=1

ˆ
Sϵ,m
J

|bϵJ(x)| |x− xmJ | dx

)2

≤ C
∑
I∈B

1

ϵ3w(I)3
|Sϵ

J |
2 1

w(J)
ϵ2w(J)2

≤ Cϵ
∑
J∈B

(
w(J)

w(I)

)2 w(J)

w(I)

≤ Cϵ
∑
J∈B

(
|J |
|I|

)2γ 1

w(I)

ˆ
J
w(x)dx

≤ Cϵ

(
1

2

)2(j−i)γ 1

w(I)

ˆ
R

∑
J∈B

χJ(x)w(x)dx

≤ Cϵ

(
1

2

)2γ(j−i) w(Ĩ)

w(I)

≤ Cϵ

(
1

2

)2γ(j−i)

where xmJ is the center of the m-th connected component of the support of bϵJ and Ĩ is the
interval concentric with I and a constant times its length. So that, for j > i∑

J∈B(I)

|⟨bϵI , bϵJ⟩|
2 ≤ Cϵ2−2(j−i)γ (3.2)
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hence

I2 ≤ Cϵ2−2(j−i)γ
∑
I∈Di

∑
J∈B(I)∪C(I)

|⟨f,Hw
J ⟩|

2

≤ Cϵ2−2(j−i)γ ∥f∥22 ,

�nally ∥∥TiT ∗
j f
∥∥2
2
≤ I1 + I2 ≤ Cϵ2−γ(j−i) ∥f∥22 .

Hence, for j > i taking s(j − i) = Cϵ
1
2 2−

γ
2
(j−i) we have a good sequence in order to use

Cotlar's Lemma.
For i ≥ j, with the above notation for J ∈ Dj given, we have the three classes A(J),

B(J) and C(J),

∥∥TiT ∗
j f
∥∥2
2
≤ C

∑
I∈Di

 ∑
{J∈Dj/ Sϵ

I∩S
ϵ
J ̸=∅}

|⟨f,Hw
J ⟩|

2 |⟨bϵI , bϵJ⟩|
2


≤ C

∑
J∈Dj

|⟨f,Hw
J ⟩|

2

 ∑
I∈C(J)∪B(J)

|⟨bϵI , bϵJ⟩|
2


≤ C

∑
J∈Dj

|⟨f,Hw
J ⟩|

2

 ∑
I∈C(J)

|⟨bϵI , bϵJ⟩|
2

+ C
∑
J∈Dj

|⟨f,Hw
J ⟩|

2

 ∑
I∈B(J)

|⟨bϵI , bϵJ⟩|
2

 .

For the �rst term, notice that if I ∈ C(J), we obtain from (2.1) as before

|⟨bϵI , bϵJ⟩| ≤
ˆ
Sϵ
I

|bϵJ(x)| |bϵI(x)| dx

≤ C
ϵw(I)

w(J)
1
2w(I)

1
2

≤ Cϵ2−(i−j) γ
2 ,

since the number of elements in C(J) is bounded we get that

∑
J∈Dj

|⟨f,Hw
J ⟩|

2

 ∑
I∈C(J)

|⟨bϵI , bϵJ⟩|
2

 ≤ Cϵ22−γ(i−j) ∥f∥22 .

For the second term observe that if I ∈ B(J) and ymI is the center of the interval Sϵ,m
I then

|⟨bϵI , bϵJ⟩|
2 ≤

(∣∣∣∣∣
3∑

m=1

ˆ
Sϵ,m
I

bϵI(y) (b
ϵ
J(y)− bϵJ(y

m
I )) dµ(y)

∣∣∣∣∣
)2

≤

(
C

ϵ
3
2w(J)

3
2

3∑
m=1

ˆ
Sϵ,m
I

|bϵI(y)| |y − ymI | dµ(y)

)2

≤

(
3Cϵw(I) |Sϵ

I |
ϵ
3
2w(J)

3
2w(I)

1
2

)2

≤ Cϵ

(
w(I)

w(J)

)3

.

Hence
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∥∥TiT ∗
j f
∥∥2
2
≤ Cϵ22−(i−j)γ ∥f∥22 + Cϵ2−(i−j)2γ

∑
J∈Dj

|⟨f,Hw
J ⟩|

2

 1

w(J)

∑
I∈B(J)

w(I)


≤ Cϵ22−(i−j)γ ∥f∥22 + Cϵ2−(i−j)2γ ∥f∥22 .

Then
∥∥∥TiT ∗

j

∥∥∥ ≤ Cϵ
1
2 2−

γ
2
(i−j), for i ≥ j.

So far we have the hypotheses of Cotlar's Lemma for the sequence {Tj} with s(k) =

Cϵ
1
2 2−

γ
2
|k|, k ∈ Z. Then ∥Tϵ∥ ≤ Cϵ

1
4 , 0 < ϵ < ϵ0 = min{2−p

2C , 3−pC} where C is the
constant in (1.2). Now from Favier-Zalik stability Lemma, we get that {Hw,ϵ

I : I ∈ D} is

a Riesz basis for L2(R, dx) with bounds
(
1−

√
Cϵ

1
4

)2
and

(
1 +

√
Cϵ

1
4

)2
. Since hw,ϵ

I =

Hw,ϵ
I ◦W and for f ∈ L2(wdx) we have the identity∑

I∈D
⟨f, hw,ϵ

I ⟩2w =
∑
I∈D

⟨f ◦W−1,Hw,ϵ
I ⟩2

we immediately see that {hw,ϵ
I : I ∈ D} is a Riesz basis for L2(R, wdx) with bounds(

1±
√
Cϵ

1
4

)2
. This proves a).

The absolute continuity of each hw,ϵ
I follows from the regularity ofHw,ϵ

I and the absolute
continuity of W . Part b) in the statement of Theorem 1.1 follows directly from the Riesz
bounds for {hw,ϵ

I : I ∈ D} obtained before.
Let us prove c). With aI and bI the left and right endpoint of I we have that the

support of hw,ϵ
I is the interval Iϵ = [W−1(W (aI)− ϵw(I)), W−1(W (bI)+ ϵw(I))] = [aϵI , b

ϵ
I ]

containing I. Notice that since W (aI) −W (aϵI) = ϵw(I) and W (bϵ) −W (bI) = ϵw(I),
from the continuity of W−1 it follows that aϵI → aI and bϵI → bI when ϵ → 0. A more
quantitative estimate of the rate of approximation can be obtained using again (1.2). In
fact, set I∗ to denote the interval concentric with I with three times its length. Let J be
the interval [aϵI , aI ], then from (1.2)

aI − aϵI
3 |I|

=
|J |
|I∗|

≤ C

(
w(J)

w(I∗)

) 1
p

= C

(
ϵw(I)

w(I∗)

) 1
p

≤ Cϵ
1
p .

In a similar way
bϵI−bI
|I| ≤ Cϵ

1
p . Hence |Iϵ|

|I| = 1+
aI−aϵI
|I| +

bϵI−bI
|I| and 0 < |Iϵ|

|I| −1 < Cϵ
1
p where

C depends on the Ap constant of w. Notice that the rate of approximation is better as p
tends to 1.

Let us �nally prove Claims 1 and 2.

Proof of Claim 1. Since for x, y ∈ σi, i = 1, ..., 4 we have that HI(x) = HI(y), then

|bϵI(x)− bϵI(y)| =
∣∣Hϵ

I ∗ φϵw(I)(x)−Hϵ
I ∗ φϵw(I)(y)

∣∣
=

∣∣∣∣ˆ
R

HI(z)

ϵw(I)

(
φ

(
x− z

ϵw(I)

)
− φ

(
y − z

ϵw(I)

))∣∣∣∣ .
Since φ is smooth, applying the mean value theorem we get that

|bϵI(x)− bϵI(y)| ≤
∥φ′∥∞
ϵ2w(I)2

|x− y|
ˆ
{|x−z|≤ϵw(I)}∪{|y−z|≤ϵw(I)}

|HI(z)| dz
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≤ c
∥φ′∥∞

(ϵw(I))
3
2

|x− y|

as desired.

Proof of Claim 2. It is easy to see that
´
bϵI dx = 0. In fact, we can see from (1.3)

√
|I ′|
ˆ
I′
Hw

I (x)dx =

√
|I ′r|√∣∣I ′l ∣∣
ˆ
I′
χI′l

(x)dx−

√∣∣I ′l ∣∣√
|I ′r|

ˆ
I′
χI′r(x)dx

=

√
|I ′r|√∣∣I ′l ∣∣

∣∣I ′l ∣∣−
√∣∣I ′l ∣∣√

|I ′r|
∣∣I ′r∣∣ = 0.

On the other hand, since
´
φ(z)dz = 1, we also have that

´
Hw,ϵ

I dx = 0.

Notice that, after normalization,
´
Sϵ,1
I
bϵIdx = 0 since

´ δ
−δ[χ(0,∞)(x)−

(
χ(0,∞) ∗ φ

)
(x)]dx =

0 for δ > 0. Since a similar argument proves that
´
Sϵ,3
I
bϵIdx = 0 and

´
bϵI = 0, we also have´

Sϵ,2
I
bϵIdx = 0.
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