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UNIFORM SPACES AND THE NEWTONIAN STRUCTURE OF
(BIG)DATA AFFINITY KERNELS

HUGO AIMAR AND IVANA GÓMEZ

Abstract. Let X be a (data) set. Let K(x, y) > 0 be a measure of the
affinity between the data points x and y. We prove that K has the structure
of a Newtonian potential K(x, y) = ϕ(d(x, y)) with ϕ decreasing and d a
quasi-metric on X under two mild conditions on K. The first is that
the affinity of each x to itself is infinite and that for x , y the affinity
is positive and finite. The second is a quantitative transitivity; if the
affinity between x and y is larger than λ > 0 and the affinity of y and z
is also larger than λ, then the affinity between x and z is larger than ν(λ).
The function ν is concave, increasing, continuous from R+ onto R+ with
ν(λ) < λ for every λ > 0.

1. Introduction

Isaac Newton in the seventeenth century started the endless quantitative
approach to the understanding of nature. The quantitative character of the
formulation of the Law of Universal Gravitation, should not hide its deep
qualitative aspects. Now, more than 300 years later, we are able to explain
the central fields as gradients of radial potentials centered at the “object”
generating the field. Usually the potential take the form V(x) = ϕ(|x|) where
ϕ is a decreasing profile and |x| is the distance of the point x, where the
field is to be measured, to the origin of coordinates supporting the mass or
the charge that generates the field. In the Euclidean n-dimensional space
the profile ϕ(r) = r−n+2 gives the fundamental solution of the Laplacian.
And the kernel K(x, y) = ϕ(|x − y|) provides the basic information in order
to produce the continuous models by convolution with the mass or charge
densities that determine the system. These facts are also the starting points
for harmonic analysis.

Our aim in this paper is to use arguments and results strongly related
to the theory of uniform spaces, in order to give sufficient conditions on a
kernel function K(x, y) defined on an abstract setting, in such a way that
K(x, y) = ϕ(d(x, y)) with ϕ a decreasing profile and d a (quasi)metric on X.

In other words, we aim to obtain an abstract form of Newtonian poten-
tials for general kernels. Our approach in the search of conditions on the
kernel K(x, y) will be based in the heuristic associated to the interpretation
of K(x, y) as an affinity matrix for (big) data. Amazingly enough the ab-
stract of the paper [2] of the Coifman Group leading the harmonic analysis
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approach to determine the structure of big data sets, reads “The process of
iterating or diffusing the Markov matrix is seen as a generalization of some
aspects of the Newtonian paradigm, in which local infinitesimal transitions
of a system lead to global macroscopic by integration.” In some sense the
result of this paper shows that also the potential theoretic Newtonian view
of nature is still close to these problems. By the way, our approach could
be a good example of how qualitative aspects of a system leads to structural
results of the model.

Let X be a set (data set). Each element x of X is understood as a data
point. Let K(x, y) be a nonnegative number measuring the affinity bet-
ween the two data points x and y. We shall consider some basic proper-
ties of affinity which will be sufficient to obtain the Newtonian potential
type structure for K. Symmetry; affinity is a symmetric relation on X × X
(K(x, y) = K(y, x) for every x, y ∈ X). Positivity; there is positive affinity
between any couple of data points x and y (K(x, y) ≥ 0 for every x, y ∈ X).
Diagonal singularity; the self affinity is unimprovable. Precisely, the affin-
ity of each data point x with itself is +∞ (K(x, x) = +∞ for every x) but for
x , y the affinity is finite (K(x, y) < ∞ for x , y). Quantitative Transiti-
vity; if the affinity between the data points x and y is larger than λ > 0
and the affinity between y and z is larger than λ then the affinity between
the points x and z is larger than ν(λ) < λ. Here ν is a nonnegative, con-
cave, increasing and continuous function defined on R+ onto R+ such that
ν(λ) < λ.

A quasi-metric in X is a nonnegative symmetric function d defined on
X × X which vanishes only on the diagonal ∆ of X × X and satisfies a weak
form of the triangle inequality, there exists a constant τ (≥ 1) such that the
inequality d(x, z) ≤ τ(d(x, y) + d(y, z)) holds for every x, y and z in X.

The main result of this paper can be stated as follows.

Theorem 1. Let X be a set. Let K : X × X → R+ be a symmetric function
satisfying the singularity and the quantitative transitivity conditions. Then
there exist a decreasing and continuous function ϕ defined in R+ and a
quasi-metric d on X such that

K(x, y) = ϕ(d(x, y)).

Moreover, d(x, y) = h(x, y)ρ(x, y) with ρ a metric on X and h a symmetric
function such that for some constants 0 < c1 < c2 < ∞ satisfies c1 ≤

h(x, y) ≤ c2 for every x and y in X.

The deepest results on the structure of quasi-metrics are due to Macı́as
and Segovia and are contained in [5]. See also [1]. The most significant for
our purposes is the fact that each quasi-metric is equivalent to a power of a
metric. In other words, given a quasi-metric d on X with constant τ, there
exist β ≥ 1 and a metric ρ on X such that for some positive constants a1 and
a2 the inequalities

a1d(x, y) ≤ ρβ(x, y) ≤ a2d(x, y)
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hold for every x and y in X. Actually the proof is based in Frink’s lemma of
metrization of uniform structures with a countable basis ([3], [4]).

The rest of the paper is organized in the following way. Section 2 gives
a characterization of quasi-metrics on a set in terms of properties of the
family of stripes in X × X induced by the quasi-metric. Section 3 contains
the construction of the monotonic profile. In Section 4 we prove the main
result.

2. Quasi-metrics and families of stripes around the diagonal

Let X be a set. The composition of two subsets U and V of X × X is
given by V ◦ U = {(x, z) ∈ X × X : there exists y ∈ X such that (x, y) ∈
U and (y, z) ∈ V}. A subset U in X × X is said to be symmetric if (x, y) ∈
U if and only if (y, x) ∈ U. Set ∆ to denote the diagonal in X × X, i.e.
∆ = {(x, x) : x ∈ X}. When a quasi-metric δ with constant τ is given in X,
it is easy to check that the one parameter family V(r) = {(x, y) ∈ X × X :
δ(x, y) < r}; r > 0, of stripes around the diagonal of X × X, satisfies
(S1) eachV(r) is symmetric;
(S2) ∆ ⊆ V(r), for every r > 0;
(S3) V(r1) ⊆ V(r2), for 0 < r1 ≤ r2;
(S4) ∪r>0V(r) = X × X;
(S5) ∩r>0V(r) ⊆ ∆;
(S6) there exists T ≥ 1 such thatV(r) ◦ V(r) ⊆ V(Tr), for every r > 0.
Actually, the constant T in (S6) can be taken to be the triangle constant τ of
δ. Set P(X × X) to denote the set of subsets of X × X.

Theorem 2. Let V : R+ → P(X × X) be a one parameter family of the
subsets of X×X that satisfies (S1) to (S6) above. Then the function δ defined
on X × X by δ(x, y) = inf{r > 0 : (x, y) ∈ V(r)} is a quasi-metric on X with
τ ≤ T. Moreover, for each γ > 0, we have

Vδ(r) ⊆ V(r) ⊆ Vδ((1 + γ)r) (2.1)

hold for every r > 0, whereVδ(s) = {(x, y) ∈ X × X : δ(x, y) < s}.

Proof. From (S4) for the family V we see that δ(x, y) is well defined as a
nonnegative real number. The symmetry of δ follows from (S1). The fact
that δ vanishes on the diagonal ∆ follows from ∆ ⊆ ∩r>0V(r) which is
contained in (S2). Now, if (x, y) ∈ X × X and δ(x, y) = 0, then, from (S3) for
each r > 0, (x, y) ∈ V(r). Now, from (S5) we necessarily have that (x, y) ∈ ∆

or, in other words x = y. Let us check that δ satisfies a triangle inequality.
Let x, y and z be three points in X. Let ε > 0. Take r1 > 0 and r2 > 0 such
that r1 < δ(x, y) + ε, r2 < δ(y, z) + ε, (x, y) ∈ V(r1) and (y, z) ∈ V(r2). From
(S6) with r∗ = sup{r1, r2}, we have (x, z) ∈ V(r2) ◦V(r1) ⊆ V(r∗) ◦V(r∗) ⊆
V(Tr∗). Hence δ(x, z) ≤ Tr∗ ≤ T (r1 +r2) ≤ T (δ(x, y)+δ(y, z))+2εT and we
get the triangle inequality with τ = T . Notice first that from (S3), Vδ(r) ⊆
V(r) for every r > 0. Take now (x, y) ∈ V(r), then δ(x, y) ≤ r < (1 + γ)r,
so thatV(r) ⊆ Vδ((1 + γ)r) for every γ > 0 and every r > 0. �
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The next result follows from the above and the metrization theorem of
quasi-metric spaces proved in [5] as an application of Frink’s Lemma on
metrizability of uniform spaces with countable bases.

Theorem 3. Let V and δ be as in Theorem 2. Then, there exist a constant
β ≥ 1 and a metric ρ on X such that

(i) 4−βδ ≤ ρβ ≤ 2βδ;
(ii) Vρβ

(
r

4β

)
⊆ V(r) ⊆ Vρβ(2β+1r) where Vρβ(r) = {(x, y) ∈ X × X :

ρβ(x, y) < r}.

Proof. Following the proof of Theorem 2 on page 261 in [5] take α < 1
such that (3T 2)α = 2 and β = 1

α
> 1. With ρ the metric provided by the

metrization theorem for uniform spaces with countable bases, we have that
4ρ(x, y) ≥ δ(x, y)α ≥ 1

2ρ(x, y). So that

1
4β
δ(x, y) ≤ ρ(x, y)β ≤ 2βδ(x, y),

and (ii) follow from these inequalities and (2.1) with γ = 1. �

3. Building the basic profile shape

The classical inverse proportionality to the square of the distance between
the two bodies for the gravitation field, translates into inverse proportional-
ity to the distance for the potential. That is ϕ(r) = 1

r for the gravitational
potential.

This section is devoted to the construction of the basic shapes of the pro-
files that allow the Newtonian representation of the kernels. This construc-
tion requires to solve a functional inequality involving the function ν that
controls the quantitative transitive property of K.

Proposition 4. Let ν be a concave, continuous, nonnegative and increasing
function defined on R+ onto R+ such that ν(λ) < λ for every λ > 0. Then,
given M > 1, there exists a continuous, decreasing and convex function ψ
defined on R+ with ψ(1) = 1 such that the inequality

ψ(ν(λ)) ≤ Mψ(λ) (3.1)

holds for every λ > 0.

Proof. Set λ0 = 1, λ1 = ν(1) and λ−1 = ν−1(1). Notice that λ1 < 1 and
λ−1 > 1. In fact, λ1 = ν(1) < 1 and 1 = ν−1(ν(1)) = ν−1(λ1) < ν−1(1) = λ−1.
Set for k ∈ N, λk = ν(λk−1) and λ−k = ν−1(λ−k+1). Notice that λk decreases as
k → ∞ and increases when k → −∞. The continuity of ν and the property
ν(λ) < λ for every positive λ imply that λk → 0 as k → ∞ and λk → ∞

as k → −∞ monotonically. This basic sequence {λk : k ∈ Z} allows to
construct a function ψ in the following way. Set ψ(λk) = Mk, k ∈ Z and
for λ ∈ [λk+1, λk] define ψ(λ) by linear interpolation. It is clear that ψ is
continuous, decreasing, ψ(0+) = +∞, ψ(∞) = 0, ψ(1) = ψ(λ0) = M0 = 1
and that ψ is convex. We only have to check that ψ solves inequality (3.1).
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On the sequence {λk : k ∈ Z}, (3.1) becomes an equality. In fact, ψ(ν(λk)) =

ψ(λk+1) = Mk+1 = MMk = Mψ(λk).
Let us now take λ ∈ (λk+1, λk) for k ∈ Z. For such λ, ψ(λ) satisfies

Mk+1 − Mk

λk − λk+1
=

Mk+1 − ψ(λ)
λ − λk+1

. (3.2)

On the other hand, since λk+1 < λ < λk, we have that λk+2 = ν(λk+1) <
ν(λ) < ν(λk) = λk+1. Hence ψ(ν(λ)) satisfies

Mk+2 − Mk+1

λk+1 − λk+2
=

Mk+2 − ψ(ν(λ))
ν(λ) − λk+2

. (3.3)

From (3.2) and (3.3) we get

ψ(λ) = Mk+1 − Mk(M − 1)
λ − λk+1

λk − λk+1

and

ψ(ν(λ)) = M
(
Mk+1 − Mk(M − 1)

ν(λ) − λk+2

λk+1 − λk+2

)
.

Now, since ν is concave, we have for λk+1 < λ < λk that
ν(λ) − ν(λk+1)
λ − λk+1

≥
ν(λk) − ν(λk+1)
λk − λk+1

,

hence, ψ(ν(λ)) ≤ Mψ(λ). �

The basic shapes for the profiles ϕ in our main result will be given as
composition of the inverse η of ψ with power laws.

4. Proof of the main result

Let us start by rewriting, formally, the properties of symmetry, positivity,
singularity and transitivity of a data affinity kernel K(x, y) defined on the set
X × X. Let K : X × X → R such that
(K1) K(x, y) = K(y, x), for every x and y in X;
(K2) K(x, y) > 0, for every x and y in X;
(K3) K(x, y) = +∞ if and only if x = y;
(K4) there exists a continuous, concave, increasing and nonnegative func-

tion ν defined on R+ onto R+, with ν(λ) < λ, λ > 0, such that
K(x, z) > ν(λ) whenever there exists y ∈ X with K(x, y) > λ and
K(y, z) > λ, for every λ > 0.

With these properties, Theorem 1 can be restated as follows.

Theorem 5. Let X be a set. Let K be a kernel on X × X satisfying proper-
ties(K1) to (K4). Then, there exist a metric ρ on X, a real number β ≥ 1,
a function h(x, y) defined on X × X with 2−1/β ≤ h(x, y) ≤ 4 and a function
ϕ : R+ → R+ continuous, decreasing with ϕ(0+) = +∞ and ϕ(∞) = 0, such
that

K(x, y) = ϕ(h(x, y)ρ(x, y)).
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Proof. Let ν be the function provided by (K4). Let ψ be given by Proposi-
tion 4 with this function ν, and M = 2. Hence ψ(ν(λ)) ≤ 2ψ(λ) for every
λ > 0. Take η = ψ−1 andV : R+ → P(X × X) given by

V(r) = Eη(r) = {(x, y) : K(x, y) > η(r)}.

Let is check that V satisfies properties (S1) to (S6) in Section 2 with con-
stant T = 2 (= M). From (K1) we see that each Eλ is symmetric, in par-
ticularV(r) is symmetric for every r > 0. Since K(x, x) = +∞, from (K3),
we have that ∆ ⊆ Eη(r) = V(r) for r > 0. In order to check (S3) take
0 < r1 < r2 < ∞. Hence η(r1) > η(r2), so that K(x, y) > η(r1) implies
K(x, y) > η(r2). Or, in other words Eη(r1) ⊂ Eη(r2). Or V(r1) ⊆ V(r2).
The positivity (K2) of K(x, y) shows (S4). Property (S5) ofV follows from
(S3). To prove (S6) forV, take r > 0. If (x, z) ∈ V(r) ◦V(r) = Eη(r) ◦ Eη(r),
then there exists y ∈ X such that K(x, y) > η(r) and K(y, z) > η(r). From
(K4), K(x, z) > ν(η(r)). Now applying (3.1) with λ = ψ−1(r) we get
K(x, z) > ν(ψ−1(r)) ≥ η(2r), or (x, z) ∈ Eη(2r) = V(2r). Hence (S6)
for V holds with T = 2. We can, then apply the results of Section 2.
First to produce a quasi-metric δ as in Theorem 2 and then to provide the
metric ρ and the exponent β given in Theorem 3. Thus, for every r > 0,
Vρβ

(
r
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}
⊆

{
(ψ ◦ K)1/β > s

}
⊆

{
ρ < 21+1/βs

}
(4.1)

for every s > 0. Let x and y be two different points in X. Since 0 < K(x, y) <
∞ so is (ψ ◦ K)1/β(x, y). There exists, then, a unique j ∈ Z ( j = j(x, y)) such
that 2 j ≤ (ψ ◦ K)1/β(x, y) < 2 j+1. By the second inclusion in (4.1) we
see that ρ(x, y) < 21/β2 j ≤ 21/β(ψ ◦ K)1/β(x, y). On the other hand, since
(ψ ◦ K)1/β(x, y) < 2 j+1, from the first inclusion in (4.1) we necessarily have
that ρ(x, y) ≥ 2 j+1

4 > 1
4 (ψ ◦ K)1/β(x, y). Hence for x , y we have

1
4

(ψ ◦ K)1/β ≤ ρ ≤ 21/β(ψ ◦ K)1/β.

Set h(x, y) =
(ψ◦K)1/β

ρ(x,y) for x , y and h(x, x) = 1. Then 1
21/β ≤ h ≤ 4 and

K(x, y) = ψ−1((h(x, y)ρ(x, y))β) = ϕ(h(x, y)ρ(x, y)) with ϕ(r) = ψ−1(rβ) =

η(rβ). �

Notice that since h is symmetric and bounded above and below by posi-
tive constants the function d(x, y) = h(x, y)ρ(x, y) is a quasi-metric. But
actually d is better than a general quasi-metric since its triangular inequality
constant can be taken to be independent of the length of chains. Precisely,
d(x1, xm) ≤ 22+1/β ∑m−1

j=1 d(x j, x j+1).
Let us observe also that Newtonian type power laws are obtained when

ν(λ) = aλ for a < 1. In fact, with m = 1
log2 a < 0, ψ(r) = rm solves the

equation (aλ)m = 2λm. Hence ϕ becomes also a power law.

IMAL PREPRINT # 2017-0039
                              ISSN 2451-7100 
Publication date: February 14, 2017

Prep
rin

t



7

References

[1] Hugo Aimar, Bibiana Iaffei, and Liliana Nitti. On the Macı́as-Segovia metrization of
quasi-metric spaces. Rev. Un. Mat. Argentina, 41(2):67–75, 1998.

[2] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W.
Zucker. Geometric diffusions as a tool for harmonic analysis and structure definition of
data: Diffusion maps. Proceedings of the National Academy of Sciences of the United
States of America, 102(21):7426–7431, 2005.

[3] A. H. Frink. Distance functions and the metrization problem. Bull. Amer. Math. Soc.,
43(2):133–142, 1937.

[4] John L. Kelley. General topology. Springer-Verlag, New York-Berlin, 1975. Reprint of
the 1955 edition [Van Nostrand, Toronto, Ont.], Graduate Texts in Mathematics, No.
27.

[5] Roberto A. Macı́as and Carlos Segovia. Lipschitz functions on spaces of homogeneous
type. Adv. in Math., 33(3):257–270, 1979.
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