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Abstract

In this paper we de�ne Bessel potentials in Ahlfors regular spaces using a Coifman type approximation

of the identity, and show they improve regularity for Lipschitz, Besov and Sobolev-type functions. We prove

density and embedding results for the Sobolev potential spaces de�ned by them. Finally, via fractional

derivatives, we �nd that for small orders, these Bessel potentials are inversible, and show a way to characterize

potential spaces, using singular integrals techniques, such as the T1 theorem. Moreover, this characterization

allows us to prove these spaces in fact coincide with the classical potential Sobolev spaces in the Euclidean

case.

1 Introduction

Riesz and Bessel potentials of order α > 0 in Rn are de�ned as the operators Iα = (−∆)−α/2 and Jα =
(I −∆)−α/2 respectively, where ∆ is the Laplacian and I the identity. By means of the Fourier transform, it
can be shown they are given by multipliers

(Iαf)
∧

(ξ) = (2π|ξ|)−αf̂(ξ), (Jαf)
∧

(ξ) = (1 + 4π2|ξ|2)−α/2f̂(ξ).

These frequency representations of Riesz and Bessel potentials, as well as of their associated fractional
di�erential operators, depend on the existence of Fourier Transforms on the underlying space. In more general
settings alternative tools are needed. Spaces such as self similar fractals are more general, but are still Ahlfors
regular. In spaces with this type of regularity, scales are a good substitute of frequencies.

Both the Riesz potential and its inverse the fractional derivative Dα = (−∆)α/2, which on the frequency
side is given by

(Dαf)
∧

(ξ) = (2π|ξ|)αf̂(ξ),

have an immediate generalization to metric measure spaces, as they take the form

Iαf(x) = cα,n

ˆ
f(y)

|x− y|n−α
dy, Dαf(x) = c̃α,n

ˆ
f(y)− f(x)

|x− y|n+α
dy,

at least for functions of certain integrability or regularity and α < 2. One can just replace |x−y|α by a distance
or quasi-distance d(x, y)α, Lebesgue measure by a general measure and |x − y|n by the measure of the ball of
center x and radius d(x, y).

For spaces of homogeneous type, fractional integrals (i.e. Riesz potentials) and derivatives, as well as
their composition, have been widely studied. In the absence of Fourier transform, other techniques have been
developed, such as the use of a Coifman type approximation of the identity (see for instance [HS], [DJS]). It has
been proven that even though the composition of a fractional integral and a fractional derivative (of the same
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order) is not necessarily the identity, at least for small orders of regularity it is an inversible singular integral.
See [GSV], [Ga] for the study of this composition in L2 and [HV] for Besov and Triebel-Lizorkin spaces.

Bessel potentials have essentially the same local behavior than Riesz potentials, but behave much better
globally. For instance, they are bounded in every Lp space, whereas Iα is bounded from Lp only to Lq with
1
p −

1
q = α

n . This leads to de�ne potential spaces Lα,p = Jα(Lp), and these coincide with Sobolev spaces when
α is an integer.

For α > 0, as

2−α/2 ≤ 1 + (2π|ξ|)α

(1 + 4π2|ξ|2)α/2
≤ 2,

the composition (I + Dα)Jα is inversible in L2. In fact, as shown in [S], for 1 < p <∞ and 0 < α < 2,

f ∈ Lα,p if and only if f,Dαf ∈ Lp, (1)

and in terms of Riesz potentials,

f ∈ Lα,p if and only if f ∈ Lp and there exists γ ∈ Lp with f = Iαγ. (2)

Bessel operators have been rarely studied in the metric setting, although in Rn they can be represented as

Jαf(x) = f ∗Gα(x) =

ˆ
f(y)Gα(x− y)dy,

whereGα is a radial function, so their de�nition does not present a limitation. In this paper we de�ne Bessel-type
potentials using the same construction found in [GSV].

All the known tools and de�nitions used in this paper are described in section 2, such as approximations of
the identity and singular integrals. In section 3 we de�ne a Bessel-type potential operator and prove it increases
the regularity of Lipschitz, Besov and Sobolev functions. In section 4 we describe the potential space obtained
with this operator, and �nd relationships with Lipschitz, Besov and Sobolev functions, as well as a Sobolev
embedding theorem. In section 5 we prove an inversion result for the Bessel operator using the techniques from
[GSV] and [HV]. We �nish this paper characterizing the potential space with the fractional derivative analogous
to the Euclidean version in 1 and with the fractional integral, analogous to 2, and analyze the case of Rn.

2 Preliminaries

In this section we describe the geometric setting and basic results from harmonic analysis on spaces of homo-
geneous type needed to prove our results.

2.1 The geometric setting

We say (X, ρ,m) is a space of homogeneous type if ρ is a quasi-metric on X and m a measure such that balls
and open sets are measurable and there exists a constant C > 0 such that

mρ(B(x, 2r)) ≤ Cm(Bρ(x, r))

for each x ∈ X and r > 0.

If m({x}) = 0 for each x ∈ X, by [MS] there exists a metric d giving the same topology as ρ and a number
N > 0 such that (X, d,m) satis�es

m(Bd(x, 2r)) ∼ rN (3)

for each x ∈ X and 0 < r < m(X).
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Spaces that satisfy condition 3 are called Ahlfors N -regular. Besides Rn (with N = n), examples include
self-similar fractals such as the Cantor ternary set or the Sierpi«ski gasket.

Throughout this paper we will assume (X, d,m) is Ahlfors N -regular. One useful property these spaces have
is regarding the integrability of the distance function:

•
´
B(x,r)

d(x, y)sdm(y) <∞ if and only if −N < s <∞, and here

ˆ
B(x,r)

d(x, y)sdm(y) ∼ rs+N ;

•
´
X\B(x,r)

d(x, y)sdm(y) <∞ if and only if −∞ < s < −N , and here

ˆ
X\B(x,r)

d(x, y)sdm(y) ∼ rs+N .

If we add (locally integrable) functions we get

• if −N < s <∞,

ˆ
B(x,r)

f(y)d(x, y)sdm(y) ≤ Crs+NMf(x);

• if −∞ < s < −N ,

ˆ
X\B(x,r)

f(y)d(x, y)sdm(y) ≤ Crs+NMf(x),

where Mf is the Hardy-Littlewood maximal function of f .

2.2 Aproximations of the identity

In Ahlfors spaces of in�nite measure (and thus unbounded), Coifman-type aproximations of the identity can
be constructed. In this paper we will work with a continuous version, as presented in [GSV]. See [HS] for the
discrete version. The construction is as follows.

Let (X, d,m) be an Ahlfors N -regular space with m(X) = ∞. Let h : [0,∞) → R be a non-negative
decreasing C∞ function with h ≡ 1 in [0, 1/2] and h ≡ 0 in [2,∞). For t > 0 and f ∈ L1

loc, de�ne

• Ttf(x) = 1
tN

´
X
h
(
d(x,y)
t

)
f(y)dm(y);

• Mtf(x) = ϕ(x, t)f(x), with ϕ(x, t) = 1
Tt1(x)

;

• Vtf(x) = ψ(x, t)f(x), with ψ(x, t) = 1

Tt( 1
Tt1

)(x)
;

• Stf(x) = MtTtVtTtMtf(x) =
´
X
s(x, y, t)f(y)dm(y), where

s(x, y, t) =
ϕ(x, t)ϕ(y, t)

t2N

ˆ
X

h

(
d(x, z)

t

)
h

(
d(y, z)

t

)
ψ(z, t)dm(z).

(St)t>0 will be our aproximation of the identity, with kernel s. We now list some of the properties they
possess, they can be found in [GSV] for the case N = 1.

1. St1 ≡ 1 for all t > 0;
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2. s(x, y, t) = s(y, x, t) for x, y ∈ X, t > 0;

3. s(x, y, t) ≤ C/tN for x, y ∈ X, t > 0;

4. s(x, y, t) = 0 if d(x, y) > 4t;

5. s(x, y, t) ≥ C ′/tN if d(x, y) < t/4;

6. |s(x, y, t)− s(x′, y, t)| ≤ C ′′ 1
tN+1 d(x, x′);

7. St is linear and continuous from Lp to Lp;

8. Stf → f pointwise when t→ 0 if f is continuous;

9. |Stf(x)− f(x)| ≤ Ctγ for each x if f is Lipschitz-γ;

10. Stf(x)→ 0 uniformly in x when t→∞ if f ∈ L1;

11. s is continuously di�erentiable with respect to t.

Continuity of a linear operator T from A to B will be denoted throughout this paper as

T : A→ B.

To include an interesting example of an Ahlfors space satisfying m(X) = ∞ (and thus having a Coifman-
type approximation of the identity), we can modify the Sierpi«ski gasket T by taking dilations (powers of 2):
T̃ = ∪k≥12kT . This T̃ preserves some properties of the original triangle, including the Ahlfors character.

2.3 Calderón reproducing formulas

With this approximation of the identity (St)t>0 we will construct our Bessel potential Jα. For the proof relating
Jα with the fractional derivative Dα, we will follow the proof for the fractional integral as presented in [GSV]
and [HV], which requires the derivative of St (that exists because s is continuously di�erentiable with respect
to t): let

d

dt
Stf(x) = −1

t
Qtf(x),

so

Qtf(x) =

ˆ
X

q(x, y, t)f(y)dm(y), with q(x, y, t) = −t d
dt
s(x, y, t).

Some of their properties mirror those from St and s:

1. Qt1 ≡ 0 for all t > 0;

2. q(x, y, t) = q(y, x, t) for x, y ∈ X, t > 0;
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3. |q(x, y, t)| ≤ C/tN for x, y ∈ X, t > 0;

4. q(x, y, t) = 0 if d(x, y) > 4t;

5. |q(x, y, t)− q(x′, y, t)| ≤ C ′ 1
tN+1 d(x, x′);

6. Qt : Lp → Lp;

7. Calderón-type reproducing formulas. (see [C])

f =

ˆ ∞
0

Qtf
dt

t
, f =

ˆ ∞
0

ˆ ∞
0

QtQsf
dt

t

ds

s
.

2.4 Singular Integrals

In Ahlfors N -regular spaces, the following version of the T1 theorem hold (see for instance [Ga]). Once again
we require m(X) =∞.

A continuous function K : X ×X\∆ → R (where ∆ = {(x, x) : x ∈ X}) is a standard kernel if there exist
constants 0 < η ≤ 1, C > 0 such that

• |K(x, y)| ≤ Cd(x, y)−N ;

• for x 6= y, d(x, x′) ≤ cd(x, y) (with c < 1) we have

|K(x, y)−K(x′, y)| ≤ Cd(x, x′)ηd(x, y)−(N+η);

• for x 6= y, d(y, y′) ≤ cd(x, y) (with c < 1) we have

|K(x, y)−K(x, y′)| ≤ Cd(y, y′)ηd(x, y)−(N+η).

Let Cγc denote the space of Lipschitz-γ functions with compact support. A linear continuous operator
T : Cγc → (Cγc )′ for 0 < γ ≤ 1 is a singular integral operator with associated standard kernel K if it satis�es

〈Tf, g〉 =

¨
K(x, y)f(y)g(x)dm(y)dm(x),

for f, g ∈ Cγc with disjoint supports. If a singular integral operator can be extended to a bounded operator on
L2 it is called a Calderón-Zygmund operator or CZO.

Every CZO is bounded in Lp for 1 < p <∞, of weak type (1, 1), and bounded from L∞ to BMO.

The T1 theorem characterizes CZO's. We say that an operator is weakly bounded if

|〈Tf, g〉| ≤ Cm(B)1+2γ/N [f ]γ [g]γ ,

for f, g ∈ Cγc (B), for each ball B.

Theorem 2.1. (T1) Let T be a singular integral operator. Then T is a CZO if and only if T1, T ∗1 ∈ BMO
and T is weakly bounded.

2.5 Besov spaces

In metric measure spaces (X, d,m), Besov spaces can be de�ned through a modulus of continuity, as seen in
[GKS]. For 1 ≤ p <∞ and t > 0, the p-modulus of continuity of a locally integrable function f is de�ned as

Epf(t) =

(ˆ
X

 
B(x,t)

|f(x)− f(y)|pdm(y)dm(x)

)1/p

,
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where
ffl
A
fdm denotes the average 1

m(A)

´
A
fdm, and the Besov space Bαp,q for α > 0 and 1 ≤ q ≤ ∞ is the

space of functions f with the following �nite norm

‖f‖Bαp,q = ‖f‖p +

(ˆ ∞
0

t−αqEpf(t)q
dt

t

)1/q

(with the usual modi�cation for q =∞).

For the case p = q, if the measure is doubling, an equivalent de�nition of the norm is

‖f‖Bαp,q = ‖f‖p +

(¨
|f(x)− f(y)|p

d(x, y)αpm(B(x, d(x, y))
dm(y)dm(x)

)1/q

.

2.6 Sobolev spaces

A way of de�ning Sobolev spaces in arbitrary metric measure spaces is Hajªasz approach (see [H1] for the case
β = 1): a nonnegative function g is a β-Hajªasz gradient of a function f it the following inequality holds for
almost every pair x, y ∈ X

|f(x)− f(y)| ≤ d(x, y)β(g(x) + g(y)).

For 1 ≤ p ≤ ∞, the Hajªasz-Sobolev (fractional) space Mβ,p is de�ned as the space of functions f ∈ Lp that
have a gradient in Lp. Its norm is de�ned as

‖f‖Mβ,p = ‖f‖p + inf
g
‖g‖p

where the in�mum is taken over all β-Hajªasz gradients of f .

For the case p =∞, the space Mβ,∞ coincides with the space Cβ of bounded Lipschitz-β functions.

Functions with β-Hajªasz gradients satisfy the following Poincaré inequality

 
B

|f − fB |dm ≤ Cdiam(B)β
 
B

gdm,

for all balls B (again, see [H1] for the case β = 1).

If the measure is doubling and 1 ≤ p <∞, then the following relationships hold between Besov and Sobolev
spaces, for β > 0 and 0 < ε < β

Bβp,p ↪→Mβ,p ↪→ Bβ−εp,p

(see [GKS]). Here the expression A ↪→ B means A ⊂ B with continuous inclusion.

3 Bessel potentials

In this section we de�ne the kernel kα(x, y), to replace the convolution kernel Gα in the de�nition of Jα, and
prove some properties this new Bessel-type potential operator Jα possesses, emulating those from Jα.

The convolution kernel Gα takes the form

Gα(x− y) = cn,α

ˆ ∞
0

(
tαe−t

2
)(

t−ne−
1
4 ( |x−y|t )

2) dt
t
,

where ϕt(x) = t−ne−
1
4 ( |x−y|t )

2

is the Gaussian approximation of the identity. This provides us with a way to
de�ne the kernel in our context.
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Let (X, d,m) be our �xed Ahlfors N -regular space with m(X) = ∞, and (St)t>0 an approximation of the
identity as constructed in the previous section.

For α > 0, we de�ne

kα(x, y) = α

ˆ ∞
0

tα

(1 + tα)2
s(x, y, t)

dt

t
.

Observe that the factor multiplying the approximation of the identity is tα

(1+tα)2 , as opposed to tαe−t
2

in

Gα. It presents the same local behaviour, but near in�nity it has only integrable decay. However, the properties
obtained for kα will be su�cient for our purposes.

The following properties follow immediately from de�nition and the properties of the kernel s, listed in
section 2.

Lemma 3.1. kα satis�es:

1. kα ≥ 0;

2. kα(x, y) = kα(y, x)

3. kα(x, y) ≤ Cd(x, y)−(N−α);

4. kα(x, y) ≤ Cd(x, y)−(N+α) if d(x, y) ≥ 4;

5. |kα(x, z)− kα(y, z)| ≤ Cd(x, y)(d(x, z) ∧ d(y, z))−(N+1−α);

6. |kα(x, z)− kα(y, z)| ≤ Cd(x, y)(d(x, z) ∧ d(y, z))−(N+1+α) if d(x, z) ≥ 4 and d(y, z) ≥ 4;

7.
´
X
kα(x, z)dm(z) =

´
X
kα(z, y)dm(z) = 1 ∀x, y.

All results that will be presented in sections 3 and 4 involving the kernel kα can be derived from just these
properties. The actual need for the de�nition will become clear in section 5.

We are now able to de�ne our Bessel potential

Jαg(x) =

ˆ
X

g(z)kα(x, z)dm(z).

Observe that from property 7 of the last lemma, we get

‖Jαg‖p ≤ ‖g‖p

for 1 ≤ p ≤ ∞.

As expected, we can compare this operator with the Riesz potential, which is be de�ned from the kernel

k′(x, y) =

ˆ ∞
0

αtαs(x, y, t)
dt

t
∼ 1

d(x, y)N−α

as

Iαf(x) =

ˆ
X

f(y)k′(x, y)dm(y),

(see [GSV]) and we obtain |Jαg(x)| ≤ CIα|g|(x).

We now proceed to prove Jα improves regularity on Lipschitz, Besov and Hajªasz-Sobolev functions. We
start with the Lipschitz case

Proposition 3.2. If f = Jαg and α+ β < 1 for α, β > 0,

|f(x)− f(y)| ≤ C[g]βd(x, y)α+β .

In particular, as Jα is bounded in L∞,

Jα : Cβ → Cα+β .
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Proof. We will prove only the �rst part, the second follows immediately. What we will show also holds true for
Iα, as shown in [GSV]. As

´
kα = 1, we have

f(x)− f(y) =

ˆ
X

g(z) (kα(x, z)− kα(y, z)) dm(z)

=

ˆ
X

(g(z)− g(x)) (kα(x, z)− kα(y, z)) dm(z),

and if we call d = d(x, y)

|f(x)− f(y)| ≤ C
ˆ
B(x,2d)

|g(x)− g(z)|
d(x, z)N−α

dm(z)

+ C

ˆ
B(y,3d)

|g(x)− g(z)|
d(y, z)N−α

dm(z)

+ C

ˆ
X\B(x,2d)

|g(z)− g(x)| |kα(x, z)− kα(y, z)| dm(z)

= I + II + III.

Then for I and II, as α, β > 0,

I ≤ C[g]β

ˆ
B(x,2d)

d(x, z)β

d(x, z)N−α
dm(z) ≤ C[g]βd

α+β ,

II ≤ C[g]βd
β

ˆ
B(y,3d)

1

d(y, z)N−α
dm(z) ≤ C[g]βd

α+β .

Finally, as d(x, z) ∼ d(y, z) for z ∈ X\B(x, 2d), and as α+ β < 1,

III ≤ C[g]βd

ˆ
X\B(x,2d)

d(x, z)βd(x, z)−(N+1−α)dm(z) ≤ C[g]βd
α+β .

Before proving the increase in Besov regularity, we need the following lemma, that follows from properties
3 and 5 of 3.1:

Lemma 3.3. For q > 0 and x, y ∈ X,

• if q(N − α) < N ,

ˆ
d(x,z)<2d(x,y)

|kα(x, z)− kα(y, z)|qdm(z) ≤ Cd(x, y)N−q(N−α);

• if N < q(N − α+ 1),

ˆ
d(x,z)≥2d(x,y)

|kα(x, z)− kα(y, z)|qdm(z) ≤ Cd(x, y)N−q(N−α).

Proposition 3.4. If f = Jαg and α+ β < 1 for α, β > 0,

¨
X×X

|f(x)− f(y)|p

d(x, y)N+(α+β)p
dm(y)dm(x) ≤ C

¨
X×X

|g(x)− g(z)|p

d(x, z)N+βp
dm(z)dm(x).

In particular, as Jα is bounded in Lp,

Jα : Bβp,p → Bα+βp,p .
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Proof. Using
´
kα = 1, by Hölder's inequality we have

|f(x)− f(y)|p ≤

≤ C

(ˆ
B(x,2d(x,y))

|g(x)− g(z)|p|kα(x, z)− kα(y, z)|dm(z)

)

×

(ˆ
B(x,2d(x,y))

|kα(x, z)− kα(y, z)|dm(z)

)p/p′

+ C

(ˆ
B(x,2d(x,y))c

|g(x)− g(z)|p|kα(x, z)− kα(y, z)|θpdm(z)

)

×

(ˆ
B(x,2d(x,y))c

|kα(x, z)− kα(y, z)|(1−θ)p
′
dm(z)

)p/p′
.

By the previous lemma, if we �nd 0 ≤ θ ≤ 1 such that N < (1− θ)p′(N − α+ 1), we get

|f(x)− f(y)|p ≤

≤ Cd(x, y)pα−α
ˆ
B(x,2d(x,y))

|g(x)− g(z)|p|kα(x, z)− kα(y, z)|dm(z)

+ Cd(x, y)−N+pα+θp(N−α)

×
ˆ
B(x,2d(x,y))c

|g(x)− g(z)|p|kα(x, z)− kα(y, z)|θpdm(z).

With this, to conclude the theorem it will be enough to proveˆ
d(x,z)<2d(x,y)

|kα(x, z)− kα(y, z)|
d(x, y)N+βp+α

dm(y) ≤ C 1

d(x, z)N+βp
.

and for the other part
ˆ
d(x,z)≥2d(x,y)

|kα(x, z)− kα(y, z)|θp

d(x, y)2N+βp−θp(N−α) dm(y) ≤ C 1

d(x, z)N+βp
.

• For the �rst one, if d(x, z) < 2d(x, y) then d(y, z) < 3d(x, y) and by using the bound for kα,ˆ
d(x,z)<2d(x,y)

|kα(x, z)− kα(y, z)|
d(x, y)N+βp+α

dm(y) ≤

≤ C
ˆ
d(x,z)<2d(x,y)

1

d(x, y)N+βp+α

(
1

d(x, z)N−α
+

1

d(y, z)N−α

)
dm(y),

then we consider two cases,

� if d(y, z) < 3
2d(x, z) < 3d(x, y), then

ˆ
d(y,z)< 3

2d(x,z)<3d(x,y)

1

d(x, y)N+βp+α

(
1

d(x, z)N−α
+

1

d(y, z)N−α

)
dm(y) ≤

≤ C 1

d(x, z)N+βp+α

ˆ
d(y,z)< 3

2d(x,z)

1

d(y, z)N−α
dm(y)

≤ C 1

d(x, z)N+βp
;

� if 3
2d(x, z) ≤ d(y, z) < 3d(x, y),

ˆ
3
2d(x,z)≤d(y,z)<3d(x,y)

1

d(x, y)N+βp+α

(
1

d(x, z)N−α
+

1

d(y, z)N−α

)
dm(y) ≤

≤ C 1

d(x, z)N−α

ˆ
d(x,y)>d(x,z)/2

1

d(x, y)N+βp+α
dm(y)

≤ C 1

d(x, z)N+βp
.
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• For the second one, if d(x, z) ≥ 2d(x, y), then d(x, z) ∼ d(y, z) and by property 5 in 3.1,

ˆ
d(x,z)≥2d(x,y)

|kα(x, z)− kα(y, z)|θp

d(x, y)2N+βp−θp(N−α) dm(y) ≤

≤ C 1

d(x, z)θp(N−α+1)

ˆ
d(x,z)≥2d(x,y)

d(x, y)θp

d(x, y)2N+βp−θp(N−α) dm(y)

≤ C 1

d(x, z)N+βp

as long as N + βp < θp(N − α+ 1).

Finally, both conditions over θ can be rewritten as

N + βp < θp(N − α+ 1) < N + (1− α)p,

and there is always a value for θ satisfying them, for β < 1− α.

We have now the following result regarding Sobolev regularity.

Proposition 3.5. Let f, g satisfy, for a.e. x, y,

|f(x)− f(y)| ≤ d(x, y)β(g(x) + g(y)),

with g ≥ 0, β > 0. Then for α > 0 and α+ β < 1,

|Jαf(x)− Jαf(y)| ≤ Cd(x, y)α+β(Mg(x) +Mg(y)).

In particular, if p > 1,

Jα : Mβ,p →Mα+β,p.

Proof. Once again, using
´
kα = 1, and proceeding as in the Lipschitz case,

|Jαf(x)− Jαf(y)| ≤
ˆ
X

|f(x)− f(z)||kα(x, z)− kα(y, z)|dm(z)

≤ C
ˆ
B(x,2d(x,y))

d(x, z)β(g(x) + g(z))

(
1

d(x, z)N−α
+

1

d(y, z)N−α

)
dm(z)

+ C

ˆ
B(x,2d(x,y))c

d(x, z)β(g(x) + g(z))
d(x, y)

d(x, z)N−α+1
dm(z)

≤ Cg(x)d(x, y)α+β + Cd(x, y)α+βMg(x)

+ Cd(x, y)βg(x)d(x, y)α + Cd(x, y)βMg(y)d(x, y)α

+ Cd(x, y)g(x)
1

d(x, y)1−(α+β)
+ Cd(x, y)

1

d(x, y)1−(α+β)
Mg(x)

≤ Cd(x, y)α+β(Mg(x) +Mg(y)).

4 Potential spaces Lα,p

In this section we de�ne potential spaces Lα,p and see they are Banach spaces. We prove they are embedded in
certain Sobolev and Besov spaces, and that Lipschitz functions are dense. We �nish the section with Sobolev
embedding theorems for Lα,p.

For α > 0, we de�ne the potential space

Lα,p(X) = {f ∈ Lp : ∃g ∈ Lp, f = Jαg} = Jα(Lp)
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and equip it with the following norm

‖f‖α,p = ‖f‖p + inf
g∈J−1

α ({f})
‖g‖p.

Proposition 4.1. Lα,p is Banach.

Proof. To prove completeness, we will show the convergence of every absolutely convergent series. Let (fn) be
a sequence in Lα,p such that ∑

n

‖fn‖α,p <∞.

In particular,
∑
n ‖fn‖p < ∞, so the series

∑
n fn converges in Lp to some function f . For each n, take gn in

Lp with fn = Jαgn and

‖gn‖p ≤ ‖fn‖α,p + 2−n,

then clearly
∑
n ‖gn‖p <∞ and

∑
n gn converges to some g ∈ Lp. Finally, as Jα is continuous in Lp,

f =
∑
n

fn =
∑
n

Jαgn = Jα

(∑
n

gn

)
= Jαg

so f ∈ Lα,p, and ∥∥∥∥∥f −
n∑
k=1

fk

∥∥∥∥∥
α,p

≤

∥∥∥∥∥f −
n∑
k=1

fk

∥∥∥∥∥
p

+

∥∥∥∥∥g −
n∑
k=1

gk

∥∥∥∥∥
p

→ 0.

Remark 4.2. ‖Jαg‖α,p ≤ 2‖g‖p, so it is continuous from Lp onto Lα,p. In particular, as L∞ ∩Lp is dense in Lp
for 1 ≤ p ≤ ∞, we get that Jα(L∞ ∩ Lp) is dense in Lα,p.

The following theorem shows that `potential functions' have Hajªasz gradients, and this leads to some
interesting results, such as Lipschitz density and embeddings in Sobolev spaces.

Theorem 4.3. Let f = Jαg for some g such that f is �nite a.e.. Then if 0 < α < 1,

|f(x)− f(y)| ≤ Cαd(x, y)α(Mg(x) +Mg(y))

for every x, y outside a set of measure zero. If α ≥ 1, then for each β < 1 we get

|f(x)− f(y)| ≤ Cα,βd(x, y)α(Mg(x) +Mg(y))

for every x, y outside a set of measure zero.

Proof. Assume �rst α < 1. Let d = d(x, y),

|f(x)− f(y)| ≤
ˆ
X

|g(z)||kα(x, z)− kα(y, z)|dm(z)

≤
ˆ
B(x,2d)

+

ˆ
X\B(x,2d)

= I + II.

In I we have

I ≤ C
ˆ
B(x,2d)

|g(z)| 1

d(x, z)N−α
dm(z) + C

ˆ
B(y,3d)

|g(z)| 1

d(y, z)N−α
dm(z)

≤ Cdα(Mg(x) +Mg(y)),

and for II, as d(x, z) ∼ d(y, z) we get

II ≤ Cd
ˆ
B(x,2d)c

|g(z)|d(x, z)−(N+1−α)dm(z)
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≤ Cdd−(1−α)Mg(x) = CdαMg(x).

Let now α ≥ 1 and �x 0 < β < 1. Observe that the bound for I also holds in this case, and for d(x, y) < 1 we
get

I ≤ Cdα(Mg(x) +Mg(y)) ≤ Cdβ(Mg(x) +Mg(y)).

We now divide X\B(x, 2d) in two regions (and use in both cases the fact that d(x, z) ∼ d(y, z))

ˆ
2d≤d(x,z)<5

|g(z)| d

d(x, z)N−α+1
dm(z) ≤

≤
ˆ
2d≤d(x,z)<5

|g(z)| dβ

d(x, z)N−(α−β)
dm(z)

≤ CdβMg(x);

and if d(x, z) ≥ 5, as d(y, z) ≥ 4 we can use the other bound for di�erences of kα (property 6 in 3.1)

ˆ
d(x,z)≥5

|g(z)| d

d(x, z)N+α+1
dm(z) ≤ CdMg(x) ≤ CdβMg(x).

Finally, if d(x, y) ≥ 1, as |f | ≤Mg,

|f(x)− f(y)| ≤ C(Mg(x) +Mg(y)) ≤ Cd(x, y)β(Mg(x) +Mg(y)).

Corollary 4.4. Let 1 < p <∞. If 0 < α < 1, then Lα,p ↪→Mα,p. For α ≥ 1, Lα,p ↪→Mβ,p for all 0 < β < 1.

Corollary 4.5. Let p = ∞. If 0 < α < 1, then Lα,∞ ↪→ Cα. For α ≥ 1, Lα,∞ ↪→ Cβ for all 0 < β < 1. In
particular, functions in Lα,∞ are continuous for all α > 0 (after eventual modi�cation on a null set).

From this last result and remark 4.2, we get the following density property.

Corollary 4.6. Let 1 ≤ p ≤ ∞ and α > 0. Then Cβ ∩ Lα,p is dense in Lα,p for all 0 < β ≤ α if α < 1, and
for all 0 < β < 1 if α ≥ 1.

As a last corollary of theorem 4.3, sinceMg is a Hajªasz gradient for potential functions, we get the following
Poincaré inequality.

Corollary 4.7. Let 0 < α < 1 and f = Jαg for some g such that f ∈ L1
loc, then for each ball B we get

 
B

|f − fB | ≤ Cdiam(B)α
 
B

Mg.

Now, regarding Besov spaces, as Mα,p ↪→ Bα−εp,p for 1 ≤ p <∞ and 0 < ε < α, from 4.5 we obtain for α < 1
Lα,p ↪→ Bα−εp,p . This also holds true for Bα−εp,q . First, a lemma.

Lemma 4.8. Let 0 < α < 1 and q > 0 satifying q(N − α) < N < q(N + q − α). Then there exists C > 0 such
that, for every z ∈ X and t > 0

ˆ
X

 
B(x,t)

|kα(x, z)− kα(y, z)|qdm(y)dm(x) ≤ CtN−q(N−α).

Proof. Consider

A1 = {(x, y) : d(x, y) < t, d(x, z) < 2t};

A2 = {(x, y) : d(x, y) < t, 2t ≤ d(x, z)}.

12

Prep
rin

t

 
IMAL PREPRINT # 2015-0029

                          ISSN 2451-7100 
Publication date: June 29, 2015



Integrating over A1, we get¨
A1

1

tN
|kα(x, z)− kα(y, z)|qdm(y)dm(x) ≤ C

ˆ
B(z,3t)

|kα(x, z)|qdm(x)

≤ C
ˆ
B(z,3t)

1

d(x, z)q(N−α)
dm(x)

≤ CtN−q(N−α),

and the last inequality holds because N > q(N − α).

In A2 we have d(x, z) ∼ d(y, z), and then, as d(x, y) < t,
¨
A2

1

tN
|kα(x, z)− kα(y, z)|qdm(y)dm(x) ≤

≤ Ctq
¨
A2

1

tN
1

d(x, z)q(N+1−α) dm(y)dm(x)

≤ Ctq
ˆ
X\B(z,2t)

1

d(x, z)q(N+1−α) dm(x)

≤ CtqtN−q(N+1−α) ≤ CtN−q(N−α),

given N < q(N + 1− α).

Proposition 4.9. Let f = Jαg, 0 < α < 1 and 1 ≤ p ≤ ∞, then for t > 0 we get

Epf(t) ≤ Ctα‖g‖p

Proof. If p <∞,

|f(x)− f(y)|p ≤
(ˆ

X

|kα(x, z)− kα(y, z)|
1
p+

1
p′ |g(z)|dm(z)

)p
≤
(ˆ

X

|kα(x, z)− kα(y, z)||g(z)|pdm(z)

)
×
(ˆ

X

|kα(x, z)− kα(y, z)|dm(z)

)p/p′
.

By lemma 3.3 for q = 1, as d(x, y) < t and α < 1,
ˆ
X

|kα(x, z)− kα(y, z)|dm(z) ≤ Ctα

so ˆ
X

 
B(x,t)

|f(x)− f(y)|pdm(y)dm(x) ≤

≤ Ctαp/p
′
ˆ
X

(ˆ
X

 
B(x,t)

|kα(x, z)− kα(y, z)|dm(y)dm(x)

)
|g(z)|pdm(z)

and by lemma 4.8 (also taking q = 1)
ˆ
X

 
B(x,t)

|f(x)− f(y)|pdm(y)dm(x) ≤ Ctαp/p
′
tα‖g‖pp = Ctαp‖g‖pp.

For p =∞, as α < 1,

E∞f(t) = sup
d(x,y)<t

|f(x)− f(y)|

≤ C sup
d(x,y)<t

d(x, y)α(Mg(x) +Mg(y))

≤ Ctα‖g‖∞.

13

Prep
rin

t

 
IMAL PREPRINT # 2015-0029

                          ISSN 2451-7100 
Publication date: June 29, 2015



We can now conclude the following embedding in Besov spaces.

Corollary 4.10. Let 1 ≤ p ≤ ∞ and 0 < α < 1. Then for 1 ≤ q < ∞ and 0 < ε < α we have Lα,p ↪→ Bα−εp,q .
For q =∞ we obtain Lα,p ↪→ Bαp,∞.

Proof. Let f = Jαg. By the previous proposition, if q =∞,

‖f‖Bαp,∞ = ‖f‖p + sup
t>0

t−αEpf(t) ≤ C‖f‖α,p.

And for 1 ≤ q <∞, as we also have Epf ≤ C‖f‖p,

‖f‖Bα−εp,q
≤ C‖f‖p + C

(ˆ 1

0

t−(α−ε)qEpf(t)q
dt

t

)1/q

≤ C‖f‖p + C‖g‖p
(ˆ 1

0

tεq
dt

t

)
≤ C

ε1/q
‖f‖α,p.

We �nish this section with Sobolev-type embedding theorems for potential spaces. First we need a lemma.

Lemma 4.11. For α > 0 and q > 0 satisfying q(N − α) < N < q(N + α), there exists C > 0 such that for
every x ∈ X,

ˆ
X

kα(x, y)qdm(y) ≤ C <∞.

Proof. By lemma 3.1,

kα(x, y)q ≤ C
χB(x,4)(y)

d(x, y)q(N−α)
+ C

χX\B(x,4)(y)

d(x, y)q(N+α)
,

and restrictions over q guarantee integrability.

Theorem 4.12. Let 1 < p <∞ and α > 0. The following embeddings hold for Lα,p

a. If p < N
α ,

Lα,p ↪→ Lq

for p ≤ q ≤ p∗ where 1
p∗ = 1

p −
α
N .

b. If p = N
α , then for p ≤ q <∞,

Lα,p ↪→ Lq.

If in addition α < 1,

Lα,p ↪→ BMO.

c. If p > N
α ,then for p ≤ q ≤ ∞

Lα,p ↪→ Lq.

If in addition α < 1 +N/p,

Lα,p ↪→ Cα−N/p.
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Proof. a. We know Lα,p ↪→ Lp (for ‖f‖p ≤ ‖f‖α,p), then if we prove Lα,p ↪→ Lp∗, by an interpolation argument
we are done. This follows from |Jαf | ≤ CIα|f |, as (N − α)p′ > N and for any t > 0 we get

|Jαf(x)| ≤ C
ˆ
B(x,t)

|f(y)|
d(x, y)N−α

dm(y) + C

ˆ
X\B(x,t)

|f(y)|
d(x, y)N−α

dm(y)

≤ CtαMf(x) + Ct(N−(N−α)p
′)/p′‖f‖p

= CtαMf(x) + Ct−N/p
∗
‖f‖p.

This last expression attains its minimum for t = CMf(x)−p/N‖f‖p/Np , and for this value of t we obtain

|Jαf(x)| ≤ CMf(x)p/p
∗
‖f‖1−p/p

∗

p ,

and as p > 1, boundedness of the maximal function implies
ˆ
X

|Jαf |p
∗
dm ≤ C‖f‖p

∗−p
p

ˆ
X

(Mf)pdm ≤ C‖f‖p
∗

p .

b. Let N/α = p < q <∞, so there exists a > 1 such that

1 +
1

q
=

α

N
+

1

a
.

In particular a(N − α) < N (and also N < a(N + α), as a > 1), so by the previous lemma
ˆ
X

kα(x, y)adm(y) ≤ C <∞.

Let now f = Jαg with g ∈ Lp, as 1
q′ = 1

p′ + 1
a′ by Hölder's inequality we obtain the following Young-type

inequality

|f(x)| ≤
ˆ
X

kα(x, y)a/q+a/p
′
|g(y)|p/q+p/a

′
dm(y)

≤
(ˆ

X

kα(x, y)a|g(y)|pdm(y)

)1/q (ˆ
X

|g(y)|pdm(y)

)1/a′

×
(ˆ

X

kα(x, y)adm(y)

)1/p′

≤ C‖g‖p/a
′

p

(ˆ
X

kα(x, y)a|g(y)|pdm(y)

)1/q

(here we use a/q + a/p′ = 1 and p/q + p/a′ = 1) and
ˆ
X

|f(x)|qdm(x) ≤ C‖g‖qp/a
′

p

ˆ
X

ˆ
X

kα(x, y)a|g(y)|pdm(y)dm(x)

≤ C‖g‖p(q/a
′+1)

p = C‖g‖qp.

Moreover, if α < 1, by Poincaré inequality for any ball B,

 
B

|f − fB | ≤ Cdiam(B)α
 
B

Mg ≤ Cm(B)α/N
( 

B

(Mg)N/α
)α/N

≤ C
(ˆ

B

(Mg)N/α
)α/N

≤ C‖g‖N/α

and we conclude

‖f‖BMO ≤ C‖f‖α,N/α.

c. For the �rst part, again by interpolation it is enough to prove Lα,p ↪→ L∞. If f = Jαg with g ∈ Lp,

|f(x)| = |Jαg(x)| ≤
ˆ
X

kα(x, y)|g(y)|dm(y)

15

Prep
rin

t

 
IMAL PREPRINT # 2015-0029

                          ISSN 2451-7100 
Publication date: June 29, 2015



≤ ‖g‖p
(ˆ

X

kα(x, y)p
′
dm(y)

)1/p′

≤ C‖g‖p ≤ C‖f‖α,p

as long as p′(N − α) < N < p′(N + α). The second inequality is trivial for p′ ≥ 1 and the �rst one is
equivalent to pα > N .

Assume now α < 1 +N/p. Then

|f(x)− f(y)| ≤
ˆ
X

|kα(x, z)− kα(y, z)||g(z)|dm(z)

≤ ‖g‖p
(ˆ

X

|kα(x, z)− kα(y, z)|p
′
dm(z)

)1/p′

≤ C‖g‖pd(x, y)
N−p′(N−α)

p′ = C‖g‖pd(x, y)α−N/p

if p′(N − α) < N < p′(N − α + 1). The �rst inequality is once again equivalent to p > N/α, and the
second to α < 1 +N/p.

5 The inverse of Jα

In this section, with the fractional derivative Dα as de�ned in [GSV], we prove conditions for the composition
(I + Dα)Jα to be inversible in Lp for 1 < p < ∞, which in turn will lead to inversibility of Jα. We follow the
techniques used in [Hz], proving

‖I − (I +Dα)Jα‖Lp→Lp < 1

by rewriting the operators in terms of (Qt)t>0 instead of (St)t>0, and applying the T1 theorem for Ahlfors
spaces (see [Ga]).

Let α > 0. De�ne

nα(x, y) =

ˆ ∞
0

αt−αs(x, y, t)
dt

t
.

This kernel satis�es

nα(x, y) ∼ 1

d(x, y)N+α

and

|nα(x, y)− nα(x′, y)| ≤ Cd(x, x′)(d(x, y) ∧ d(x′, y))−(N+1+α).

The fractional derivative can be then de�ned as

Dαf(x) =

ˆ
X

nα(x, y)(f(x)− f(y))dm(y),

see for instance [GSV], whenever this integral makes sense (for instance if f has su�cient regularity of Lipschitz
or Besov type).

Let us now rewrite the operators with Qt = −t ddtSt. Assume f ∈ Cγc for some α < γ ≤ 1, then

Jαf(x) =

ˆ
X

kα(x, y)f(y)dm(y) =

ˆ
X

ˆ ∞
0

αtα−1

(1 + tα)2
s(x, y, t)f(y)dtdm(y)

=

ˆ ∞
0

αtα−1

(1 + tα)2
Stf(x)dt =

ˆ ∞
0

d

dt

(
1

1 + t−α

)
Stf(x)dt
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=
Stf(x)

1 + t−α

∣∣∣∣∞
0

+

ˆ ∞
0

1

1 + t−α

(
−t d
dt
Stf(x)

)
dt

t

=

ˆ ∞
0

1

1 + t−α
Qtf(x)

dt

t

where we have used Stf → f when t→ 0 and Stf → 0 when t→∞.

On the other hand, we obtain

Dαf(x) =

ˆ
X

nα(x, y)(f(x)− f(y))dm(y)

=

ˆ
X

ˆ ∞
0

αt−α−1s(x, y, t)(f(x)− f(y))dtdm(y)

=

ˆ ∞
0

αt−α−1(f(x)− Stf(x))dt =

ˆ ∞
0

d

dt

(
t−α
)

(Stf(x)− f(x))dt

=
(Stf(x)− f(x))

tα

∣∣∣∣∞
0

+

ˆ ∞
0

t−α
(
−t d
dt
Stf(x)

)
dt

t

=

ˆ ∞
0

t−αQtf(x)
dt

t
,

where we have used that Stf → 0 when t→∞ and that |Stf(x)− f(x)| ≤ Ctγ . Since we also have

f(x) = −
ˆ ∞
0

d

dt
Stf(x)dt =

ˆ ∞
0

Qtf(x)
dt

t
,

we get

(I +Dα)f(x) =

ˆ ∞
0

(1 + t−α)Qtf(x)
dt

t
.

This way,

(I +Dα)Jαf =

ˆ ∞
0

ˆ ∞
0

1 + s−α

1 + t−α
QsQtf

dt

t

ds

s
,

and as we also have

f =

ˆ ∞
0

ˆ ∞
0

QsQtf
dt

t

ds

s
,

we conclude

(I − (I +Dα)Jα)f =

ˆ ∞
0

ˆ ∞
0

(
1− 1 + s−α

1 + t−α

)
QsQtf

dt

t

ds

s

=

ˆ ∞
0

ˆ ∞
0

t−α − s−α

1 + t−α
QsQtf

dt

t

ds

s

=

ˆ ∞
0

(1− vα)

(ˆ ∞
0

1

1 + (uv)α
QuQuvf

du

u

)
dv

v
.

For each v > 0 we de�ne

Tα,vf =

ˆ ∞
0

1

1 + (uv)α
QuQuvf

du

u
,

and, following [Hz], if we can prove

‖Tα,vf‖p ≤ Cα,p(v)‖f‖p,

with ˆ ∞
0

|1− vα|Cα,p(v)
dv

v
< 1
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for α small enough, we will obtain

‖(I − (I +Dα)Jα)f‖p ≤
ˆ ∞
0

|1− vα|‖Tv,αf‖p
dv

v
< ‖f‖p

and therefore (I +Dα)Jα will be inversible for those values of α.

To prove the boundedness of Tα,v, we will use the T1 theorem as presented in 2.1. As a �rst step, we need
to show Tα,v is a singular integral operator, for which we need to �nd its kernel.

Lemma 5.1. For u, v > 0, x, z ∈ X,∣∣∣∣ˆ
X

q(x, y, u)q(y, z, uv)dm(y)

∣∣∣∣ ≤ C (v ∧ 1

vN+1

)
1

uN
χ( d(x,z)4(v+1)

,∞)(u).

As a consequence, ∣∣∣∣ˆ ∞
0

1

1 + (uv)α

ˆ
X

q(x, y, u)q(y, z, uv)dm(y)
du

u

∣∣∣∣ ≤ C (v ∧ 1

v

)
1

d(x, z)N
.

Proof. The second inequality follows immediately from the �rst one. For this one, as

q(x, y, u) = 0 when d(x, y) ≥ 4u; q(y, z, uv) = 0 when d(y, z) ≥ 4uv,

for the product to be non zero d(x, z) < 4u(v + 1) must hold. If v ≥ 1, as
´
X
q(x, y, u)q(x, z, uv)dm(y) = 0,∣∣∣∣ˆ

X

q(x, y, u)q(y, z, uv)dm(y)

∣∣∣∣ =

=

∣∣∣∣ˆ
X

q(x, y, u)(q(y, z, uv)− q(x, z, uv))dm(y)

∣∣∣∣
≤ C

ˆ
B(x,4u)

1

uN
d(x, y)

(uv)N+1
dm(y) ≤ C 1

uN
1

vN+1
;

and if v < 1, as
´
X
q(x, z, u)q(y, z, uv)dm(y) = 0,∣∣∣∣ˆ

X

q(x, y, u)q(y, z, uv)dm(y)

∣∣∣∣ =

=

∣∣∣∣ˆ
X

(q(x, y, u)− q(x, z, u))q(y, z, uv)dm(y)

∣∣∣∣
≤ C

ˆ
B(z,4uv)

d(y, z)

uN+1

1

(uv)N
dm(y) ≤ C 1

uN
v.

Let now f, g ∈ Cβc with disjoint supports, and let x ∈ supp(g). Then

Tα,vf(x) =

ˆ ∞
0

1

1 + (uv)α
QuQuvf

du

u

=

ˆ ∞
0

1

1 + (uv)α

(ˆ
X

q(x, y, u)

(ˆ
X

q(y, z, uv)f(z)dm(z)

)
dm(y)

)
du

u

and from the previous lemma we have this integral converges absolutely, so we can change the order of integration
and obtain

〈Tα,vf, g〉 =

ˆ
X

ˆ
X

Nα,v(x, z)f(z)g(x)dm(z)dm(x),

where

Nα,v(x, z) =

ˆ ∞
0

1

1 + (uv)α

ˆ
X

q(x, y, u)q(y, z, uv)dm(y)
du

u
.

From the previous lemma, Nα,v(x, z) ≤ C
(
v ∧ 1

v

)
1

d(x,z)N
. To see that Tα,v is a singular integral operator

we need to check the smoothness conditions for the kernel Nα,v.
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Lemma 5.2. For u, v > 0, x, x′, z ∈ X and 0 < δ < 1, it holds∣∣∣∣ˆ
X

(q(x, y, u)− q(x′, y, u))q(y, z, uv)dm(y)

∣∣∣∣ ≤
≤ C

(
d(x, x′)

u

)1−δ (
vδ ∧ 1

vN+1

)
1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u).

From this we obtain ∣∣∣∣ˆ ∞
0

1

1 + (uv)α

ˆ
X

(q(x, y, u)− q(x′, y, u))q(y, z, uv)dm(y)
du

u

∣∣∣∣ ≤
≤ C d(x, x′)1−δ

(d(x, z) ∧ d(x′, z))N+1−δ

(
v ∧ 1

v

)δ
.

Proof. As in the other lemma, the second inequality follows from the �rst one. We consider two cases: If v ≥ 1
y d(x, x′) ≥ u, by that same lemma,∣∣∣∣ˆ

X

(q(x, y, u)− q(x′, y, u))q(y, z, uv)dm(y)

∣∣∣∣ ≤
≤ C 1

vN+1

1

uN

(
χ( d(x,z)4(v+1)

,∞)(u) + χ(
d(x′,z)
4(v+1)

,∞
)(u)

)
≤ C 1

vN+1

1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u)

≤ C 1

vN+1

1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u)

(
d(x, x′)

u

)1−δ

.

And for d(x, x′) < u, the integrand will be nonzero only if d(x, z) < 4u(v + 1) or d(x′, z) < 4u(v + 1), so∣∣∣∣ˆ
X

(q(x, y, u)− q(x′, y, u))q(y, z, uv)dm(y)

∣∣∣∣ =

=

∣∣∣∣ˆ
X

(q(x, y, u)− q(x′, y, u))(q(y, z, uv)− q(x, z, uv))dm(y)

∣∣∣∣
≤ Cd(x, x′)

1

uN+1

1

(uv)N+1

ˆ
B(x,4u)∪B(x′,4u)

d(x, y)dm(y)

≤ C 1

vN+1

1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u)

(
d(x, x′)

u

)
≤ C 1

vN+1

1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u)

(
d(x, x′)

u

)1−δ

.

For the case v < 1, on one hand by the previous lemma we obtain∣∣∣∣ˆ
X

(q(x, y, u)− q(x′, y, u))q(y, z, uv)dm(y)

∣∣∣∣ ≤
≤ Cv 1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u),

on the other hand ∣∣∣∣ˆ
X

(q(x, y, u)− q(x′, y, u))q(y, z, uv)dm(y)

∣∣∣∣ ≤
≤ C d(x, x′)

u

1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u),

and by combining both inequalities we get∣∣∣∣ˆ
X

(q(x, y, u)− q(x′, y, u))q(y, z, uv)dm(y)

∣∣∣∣ ≤
≤ Cvδ

(
d(x, x′)

u

)1−δ
1

uN
χ(

d(x,z)∧d(x′,z)
4(v+1)

,∞
)(u).
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For the rest of the section, we �x 0 < δ < 1. Joining both lemmas we conclude

Theorem 5.3. Tα,v is a singular integral operator. Its kernel Nα,v satis�es

|Nα,v(x, z)| ≤ C
(
v ∧ 1

v

)δ
1

d(x, z)N
;

and for 3d(x, x′) < d(x, z),

|Nα,v(x, z)−Nα,v(x′, z)| ≤ C
(
v ∧ 1

v

)δ
d(x, x′)1−δ

d(x, z)N+1−δ

and

|Nα,v(z, x)−Nα,v(z, x′)| ≤ C
(
v ∧ 1

v

)δ
d(x, x′)1−δ

d(x, z)N+1−δ .

To prove each Tα,v is a Calderón-Zygmund operator, and thus bounded in Lp, we will use the T1 theorem.
The next lemma proves the other conditions needed.

Lemma 5.4. Tα,v satis�es

Tα,v1 = 0,

T ∗α,v1 = 0,

and for f, g ∈ Cβc (B), for some ball B,

|〈Tα,vf, g〉| ≤ C
(
v ∧ 1

v

)δ
m(B)1+

2β
N [f ]β [g]β .

Proof. The �rst equality is immediate, the second uses the fact that q is symmetrical.

〈Tα,vf, g〉 =

ˆ
X

(ˆ
X

Nα,v(x, z)f(z)dm(z)

)
g(x)dm(x)

=

ˆ
X

ˆ
X

ˆ ∞
0

ˆ
X

1

1 + (uv)α

× q(x, y, u)q(y, z, uv)dm(y)
du

u
f(z)dm(z)g(x)dm(x)

=

ˆ
X

f(z)

(ˆ
X

N∗α,v(z, x)g(x)dm(x)

)
dm(z) = 〈f, T ∗α,vg〉

so clearly T ∗α,v1 = 0.

For the third one, as

〈Tα,vf, g〉 =

=

∞̂

0

1

1 + (uv)α

ˆ
X

ˆ
X

ˆ
X

q(x, y, u)q(y, z, uv)f(z)g(x)dm(y)dm(z)dm(x)
du

u

we observe that the triple integral inside may be estimated in three di�erent ways

• Firstly,

A =

∣∣∣∣ˆ
X

ˆ
X

ˆ
X

q(x, y, u)q(y, z, uv)f(z)g(x)dm(y)dm(z)dm(x)

∣∣∣∣
≤ C‖f‖∞‖g‖∞

(
v ∧ 1

vN+1

)
1

uN

ˆ
B

ˆ
B

χB(x,4u(v+1))(z)dm(z)dm(x)

≤ C[f ]β [g]βm(B)2β/N
(
v ∧ 1

vN+1

)
m(B)(v + 1)N

≤ C
(
v ∧ 1

v

)
[f ]β [g]βm(B)1+2β/N .
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• Secondly, using the fact that
´
X
q(x, y, u)q(y, z, uv)f(y)g(x)dm(z) = 0,

A =

∣∣∣∣ˆ
X

ˆ
X

ˆ
X

q(x, y, u)q(y, z, uv)(f(z)− f(y))g(x)dm(z)dm(y)dm(x)

∣∣∣∣
≤ C[f ]β‖g‖∞

ˆ
B

 
B(x,4u)

 
B(y,4uv)

d(z, y)βdm(z)dm(y)dm(x)

≤ C[f ]β [g]βm(B)1+β/N (uv)β

≤ C
(

uv

m(B)1/N

)β
[f ]β [g]βm(B)1+2β/N .

• And lastly, it also holds

A ≤ C‖f‖∞‖g‖∞
m(B)2

(uv)N

≤ C
(

uv

m(B)1/N

)−N
[f ]β [g]βm(B)1+2β/N .

By taking an appropriate combination of the previous three inequalities, we have

A =

∣∣∣∣ˆ
X

ˆ
X

ˆ
X

q(x, y, u)q(y, z, uv)f(z)g(x)dm(y)dm(z)dm(x)

∣∣∣∣
≤ C

(
v ∧ 1

v

)δ ((
uv

m(B)1/N

)β
∧
(

uv

m(B)1/N

)−N)1−δ

[f ]β [g]βm(B)1+2β/N ,

and conclude

|〈Tα,vf, g〉| ≤ C
(
v ∧ 1

v

)δ
[f ]β [g]βm(B)1+2β/N .

Thus the T1 theorem holds for each Tα,v, and we get

Theorem 5.5. For 1 < p <∞ and 0 < δ < 1 the following holds

‖Tα,vf‖p ≤ Cp
(
v ∧ 1

v

)δ
‖f‖p.

The fact that the Lp-constant of Tα,v is bounded by the constants appearing in Theorem 5.3 and Lemma
5.4 follows the same ideas that the Euclidean case (see for instance [Gr]).

From this result, as for α < δ we have

‖I − (I +Dα)Jα‖Lp→Lp ≤
ˆ ∞
0

|1− vα|‖Tα,v‖Lp→Lp
dv

v
≤ Cp

α

δ2 − α2

so we obtain the estimate we were looking for and we can conclude

• For any 0 < α < 1, I − (I +Dα)Jα, and thus (I +Dα)Jα, is bounded in Lp

• There exists α0 < 1 such that, for α < α0,

‖I − (I +Dα)Jα‖Lp→Lp < 1,

and thus (I +Dα)Jα is inversible (with bounded inverse) in Lp. As Jα maps Lp onto Lα,p,

[(I +Dα)Jα]
−1

(I +Dα)Jα = IdLp

so Jα is inversible with inverse J−1α : Lα,p → Lp given by

J−1α = [(I +Dα)Jα]
−1

(I +Dα).
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6 A characterization of Lα,p in terms of Dα

For 0 < α < 1 and 1 < p < ∞, we proved that, if f ∈ Lα,p, then f ∈ Lp (this holds for any α > 0 and
1 ≤ p ≤ ∞) and (I +Dα)f ∈ Lp, so

If f ∈ Lα,p, then f,Dαf ∈ Lp,

moreover,

‖Dαf‖p ≤ C‖f‖α,p.

For the case α < α0, we obtain the reciprocal.

Theorem 6.1. Let 1 < p <∞ and 0 < α < α0. Then

f ∈ Lα,p if and only if f,Dαf ∈ Lp,

Furthermore,

‖f‖α,p ∼ ‖(I +Dα)f‖p.

Proof. We have already seen in this case Jα : Lp → Lα,p is bijective, and therefore I + Dα is also bijective. If
f,Dαf ∈ Lp, de�ne

g = [(I +Dα)Jα]
−1

(I +Dα)f,

we get g ∈ Lp and

Jαg = Jα [(I +Dα)Jα]
−1

(I +Dα)f = JαJ
−1
α (I +Dα)−1(I +Dα)f = f.

We also get

‖f‖α,p = ‖f‖p + ‖J−1α f‖p
≤ C‖J−1α f‖p = C‖ [(I +Dα)Jα]

−1
(I +Dα)f‖p

≤ C‖(I +Dα)f‖p.

We can also characterize functions in Lα,p in terms of the Riesz potential Iα as follows. In [GSV] and [Ga],
it is proven there exists 0 < α̃0 such that, for α < α̃0, the operator DαIα is inversible in Lp, 1 < p <∞. Thus
we obtain

Corollary 6.2. For α > 0 satisfying α < α0 ∧ α̃0 and 1 < p <∞, we get

f ∈ Lα,p if and only if f ∈ Lp and there exists γ ∈ Lp with f = Iαγ.

As another corolary, the following embeddings hold, which follow from the fact that Dαf ∈ Lp for f smooth
enough.

• If 0 < α < α0 and ε > 0 satis�es 0 < α+ ε < 1, for 1 < p <∞ we have

Mα+ε,p ↪→ Lα,p ↪→Mα,p.

• If 0 < α < α0 and 0 < ε < α satis�es 0 < α+ ε < 1, for 1 < p <∞ we have

Bα+εp,p ↪→ Lα,p ↪→ Bα−εp,p .

• If 0 < α < α0 and β > 0 satis�es α < β < 1, for 1 < p <∞ we have

Lβ,p ↪→ Lα,p.
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As a �nal result, we show that in Rn, for α < α0, the space L
α,p coincides with the classical Lα,p.

Let (St)t>0 be an approximation of the identity as constructed in the introduction, from a function h. Let
H(x) = h(|x|) and Ht(x) = t−nH(x/t). Then

• Ttf(x) = 1
tn

´
h
(
|x−y|
t

)
f(y)dy =

´
Ht(x− y)f(y)dy = Ht ∗ f(x);

• Tt1 ≡
´
Ht =

´
H = cH for every t > 0 and x ∈ Rn, then ϕ ≡ 1

cH
and ψ ≡ 1.

• Stf = 1
c2H
Ht ∗Ht ∗ f =

´ (
1
c2H
Ht ∗Ht

)
(x− y)f(y)dy.

• s(x, y, t) =
(

1
c2H
Ht ∗Ht

)
(x− y).

We will see that

s(x, y, t) = ϕt(x− y)

where ϕ is radial. Observe

Ht ∗Ht(x) =
1

t2n

ˆ
H

(
x− y
t

)
H
(y
t

)
dy =

1

tn

ˆ
H
(x
t
− z
)
H(z)dz

=
1

tn
(H ∗H)(x/t) = (H ∗H)t (x).

Besides, if ρ is a rotation, as H is radial, we get

H ∗H(ρx) =

ˆ
H(ρx− y)H(y)dy =

ˆ
H(ρ(x− ρ−1y))H(ρρ−1y)dy

=

ˆ
H(x− ρ−1y)H(ρ−1y)dy = H ∗H(x).

This way, if φ = 1
c2H
H ∗H, we will have

1

c2H
Ht ∗Ht = φt.

With this expression for s, we obtain

nα(x, y) =

ˆ ∞
0

αt−αs(x, y, t)
dt

t
=

ˆ ∞
0

αt−α
1

tn
φ

(
x− y
t

)
dt

t

=
1

|x− y|n+α

ˆ ∞
0

αun+αφ(ue1)
du

u
=

cn,α,φ
|x− y|n+α

and the last integral converges because φ is bounded and compactly supported.

Now, recall that for 0 < α < 2,

Dαf(x) = p.v. cα,n

ˆ
f(y)− f(x)

|x− y|n+α
dy

and that for those values of α,

f ∈ Lα,p if and only if f,Dαf ∈ Lp.

From the previous result, we get

Dαf = Cn,α,hDαf,

and thus

f ∈ Lα,p if and only if f,Dαf ∈ Lp.

In conclusion, for 0 < α < α0, by the characterization theorem the spaces Lα,p(Rn) are independent from
the choice of h in the aproximation of the identity (St), and they coincide with the classical space

Lα,p = Lα,p.
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