IMAL preprints

http://www.imal.santafe-conicet.gov.ar/publicaciones/preprints/index.php

ON THE CALDERÓN-ZYGMUND STRUCTURE OF PETERMICHL'S KERNEL. WEIGHTED INEQUALITIES

By

Hugo Aimar and Ivana Gómez

IMAL PREPRINT \# 2017-0041
Publication date: October 2, 2017

Editorial: Instituto de Matemática Aplicada del Litoral IMAL (CCT CONICET Santa Fe - UNL) http://www.imal.santafe-conicet.gov.ar

Director de Publicaciones: Dr. Rubén Spies
E-mail: rspies@santafe-conicet.gov.ar

I M A L

ON THE CALDERÓN-ZYGMUND STRUCTURE OF PETERMICHL'S KERNEL. WEIGHTED INEQUALITIES

HUGO AIMAR AND IVANA GÓMEZ

Abstract

We show that Petermichl's dyadic operator \mathcal{P} (S. Petermichl (2000), Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol) is a Calderón-Zygmund type operator on an adequate metric normal space of homogeneous type. As a consequence of a general result on spaces of homogeneous type, we get weighted boundedness of the maximal operator \mathcal{P}^{*} of truncations of the singular integral. We show that dyadic A_{p} weights are the good weights for the maximal operator \mathcal{P}^{*} of the scale truncations of \mathcal{P}.

1. Introduction

In [9], Stefanie Petermichl proves a remarkable identity that provides the Hilbert kernel $\frac{1}{x-y}$ in \mathbb{R} as a mean value of dilations and translations of a basic kernel defined in terms of dyadic families on \mathbb{R}. The basic kernel for a fixed dyadic system \mathcal{D} is described in terms of Haar wavelets. Assume that \mathcal{D} is the standard dyadic family on \mathbb{R}, i.e. $\mathcal{D}=\cup_{j \in \mathbb{Z}} \mathcal{D}^{j}$ with $\mathcal{D}^{j}=\left\{I_{k}^{j}: k \in \mathbb{Z}\right\}$ and $I_{k}^{j}=\left[\frac{k}{2^{j}}, \frac{k+1}{2^{j}}\right)$. Let \mathscr{H} be the standard Haar system built on the dyadic intervals in \mathcal{D}. There is a natural bijection between \mathscr{H} and \mathcal{D}. We shall use \mathcal{D} as the index set and we shall write h_{I} to denote the function $h_{I}(x)=|I|^{-1 / 2}\left(\mathcal{X}_{I^{-}}(x)-\mathcal{X}_{I^{+}}(x)\right)$ where I^{-}and I^{+}are the respective left and right halves of I, \mathcal{X}_{E} is, as usual, the indicator function of E and $|E|$ denote the Lebesgue measure of the measurable set E. With the above notation, the basic Petermichl's operator on $L^{2}(\mathbb{R})$ is given by

$$
\begin{equation*}
\mathcal{P} f(x)=\sum_{I \in \mathcal{D}}\left\langle f, h_{I}\right\rangle\left(h_{I^{-}}(x)-h_{I^{+}}(x)\right), \tag{1.1}
\end{equation*}
$$

where, as usual, $\left\langle f, h_{I}\right\rangle=\int_{\mathbb{R}} f(y) h_{I}(y) d y$. Hence, at least formally, the operator \mathcal{P} is defined by the nonconvolution nonsymmetric kernel

$$
\begin{aligned}
P(x, y) & =\sum_{h \in \mathcal{D}} h_{I}(y)\left(h_{I^{-}}(x)-h_{I^{+}}(x)\right) \\
& =P^{+}(x, y)+P^{-}(x, y)
\end{aligned}
$$

with

$$
\begin{equation*}
P^{+}(x, y)=\sum_{I \in \mathcal{D}^{+}} h_{I}(y)\left(h_{I^{-}}(x)-h_{I^{+}}(x)\right) \tag{1.2}
\end{equation*}
$$

and $\mathcal{D}^{+}=\left\{I_{k}^{j} \in \mathcal{D}: k \geq 0\right\}$.
Let us observe that for $x \geq 0, y \geq 0$ and $x \neq y$ the series $\sum_{I \in \mathcal{D}^{+}} h_{I}(y)\left[h_{I^{-}}(x)-h_{I^{+}}(x)\right]$ is absolute convergent. In fact

$$
\sum_{I \in \mathcal{D}^{+}}\left|h_{I}(y)\right|\left|h_{I^{-}}(x)-h_{I^{+}}(x)\right|=\sum_{I \in \mathcal{D}^{+}, I \supseteq I(x, y)} \frac{1}{\sqrt{|I|}}\left|h_{I^{-}}(x)-h_{I^{+}}(x)\right|
$$

[^0]$$
\leq \sum_{I \in \mathcal{D}^{+}, I \supseteq I(x, y)} \frac{2 \sqrt{2}}{|I|}=\frac{4 \sqrt{2}}{|I(x, y)|}
$$
where $I(x, y)$ is the smallest dyadic interval in \mathbb{R} containing x and y.
The aim of this paper is twofold. First we show that \mathcal{P}^{+}(and \mathcal{P}^{-}) the operator induced by the kernel P^{+}(resp. P^{-}) is of Calderón-Zygmund type in the normal space of homogeneous type \mathbb{R}^{+}(resp. \mathbb{R}^{-}) with the dyadic ultrametric $\delta(x, y)=\inf \{|I|: x, y \in I$ and $I \in \mathcal{D}\}$ and Lebesgue measure. Second, by an application of the known weighted norm inequalities for singular integrals in normal spaces of homogeneous type, we show that the operator $\mathcal{P}^{*} f(x)=$ $\sup _{\{l, m \in \mathbb{Z}\}}\left|\sum_{\left\{I \in \mathcal{D}^{+}, 2^{l} \leq I I \mid<2^{m}\right\}}\left\langle f, h_{I}\right\rangle\left(h_{I^{-}}(x)-h_{I^{+}}(x)\right)\right|$ is bounded on $L^{p}\left(\mathbb{R}^{+}, w d x\right)$ if and only if $w \in$ $A_{p}^{d y}\left(\mathbb{R}^{+}\right)$when $1<p<\infty$.

In $\S 2$ we prove that \mathcal{P}^{+}is of Calderón-Zygmund in an adequate space of homogeneous type. In Section 3 we give the characterization of the dyadic weights as those for which the maximal operator of the scale truncations of \mathcal{P}^{+}is bounded in $L^{p}\left(\mathbb{R}^{+}, w d x\right)$ for $1<p<\infty$.

2. Petermichl's operator as a Calderón-Zygmund operator

Following [8], a linear and continuous operator $T: \mathscr{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$, with \mathscr{D} and \mathscr{D}^{\prime} the test functions and the distributions on \mathbb{R}^{n}, is a Calderón-Zygmund operator if there exists $K \in L_{l o c}^{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n} \backslash \Delta\right)$ where Δ is the diagonal of $\mathbb{R}^{n} \times \mathbb{R}^{n}$ such that
(1) there exists $C_{0}>0$ with

$$
|K(x, y)| \leq \frac{C_{0}}{|x-y|^{n}}, \quad x \neq y
$$

(2) there exist C_{1} and $\gamma>0$ such that
(2. a) $\left|K\left(x^{\prime}, y\right)-K(x, y)\right| \leq C_{1} \frac{\left|x^{\prime}-x\right|^{\gamma}}{|x-y|^{n+\gamma}}$ when $2\left|x^{\prime}-x\right| \leq|x-y|$;
(2.b) $\left|K\left(x, y^{\prime}\right)-K(x, y)\right| \leq C_{1} \frac{\left|y^{\prime}-y\right|^{\gamma}}{|x-y|^{n+\gamma}}$ when $2\left|y^{\prime}-y\right| \leq|x-y|$;
(3) T extends to $L^{2}\left(\mathbb{R}^{n}\right)$ as a continuous linear operator;
(4) for φ and $\psi \in \mathscr{D}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp} \varphi \cap \operatorname{supp} \psi=\emptyset$ we have

$$
\langle T \varphi, \psi\rangle=\iint_{\mathbb{R}^{n} \times \mathbb{R}^{n}} K(x, y) \varphi(x) \psi(y) d x d y
$$

With a little effort the notions of Calderón-Zygmund operator and Calderón-Zygmund kernel K (i.e. satisfying (1) and (2)) can be extended to normal metric spaces of homogeneous type. Even when the formulation can be stated in quasi-metric spaces for our application it shall be enough the following context. Let (X, d) be a metric space. If there exists a Borel measure μ on X such that for some constants $0<\alpha \leq \beta<\infty$ such that the inequalities $\alpha r \leq \mu(B(x, r)) \leq \beta r$ hold for every $r>0$ and every $x \in X$, we shall say that (X, d, μ) is a normal space. As usual $B(x, r)=\{y \in X: d(x, y)<r\}$. In particular, (X, d, μ) is a space of homogeneous type in the sense of [4], [6], [5], [2], and many problems of harmonic analysis find there a natural place to be solved.

In this setting in [6] a fractional order inductive limit topology is given to the space of compactly supported Lipschitz γ functions $(0<\gamma<1)$. We shall still write $\mathscr{D}=\mathscr{D}(X, d)$ to denote this test functions space. And $\mathscr{D}^{\prime}=\mathscr{D}^{\prime}(X, d)$ its dual, the space of distributions. So, the extension of the definition of Calderón-Zygmund operators to this setting becomes natural.

Definition 1. Let (X, d, μ) be a normal metric measure space such that continuous functions are dense in $L^{1}(X, \mu)$. We say that a linear and continuous operator $T: \mathscr{D} \rightarrow \mathscr{D}^{\prime}$ is CalderónZygmund on (X, d, μ) if there exists $K \in L_{l o c}^{1}(X \times X \backslash \Delta)$, where Δ is the diagonal in $X \times X$, such that
(i) there exists $C_{0}>0$ with

$$
|K(x, y)| \leq \frac{C_{0}}{d(x, y)}, \quad x \neq y
$$

(ii) there exist $C_{1}>0$ and $\gamma>0$ such that
(iii. a) $\left|K\left(x^{\prime}, y\right)-K(x, y)\right| \leq C_{1} \frac{d\left(x^{\prime}, x\right)^{\gamma}}{d(x, y)^{1+\gamma}}$ when $2 d\left(x^{\prime}, x\right) \leq d(x, y)$;
(iiib) $\left|K\left(x, y^{\prime}\right)-K(x, y)\right| \leq C_{1} \frac{d\left(y, y^{\prime}\right)^{\gamma}}{d(x, y)^{1+\gamma}}$ when $2 d\left(y^{\prime}, y\right) \leq d(x, y)$;
(iii) T extends to $L^{2}(X, \mu)$ as a continuous linear operator;
(iv) for φ and $\psi \in \mathscr{D}$ with $d(\operatorname{supp} \varphi, \operatorname{supp} \psi)>0$ we have

$$
\langle T \varphi, \psi\rangle=\iint_{X \times X} K(x, y) \varphi(x) \psi(y) d(\mu \times \mu)(x, y) .
$$

Our first result shows that \mathcal{P}^{+}and \mathcal{P}^{-}are Calderón-Zygmund operators. In what follows we shall keep using P for P^{+}and \mathcal{P} for \mathcal{P}^{+}.

Theorem 2. There exists a metric δ on $\mathbb{R}^{+}=\{x: x \geq 0\}$ such that $\left(\mathbb{R}^{+}, \delta,|\cdot|\right)$ is a normal space where δ-continuous functions are dense in $L^{1}\left(\mathbb{R}^{+}, d x\right)$ and P can be written, for $x \neq y$ both in \mathbb{R}^{+}, as

$$
\begin{equation*}
P(x, y)=\frac{\Omega(x, y)}{\delta(x, y)} \tag{2.1}
\end{equation*}
$$

where Ω is bounded and δ-smooth. Moreover, \mathcal{P} is a Calderón-Zygmund operator on $\left(\mathbb{R}^{+}, \delta,|\cdot|\right)$.
Proof. For $x \neq y$ two points in \mathbb{R}^{+}, define $\delta(x, y)=\inf \{|I|: x, y \in I \in \mathcal{D}\}$. Define also $\delta(x, x)=0$ for every $x \in \mathbb{R}^{+}$. It is easy to see that δ is an ultra-metric on \mathbb{R}^{+}. This means that the triangle inequality improves to $\delta(x, z) \leq \sup \{\delta(x, y), \delta(y, z)\}$ for every x, y and $z \in \mathbb{R}^{+}$. Notice that $|x-y| \leq \delta(x, y)$ but they are certainly not equivalent. Also, for $x \in \mathbb{R}^{+}$and $r>0$ given, taking $m \in \mathbb{Z}$ such that $2^{-m}<r \leq 2^{-m+1}$ we see that $B_{\delta}(x, r)=\left\{y \in \mathbb{R}^{+}: \delta(x, y)<r\right\}=\{y \in$ $\left.\mathbb{R}^{+}: \delta(x, y) \leq 2^{-m}\right\}=I_{k(x)}^{m}$, where $k(x)$ is the only index $k \in \mathbb{N} \cup\{0\}$ such that $x \in I_{k}^{m}$. Hence the Lebesgue measure of $B_{\delta}(x, r)$ is that of the interval $I_{k(x)}^{m}$. Precisely, $\left|B_{\delta}(x, r)\right|=2^{-m}$. So that $\frac{r}{2} \leq\left|B_{\delta}(x, r)\right|<r$, for every $x \in \mathbb{R}^{+}$and every $r>0$. In terms of our above definitions $\left(\mathbb{R}^{+}, \delta,|\cdot|\right)$ is a normal metric space. The integrability properties of powers of δ resemble completely those, of the powers of x. In fact, for fixed $x \in \mathbb{R}^{+}$, the function of $y \in \mathbb{R}^{+}$given by $1 / \delta^{\alpha}(x, y)$ is integrable inside a δ-ball when $\alpha<1$. It is integrable outside a δ-ball when $\alpha>1$. In particular, $1 / \delta(x, y)$ is neither locally nor globally integrable on \mathbb{R}^{+}.

Notice now that real valued simple functions built on the dyadic intervals are continuous as functions defined on $\left(\mathbb{R}^{+}, \delta\right)$. In fact, for $I \in \mathcal{D}$ we have that $\left|\mathcal{X}_{I}(x)-\mathcal{X}_{I}(y)\right|$ equals zero for x and y in I or for x and y outside I. Assume that $x \in I$ and $y \notin I$, then $\delta(x, y) \geq 2|I|$. So that $\left|\mathcal{X}_{I}(x)-\mathcal{X}_{I}(y)\right| \leq \delta(x, y)(2|I|)^{-1}$ for every x and $y \in \mathbb{R}^{+}$. In other words, for $I \in \mathcal{D}, \mathcal{X}_{I}$ is Lipschitz with respect to δ with constant $(2|I|)^{-1}$. Hence δ-continuous functions are dense in $L^{1}\left(\mathbb{R}^{+}, d x\right)$.

The operator \mathcal{P} is actually defined as an operator in $L^{2}\left(\mathbb{R}^{+}, d x\right)$. For $f \in L^{2}\left(\mathbb{R}^{+}, d x\right)$,

$$
\mathcal{P}_{f}(x)=\sum_{I \in \mathcal{D}^{+}}\left\langle f, h_{I}\right\rangle\left(h_{I^{-}}(x)-h_{I^{+}}(x)\right)
$$

$$
=\sum_{I \in \mathcal{D}^{+}}\left\langle f, h_{I}\right\rangle h_{I^{-}}(x)-\sum_{I \in \mathcal{D}^{+}}\left\langle f, h_{I}\right\rangle h_{I^{+}}(x) .
$$

Hence $\|\mathscr{P} f\|_{2}^{2} \leq 2 \sum_{I \in \mathcal{D}^{+}}\left|\left\langle f, h_{I}\right\rangle\right|^{2}=2\|f\|_{2}^{2}$, which proves (iii) in Definition 1 . In particular, if φ is a simple function built on the dyadic intervals, we see that $\mathcal{P} \varphi \in L^{2}\left(\mathbb{R}^{+}, d x\right)$. So that when ψ is another simple function such that $\delta(\operatorname{supp} \varphi, \operatorname{supp} \psi)>0$, the two variables function $F(x, y)=\varphi(x) \psi(y)$ is simple in $\mathbb{R}^{+} \times \mathbb{R}^{+}$and for some $\varepsilon>0$, $\operatorname{supp} F \cap\{\delta<\varepsilon\}=\emptyset$, we have that, since only a finite subset of \mathcal{D}^{+}is actually involved,

$$
\begin{aligned}
\iint_{\mathbb{R}^{+} \times \mathbb{R}^{+}} & \left(\sum_{I \in \mathcal{D}^{+}} h_{I}(y)\left[h_{I^{-}}(x)-h_{I^{+}}(x)\right]\right) \varphi(y) \psi(x) d y d x \\
& =\int_{x \in \mathbb{R}^{+}}\left(\int_{y \in \mathbb{R}^{+}} P(x, y) \varphi(y)\right) \psi(x) d x \\
& =\int_{x \in \mathbb{R}^{+}} \mathcal{P} \varphi(x) \psi(x) d x \\
& =\langle\mathcal{P} \varphi, \psi\rangle .
\end{aligned}
$$

Hence $P(x, y)=\sum_{I \in \mathcal{D}^{+}} h_{I}(y)\left[h_{I^{-}}(x)-h_{I^{+}}(x)\right]$ is the kernel for \mathcal{P}. Let us now show that $P(x, y)=$ $\frac{\Omega(x, y)}{\delta(x, y)}$ for $x \neq y$. For $J \in \mathcal{D}^{+}$define

$$
\Omega_{J}(x, y)=\Theta_{J}^{1}(y) \Theta_{J}^{2}(x)
$$

where

$$
\begin{aligned}
& \Theta_{J}^{1}(y)=X_{J^{-}}(y)-\mathcal{X}_{J^{+}}(y) \\
& \Theta_{J}^{2}(x)=\left(X_{J^{+}}(x)+\mathcal{X}_{J^{+-}}(x)\right)-\left(\mathcal{X}_{J^{--}}(x)+\mathcal{X}_{J^{++}}(x)\right)
\end{aligned}
$$

Let us denote with $I(x, y)$ the smallest interval containing x and y, then we have

$$
P(x, y)=\sum_{I \in \mathcal{D}^{+}} h_{I}(y)\left[h_{l^{-}}(x)-h_{I^{+}}(x)\right]=\sqrt{2} \sum_{I \in \mathcal{D}^{+}, I \supseteq I(x, y)} \frac{1}{|I|} \Omega_{I}(x, y) .
$$

Since $|I(x, y)|=\delta(x, y)$ and in the last series we are adding on all the dyadic ancestors of $I(x, y)$, including $I(x, y)$ itself,

$$
P(x, y)=\frac{\sqrt{2}}{\delta(x, y)} \sum_{m=0}^{\infty} \frac{1}{2^{m}} \Omega_{I^{(m)}(x, y)}(x, y)=\frac{\Omega(x, y)}{\delta(x, y)}
$$

with $I^{(m)}(x, y)$ the m-th ancestor of $I(x, y)$ and

$$
\Omega(x, y)=\sqrt{2} \sum_{m=0}^{\infty} 2^{-m} \Omega_{I^{(m)}(x, y)}(x, y) .
$$

Hence (i) in Definition 1 holds with $C_{0}=2^{5 / 2}$.
Let us check (ii.a). Let x, y and $x^{\prime} \in \mathbb{R}^{+}$be such that $\delta\left(x, x^{\prime}\right) \leq \frac{1}{2} \delta(x, y)$. Let $I(x, y)$ be the smallest dyadic interval containing x and y. Then $|I(x, y)|=\delta(x, y)$. In a similar way $\left|I\left(x, x^{\prime}\right)\right|=\delta\left(x, x^{\prime}\right)$ and $\left|I\left(x^{\prime}, y\right)\right|=\delta\left(x^{\prime}, y\right)$. Since those three intervals are all dyadic and since $\left|I\left(x, x^{\prime}\right)\right| \leq \frac{1}{2}|I(x, y)|$, we necessarily must have that x^{\prime} belongs to the same half of $I(x, y)$ as x does. Hence $I\left(x^{\prime}, y\right)=I(x, y)$ and certainly also are the same all the ancestors $I^{(m)}\left(x^{\prime}, y\right)=$ $I^{(m)}(x, y)$. Now,

$$
\begin{aligned}
\frac{1}{\sqrt{2}}\left|P\left(x^{\prime}, y\right)-P(x, y)\right| & =\left|\frac{\Omega\left(x^{\prime}, y\right)}{\delta\left(x^{\prime}, y\right)}-\frac{\Omega(x, y)}{\delta(x, y)}\right| \\
& \leq \frac{\left|\Omega\left(x^{\prime}, y\right)-\Omega(x, y)\right|}{\delta(x, y)}+\left|\Omega\left(x^{\prime}, y\right)\right|\left|\frac{1}{\delta\left(x^{\prime}, y\right)}-\frac{1}{\delta(x, y)}\right|
\end{aligned}
$$

$$
=I+I I
$$

In order to estimate I, let us first explore the δ-regularity of each Ω_{J}. Let us prove that
(a) for fixed $y \in \mathbb{R}^{+}$we have that $\left|\Omega_{J}\left(x^{\prime}, y\right)-\Omega_{J}(x, y)\right| \leq \frac{8}{|J|} \delta\left(x, x^{\prime}\right)$; and
(b) for fixed $x \in \mathbb{R}^{+},\left|\Omega_{J}\left(x, y^{\prime}\right)-\Omega_{J}(x, y)\right| \leq \frac{2}{|J|} \delta\left(y, y^{\prime}\right)$.

Let us check (a). The regularity in the second variable is similar. Since the indicator function of a dyadic interval I is δ-Lipschitz with constant $\frac{1}{2 \mid I,}$, we have

$$
\begin{aligned}
\left|\Omega_{J}\left(x^{\prime}, y\right)-\Omega_{J}(x, y)\right|= & \left|\Theta_{J}^{1}(y)\left(\Theta_{J}^{2}\left(x^{\prime}\right)-\Theta_{J}^{2}(x)\right)\right| \\
= & \left|\Theta_{J}^{2}\left(x^{\prime}\right)-\Theta_{J}^{2}(x)\right| \\
\leq & \left|X_{J^{-+}}\left(x^{\prime}\right)-\mathcal{X}_{J^{-+}}(x)\right|+\left|X_{J^{+-}}\left(x^{\prime}\right)-\mathcal{X}_{J^{+-}}(x)\right|+ \\
& \quad+\left|X_{J^{--}}\left(x^{\prime}\right)-\mathcal{X}_{J^{--}}(x)\right|+\left|\mathcal{X}_{J^{++}}\left(x^{\prime}\right)-\mathcal{X}_{J^{++}}(x)\right| \\
\leq & 4 \frac{4}{2|J|} \delta\left(x, x^{\prime}\right) .
\end{aligned}
$$

Since the series defining Ω is absolutely convergent, from the above remarks, we have

$$
\begin{aligned}
I & \leq \frac{1}{\delta(x, y)} \sum_{m=0}^{\infty} 2^{-m}\left|\Omega_{I^{(m)}\left(x^{\prime}, y\right)}\left(x^{\prime}, y\right)-\Omega_{I^{(m)}(x, y)}(x, y)\right| \\
& =\frac{1}{\delta(x, y)} \sum_{m=0}^{\infty} 2^{-m}\left|\Omega_{I^{(m)}(x, y)}\left(x^{\prime}, y\right)-\Omega_{I^{(m)}(x, y)}(x, y)\right| \\
& \leq \frac{8}{\delta(x, y)} \sum_{m=0}^{\infty} 2^{-m} \frac{\delta\left(x, x^{\prime}\right)}{\left|I^{(m)}(x, y)\right|} \\
& =16 \frac{\delta\left(x, x^{\prime}\right)}{\delta^{2}(x, y)} .
\end{aligned}
$$

Let us estimate $I I$. Since $|\Omega|$ is bounded above by 2 and δ is a metric on \mathbb{R}^{+}, we have

$$
I I \leq 2 \frac{\left|\delta(x, y)-\delta\left(x^{\prime}, y\right)\right|}{\delta(x, y) \delta\left(x^{\prime}, y\right)} \leq 2 \frac{\delta\left(x, x^{\prime}\right)}{\delta(x, y) \delta\left(x^{\prime}, y\right)}
$$

as we already observed, under the current conditions, $\delta\left(x^{\prime}, y\right)=\delta(x, y)$. And we get the desired type estimate $I I \leq 2 \frac{\delta\left(x, x^{\prime}\right)}{\delta(x, y)}$. Hence $\left|P\left(x^{\prime}, y\right)-P(x, y)\right| \leq \sqrt{2} \frac{14}{3} \frac{\delta\left(x, x^{\prime}\right)}{\delta^{2}(x, y)}$ when $\delta\left(x, x^{\prime}\right) \leq \frac{1}{2} \delta(x, y)$.

The analogous procedure, using (b) and a similar geometric consideration for x, y, y^{\prime} with $\delta\left(y, y^{\prime}\right) \leq \frac{1}{2} \delta(x, y)$ gives

$$
\left|P\left(x, y^{\prime}\right)-P(x, y)\right| \leq \sqrt{2} 12 \frac{\delta\left(y, y^{\prime}\right)}{\delta^{2}(x, y)} .
$$

The next result contains some additional properties of P that shall be used in the next section in order to get weighted inequalities for the maximal operator of the truncations of \mathcal{P}.
As usual, for Calderón-Zygmund operators, the truncations of the kernel and the associated maximal operator play a central role in the analysis of the boundedness properties of the operator. For $0<\varepsilon<R<\infty$ set

$$
P_{\varepsilon, R}(x, y)=\mathcal{X}_{\{\varepsilon \leq \delta(x, y)<R\}} P(x, y)=\mathcal{X}_{\{\varepsilon \leq \delta(x, y)<R\}} \frac{\Omega(x, y)}{\delta(x, y)} .
$$

Sometimes, for example when P acts on $L^{p}\left(\mathbb{R}^{+}, d x\right)$ with $p>1$, only the local truncation about the diagonal is actually needed. For $\varepsilon>0, P_{\varepsilon, \infty}(x, y)=\mathcal{X}_{\{\delta(x, y) \geq \varepsilon\}}(x, y) P(x, y)$. Since the original form of Petermichl's kernel is provided in terms of the Haar-Fourier analysis, a scale
truncation is still possible and natural. For $l<m$ both in \mathbb{Z} we consider also the scale truncation of P between 2^{l} and 2^{m}. In other words,

$$
P^{l, m}(x, y)=\sum_{\left\{I \in \mathcal{D}^{+}: 2^{I} \leq I I \mid<2^{m}\right\}} h_{I}(y)\left[h_{I^{-}}(x)-h_{I^{+}}(x)\right] .
$$

Since δ takes only dyadic values, $P_{\varepsilon, R}$ can also be written as $P_{2^{\lambda}, 2^{\mu}}$ for λ and $\mu \in \mathbb{Z}$. For simplicity we shall write $P_{\lambda, \mu}$ to denote $P_{2^{\lambda}, 2^{\mu}}$. Hence in our notation the distinction between the two truncations is only positional: $P^{l, m}$ is scale truncation; $P_{l, m}$ is metric truncation. Let us compare these two kernels and the operators induced by them. The calligraphic versions $\mathcal{P}^{l, m}$ and $\mathscr{P}_{l, m}$ denote the operators induced by $P^{l, m}$ and $P_{l, m}$ respectively.

In the next statement we use two notations for the ancestrality of a dyadic interval. Given $I \in \mathcal{D}^{+}, I^{(n)}$ denotes, as before, the n-th ancestor of I. Instead $\widehat{I^{j}}$ denotes the only, if any, ancestor of I in the level \mathcal{D}^{j} of the dyadic interval. For instance if $I=\left[\frac{3}{2}, 2\right)$, then $I^{(1)}=[1,2)$, $I^{(2)}=[0,2), \widehat{I}^{0}=[1,2), \widehat{I^{3}}=[0,8)$.

Lemma 3. Let l and m in \mathbb{Z} with $l<m$. Then
(1)

$$
P^{l, m}(x, y)=P_{l, m}(x, y)+Q_{l, m}(x, y), \text { where }
$$

$$
Q_{l, m}(x, y)= \begin{cases}0, & \text { for } \delta(x, y) \geq 2^{m} ; \\ \sqrt{2} \sum_{j=l}^{m-1} 2^{-j} \Omega_{\widehat{T}(x, y)}(x, y), & \text { for } 0<\delta(x, y)<2^{l} ; \\ -\frac{\sqrt{2}}{\delta(x, y)} \sum_{n=\log _{2} \frac{2}{\delta(x, y)}}^{\infty} 2^{-n} \Omega_{I^{(n)}(x, y)}(x, y), & \text { when } 2^{l} \leq \delta(x, y)<2^{m}\end{cases}
$$

(2) $P^{l, m}$ belongs to $L^{1}\left(\mathbb{R}^{+}, d x\right)$ in each variable when the other variable remains fixed. Moreover

$$
\int_{y \in \mathbb{R}^{+}} P^{l, m}(x, y) d x=\int_{y \in \mathbb{R}^{+}} P^{l, m}(x, y) d y=0 .
$$

(3)

$$
\left|Q_{l, m}(x, y)\right| \leq 2 \sqrt{2}\left(2^{-l} \mathcal{X}_{\left\{\delta(x, y)<2^{\prime}\right\}}(x, y)+2^{-m} \mathcal{X}_{\left\{\delta(x, y)<2^{m}\right\}}\right) .
$$

(4) The inequality $\left|\int_{y \in \mathbb{R}^{+}} Q_{l, m}(x, y) d y\right| \leq 2 \sqrt{2}$ holds for every l, m in \mathbb{Z} and every $x \in \mathbb{R}^{+}$.
(5) The sequence $\int_{y \in \mathbb{R}^{+}} Q_{l, 0}(x, y)$ dy converges uniformly in $x \in \mathbb{R}^{+}$for l tends to $-\infty$.

Proof. Let us rewrite together the two truncations of P for the same values of l and m with $l<m$,

$$
\begin{aligned}
& P^{l, m}(x, y)=\sum_{I \in \mathcal{D}^{+}, 2^{l} \leq|I|<2^{m}} h_{I}(y)\left[h_{I^{-}}(x)-h_{I^{+}}(x)\right] ; \\
& P_{l, m}(x, y)=X_{\left\{2^{l} \leq \delta(x, y)<2^{m}\right\}}(x, y) \frac{\Omega(x, y)}{\delta(x, y)}
\end{aligned}
$$

with $\Omega(x, y)=\sqrt{2} \sum_{n=0}^{\infty} 2^{-n} \Omega_{I^{(n)}(x, y)}(x, y)$. Let us compute $P^{l, m}(x, y)$ for the three bands around the diagonal Δ of $\mathbb{R}^{+} \times \mathbb{R}^{+}$determined by 2^{l} and 2^{m}. First, assume that $0<\delta(x, y)<2^{l}$. Then

$$
P^{l, m}(x, y)=\sqrt{2} \sum_{\substack{I \in \mathcal{D}^{+} \\ l^{\prime} \leq I \mid<2^{m}}} \frac{1}{|I|} \Omega_{I}(x, y) .
$$

Since supp $\Omega_{I} \subset I \times I$, once (x, y) is given, with $\delta(x, y)<2^{l}$, the sum above is performed only on those dyadic intervals I for which $2^{l} \leq|I|<2^{m}$ that contain $I(x, y)$; the smallest dyadic interval
containing both x and y. Hence

$$
P^{l, m}(x, y)=\sqrt{2} \sum_{j=l}^{m-1} \frac{1}{2^{j}} \Omega_{\widehat{I}(x, y)}(x, y)=Q_{l, m}(x, y)=Q_{l, m}(x, y)+P_{l, m}(x, y)
$$

in the δ-strip $\left\{(x, y): \mathbb{R}^{+} \times \mathbb{R}^{+}: \delta(x, y)<2^{l}\right\}$. Second, assume that $\delta(x, y) \geq 2^{m}$. Then no dyadic interval I containing both x and y has a measure less than 2^{m}. So that $P^{l, m}$ vanishes when $\delta(x, y) \geq 2^{m}$ and again $P^{l, m}=Q_{l, m}+P_{l, m}$. The third and last case to be considered is when $2^{l} \leq \delta(x, y)<2^{m}$. Again the non-vanishing condition for $\Omega_{I}(x, y)$ requires $I \supseteq I(x, y)$, hence

$$
P^{l, m}(x, y)=\sqrt{2} \sum_{\substack{I \in \mathcal{D} \\ I I \mid 2^{m} \\ I \supseteq I(x, y)}} \frac{1}{|I|} \Omega_{I}(x, y) .
$$

Since $I \supseteq I(x, y)$ then, in the above sum, I has to be an ancestor of $I(x, y)$. Hence $|I|=$ $2^{n}|I(x, y)|=2^{n} \delta(x, y)$ for some $n=0,1,2, \ldots$ The upper restriction on the measure of $I,|I|<2^{m}$, provides an upper bound for n. In fact, since $2^{m}>|I|=2^{n} \delta(x, y), n \leq\left(\log _{2} 2^{m} \delta^{-1}(x, y)\right)-1$. Notice that $2^{m} \delta^{-1}(x, y)$ is an integral power of 2 , so that $\log _{2} 2^{m} \delta^{-1}(x, y) \in \mathbb{Z}$. Hence

$$
\begin{aligned}
& P^{l, m}=\frac{\sqrt{2}}{\delta(x, y)} \sum_{n=0}^{\log _{2} \frac{2^{m}}{\delta(x, y)}}-1 \\
& \frac{1}{2^{n}} \Omega_{I^{(n)}(x, y)}(x, y) \\
&=\frac{\sqrt{2}}{\delta(x, y)}\left(\Omega(x, y)-\sum_{n=\log _{2} \frac{2}{}^{m}(x, y)} \frac{1}{2^{n}} \Omega_{I^{(n)}(x, y)}(x, y)\right) \\
&=P_{l, m}(x, y)+Q_{l, m}(x, y),
\end{aligned}
$$

and (1) is proved.
In order to prove (2), notice that for x fixed $P^{l, m}(x, \cdot)$ is a finite linear combination of Haar functions in the variable y. Hence $P^{l, m}(x, \cdot)$ is an $L^{1}\left(\mathbb{R}^{+}, d x\right)$ function and its integral in y vanishes, since each Haar function has mean value zero. An analogous argument hold for y fixed and $P^{l, m}(\cdot, y)$.

Let us get the bound in (3). We only have to check it in the bands $\left\{\delta(x, y)<2^{l}\right\}$ and $\left\{2^{l} \leq\right.$ $\left.\delta(x, y)<2^{m}\right\}$. Let us first take $\delta(x, y)<2^{l}$. Then

$$
\left|Q_{l, m}(x, y)\right|=\sqrt{2}\left|\sum_{j=l}^{m-1} 2^{-j} \Omega_{\widehat{T}(x, y)}(x, y)\right| \leq \sqrt{2} \sum_{j=l}^{m} 2^{-j} \leq 2 \sqrt{2} 2^{-l},
$$

as desired. Assume now that $2^{l} \leq \delta(x, y)<2^{m}$. Then

$$
\left|Q_{l, m}(x, y)\right| \leq \sqrt{2} \frac{1}{\delta(x, y)} \sum_{n=\log _{2} \frac{2^{m}}{\delta(x, y)}}^{\infty} 2^{-n}=2 \sqrt{2} \frac{1}{\delta(x, y)} \frac{\delta(x, y)}{2^{m}}=2 \sqrt{2} 2^{-m}
$$

For the proof of (4) notice that from (3) we have that, for fixed x and fixed l and m, as a function of $y, Q_{l, m}(x, y)$, and hence $P_{l, m}(x, y)$, is integrable. Then

$$
\left|\int_{y \in \mathbb{R}^{+}} Q_{l, m}(x, y) d y\right| \leq 2 \sqrt{2} \int_{y \in \mathbb{R}^{+}}\left\{2^{-l} \mathcal{X}_{\left\{\delta(x, y)<2^{2}\right\}}(x, y)+2^{-m} \mathcal{X}_{\left\{\delta(x, y)<2^{m}\right\}}(x, y)\right\} d y=2 \sqrt{2} .
$$

Let us prove (5). From the expression in (1) for $Q_{l, 0}$, we have

$$
\begin{aligned}
& \int_{y \in \mathbb{R}^{+}} Q_{l, 0}(x, y) d y= \\
& \sqrt{2} \int_{B_{\delta}\left(x, 2^{l}\right)}\left(\sum_{j=l}^{-1} 2^{-j} \Omega_{\widehat{T}(x, y)}(x, y)\right) d y+ \\
& -\sqrt{2} \int_{B_{\delta}(x, 1) \backslash\left(B_{\delta}\left(x, 2^{l}\right)\right.} \frac{1}{\delta(x, y)}\left(\sum_{n=\log _{2} \frac{1}{\delta(x, y)}}^{\infty} \frac{1}{2^{n}} \Omega_{I^{(n)}(x, y)}(x, y)\right) d y \\
& =\sqrt{2} \sum_{j=l}^{-1} 2^{-j} \int_{B_{\delta}\left(x, 2^{l}\right)} \Omega_{\widehat{T}(x, y)}(x, y) d y-\sqrt{2} \sum_{i=l}^{-1} 2^{-i} \int_{\left\{y: \delta(x, y)=2^{i}\right\}}\left(\sum_{n=-i}^{\infty} \frac{1}{2^{n}} \Omega_{I^{(n)}(x, y)}(x, y)\right) d y \\
& =\sqrt{2}\left(\sum_{j=l}^{-1} 2^{-j} 2^{l} \widehat{\sigma}_{l, j}(x)-\frac{1}{2} \sum_{i=l}^{-1} 2^{-i} \sum_{n=-i}^{\infty} 2^{-n} 2^{i} \sigma_{n, i}(x)\right),
\end{aligned}
$$

where $\widehat{\sigma}_{l, j}(x)=f_{B_{\delta}\left(x, 2^{2}\right)} \Omega_{\widehat{T}(x, y)}(x, y) d y$ and $\sigma_{n, i}(x)=f_{\left\{(x, y)=z^{i}\right\}} \Omega_{I^{(n)}(x, y)}(x, y) d y$ and $f_{E} f$ denotes the mean value of f on E. So that

$$
\int_{y \in \mathbb{R}^{+}} Q_{l, 0}(x, y) d y=\sqrt{2} \sum_{i=0}^{-l-1} 2^{-i} \widehat{\sigma}_{l, i+l}(x)-\frac{\sqrt{2}}{2}\left(\sum_{n=1}^{-l} 2^{-n} \sum_{i=-n}^{-1} \sigma_{n, i}(x)+\sum_{n=-l+1}^{\infty} 2^{-n} \sum_{i=l}^{-1} \sigma_{n, i}(x)\right) .
$$

Since in the definitions of $\widehat{\sigma}$ and σ we are taking mean values of functions with L^{∞}-norm equal to 1 , we certainly have that $|\widehat{\sigma}| \leq 1$ and $|\sigma| \leq 1$. Hence $\left|\sum_{i=-n}^{-1} \sigma_{n, i}(x)\right| \leq n$, and $\left|\sum_{i=l}^{-1} \sigma_{n, i}(x)\right| \leq$ $|l|=-l$. So the first term in the expression for the integral is dominated by the geometric series $\sum_{i \geq 0} 2^{-i}$, the second term is dominated by the convergent series $\sum_{n=1}^{\infty} n 2^{-n}$ and the third term is bounded by $|l| \sum_{n=-l+1}^{\infty} 2^{-n}$ which tends to zero as $|l|$ tends to infinity.

Let us notice that (4) and (5) in the above lemma hold also integrating in the variable x.
One more remark is in order; P is dyadicaly homogeneous of degree -1 and Ω of degree zero. In other words $P\left(2^{j} x, 2^{j} y\right)=2^{-j} P(x, y)$ and $\Omega\left(2^{j} x, 2^{j} y\right)=\Omega(x, y)$.

From the above lemma, we conclude that with

$$
\begin{aligned}
& \mathcal{P}^{*} f(x)=\sup _{\substack{l<m \\
l, m \in \mathbb{Z}}}\left|\int_{\mathbb{R}^{+}} P^{l, m}(x, y) f(y) d y\right|, \text { and } \\
& \mathcal{P}_{*} f(x)=\sup _{\substack{l<m \\
l, m \in \mathbb{Z}}}\left|\mathcal{P}_{l, m}(x, y)\right|
\end{aligned}
$$

we have

$$
\begin{align*}
\mathcal{P}_{*} f(x) & \leq 4 \sqrt{2} M_{d y} f(x)+\mathcal{P}^{*} f(x), \text { and } \\
\mathcal{P}^{*} f(x) & \leq 4 \sqrt{2} M_{d y} f(x)+\mathcal{P}_{*} f(x), \tag{2.2}
\end{align*}
$$

where

$$
M_{d y} f(x)=\sup _{x \in I \in \mathcal{D}^{+}} \frac{1}{|I|} \int_{I}|f(y)| d y
$$

the dyadic maximal operator.

3. Weighted norm inequalities for the Petermichl's operator

We shall see in this section that \mathcal{P} satisfies all the conditions in [1] in order to show the $L^{p}\left(\mathbb{R}^{+}, w d x\right)$ boundedness for $w \in A_{p}\left(\mathbb{R}^{+}, \delta, d x\right)$ which coincides with the dyadic Muckenhoupt
weights in \mathbb{R}^{+}. For the sake of completeness we proceed to provide the statement of the main result in [1] on normal spaces of homogeneous type for general Calderón-Zygmund operators.

Let X be a set. A quasi-distance on X is a nonnegative and symmetric function d on $X \times X$, vanishing only on the diagonal of $X \times X$ such that for some $\kappa>0$ the inequality $d(x, z) \leq$ $\kappa(d(x, y)+d(y, z))$ holds for every x, y and $z \in X$. The main results on the structure of quasimetric spaces are contained in [6]. The Borel sets in X are those in the σ-algebra generated by the topology induced in X by the neighborhoods defined by the d-balls. If the d-balls are Borel sets and μ is a positive Borel measure such that for some constant A the inequalities

$$
0<\mu(B(x, 2 r)) \leq A \mu(B(x, r))<\infty
$$

hold for every $x \in X$ and every $r>0$, where $B(x, r)=\{y \in X: d(x, y)<r\}$, we say the (X, d, μ) is a space of homogeneous type.
Let (X, d, μ) be a space of homogeneous type such that continuous functions are dense in $L^{1}(X, \mu)$. Let $1<p<\infty$, a nonnegative and locally integrable function w defined on X is said to satisfy the Muckenhoupt A_{p} condition, or $w \in A_{p}(X, d, \mu)$, if there exists a constant C such that

$$
\left(f_{B} w d \mu\right)\left(f_{B} w^{-\frac{1}{p-1}} d \mu\right)^{p-1} \leq C
$$

for every d-ball B. As before, $f_{E} w d \mu=\mu(E)^{-1} \int_{E} w(x) d \mu(x)$. A weight w is said to belong to A_{∞} if there exist two constants C and $\eta>0$ such that the inequality

$$
\frac{w(E)}{w(B)} \leq C\left(\frac{\mu(E)}{\mu(B)}\right)^{\eta}
$$

holds for every ball B and every measurable subset E of B. The Hardy-Littlewood maximal function in this setting is, naturally, given by

$$
M f(x)=\sup _{x \in B} \frac{1}{\mu(B)} \int_{B}|f| d \mu .
$$

The results in [7] show the reverse Hölder inequality for A_{p} weights and, as a consequence, the boundedness of the Hardy-Littlewood maximal in $L^{p}(X, w d \mu)$ when $w \in A_{p}$.
Theorem 4 ([7], [3]). Let (X, d, μ) be a space of homogeneous type and $1<p<\infty$. Then $w \in A_{p}$ if and only if for some constant C we have

$$
\int_{X}(M f(x))^{p} w(x) d x \leq C \int_{X}|f(x)|^{p} w(x) d \mu(x)
$$

for every measurable function f.
For singular integrals, the detection of the correct integral singularity of the space is attained after normalization of the space $(X, d, \mu)([6])$. We shall assume here that (X, d, μ) is a normal space in the sense that there exist two constants $0<\alpha \leq \beta<\infty$ such that $\alpha r \leq \mu(B(x, r)) \leq \beta r$. Let us only recall two particular instances of this situation. The first, $X=\mathbb{R}^{n}, d(x, y)=|x-y|^{n}$ and μ Lebesgue measure. The second, $X=\mathbb{R}^{+}, d(x, y)=\delta(x, y)=|I(x, y)|$, where $I(x, y)$ is the smallest dyadic interval containing x and y. In this case μ is one dimensional Lebesgue measure.

The next statement collects the boundedness results for singular integrals in [1].
Theorem 5 ([1]). Let (X, d, μ) be a normal space such that continuous functions are dense in L^{1}. Assume that for every $r>0$ and every $x_{0} \in X$ we have that $\mu\left(B(x, r) \Delta B\left(x_{0}, r\right)\right) \rightarrow 0$ when $d\left(x, x_{0}\right) \rightarrow 0$, where $E \Delta F$ denotes the symmetric difference of E and F. Let T be a CalderónZygmund operator on (X, d, μ) in the sense of Definition 1 in $\$ 2$ Let $K(x, y)$ be the kernel of T. Assume that the kernel K satisfies also,
(iii) for every $R>r>0$, we have
(iii.a) $\left|\int_{r \leq d(x, y)<R} K(x, y) d \mu(y)\right|$ is bounded uniformly in r, R and x.

Moreover, $\int_{r \leq d(x, y)<1} K(x, y) d \mu(y)$ converges uniformly in x when r tends to zero.
(iii.b) $\left|\int_{r \leq d(x, y)<R} K(x, y) d \mu(x)\right|$ is bounded uniformly in r, R and y.

Moreover, $\int_{r \leq d(x, y)<1} K(x, y) d \mu(x)$ converges uniformly in y when r tends to zero.
Then, with $T_{R, r} f(x)=\int_{y \in X} K_{R, r}(x, y) f(y) d \mu(y), K_{R, r}=\mathcal{X}_{r \leq d<R} K$ and $T_{*} f(x)=\sup _{\varepsilon>0}\left|T_{\infty, \varepsilon} f(x)\right|$, we have
(1) for $1<p<\infty$ there exists the $L^{p}(X, \mu)$ limit $T f$ of $T_{R, r} f$ when $R \rightarrow+\infty$ and $r \rightarrow 0$;
(2) for $f \in L^{p}(X, \mu)$ and $1<p<\infty$ we have Cotlar's inequality

$$
T_{*} f(x) \leq C M(T f(x))+C M f(x) ;
$$

(3) the maximal operator T_{*} is of weak type (1,1). In other words, for some constant $C>0$ we have

$$
\mu\left(\left\{T_{*} f>\lambda\right\}\right) \leq \frac{C}{\lambda}\|f\|_{L^{\prime}} ;
$$

(4) for $w \in A_{\infty}(X, \mu)$

$$
\int_{X}\left[T_{*} f(x)\right]^{p} w(x) d \mu(x) \leq C \int_{X}[M f(x)]^{p} w(x) d \mu(x)
$$

(5) for $w \in A_{p}(X, \mu)$ we have

$$
\int_{X}\left[T_{*} f(x)\right]^{p} w(x) d \mu(x) \leq C \int_{X}|f(x)|^{p} w(x) d \mu(x) .
$$

As a consequence of the above result and of the results in Section 2, we get the weighted boundedness of the maximal operators associated to Petermichl's kernel. We say that w defined on \mathbb{R}^{+}is in $A_{p}^{d y}\left(\mathbb{R}^{+}, d x\right)$ if the inequality $\left(f_{I} w d \mu\right)\left(f_{I} w^{-1 /(p-1)} d \mu\right)^{p-1} \leq C$ holds for every $I \in \mathcal{D}^{+}$.
Theorem 6. For $1<p<\infty$ and $w \in A_{p}^{d y}\left(\mathbb{R}^{+}, d x\right)$ we have that \mathcal{P}_{*} is bounded in $L^{p}\left(\mathbb{R}^{+}, w d x\right)$.
Proof. Let us check that we are in the hypothesis of Theorem5. As we already proved $X=\mathbb{R}^{+}$, $d=\delta$ and $\mu=$ Lebesgue measure, provide a normal space in which δ-Lipschitz functions are dense in $L^{1}\left(\mathbb{R}^{+}, d x\right)$. In order to prove that $\left|B_{\delta}(x, r) \Delta B_{\delta}\left(x_{0}, r\right)\right|$ tends to zero when x tends to x_{0} for fixed positive r, just notice that when $\delta\left(x, x_{0}\right)<r / 2, B_{\delta}(x, r)$ and $B_{\delta}\left(x_{0}, r\right)$ coincide. From Theorem 2 we have the kernel $P(x, y)$ satisfies (i) and (ii) in the Definition of CalderónZygmund operator. On the other hand, since $P^{l, m}=P_{l, m}+Q_{l, m}$ from (2), (4) and (5) in Lemma 3, we get (iii) in Theorem 5 . Then we can apply Theorem 5 to obtain the boundedness properties of \mathcal{P}_{*} in particular the weighted boundedness contained in (5). It only remains to observe that $A_{p}\left(\mathbb{R}^{+}, \delta, d x\right)=A_{p}^{d y}\left(\mathbb{R}^{+}, d x\right)$
Theorem 7. Let $1<p<\infty$. Then \mathcal{P}^{*} is bounded in $L^{p}\left(\mathbb{R}^{+}, w d x\right)$ if and only if $w \in A_{p}^{d y}\left(\mathbb{R}^{+}, d x\right)$.
Proof. The sufficiency of $w \in A_{p}^{d y}\left(\mathbb{R}^{+}, d x\right)$ for the boundedness of \mathcal{P}^{*} in $L^{p}\left(\mathbb{R}^{+}, w d x\right), 1<$ $p<\infty$, follows from (2.2), Theorem 6 and Theorem 4, since $M f$ in $\left(\mathbb{R}^{+}, \delta, d x\right)$ is the dyadic Hardy-Littlewood maximal function $M_{d y} f$. Let us finally show that $A_{p}^{d y}\left(\mathbb{R}^{+}, d x\right)$ is necessary for the $L^{p}\left(\mathbb{R}^{+}, w d x\right)$. Assume that w is a weight in X such that \mathcal{P}^{*} is bounded as an operator on $L^{p}(X, w d \mu)$. Since $\mathcal{P}^{*} f(x) \geq\left|\sum_{I \in \mathcal{D},|I|=\left|I_{0}\right|}\left\langle f, h_{I}\right\rangle\left(h_{I^{-}}(x)-h_{I^{+}}(x)\right)\right|$ for any $I_{0} \in \mathcal{D}$, taking $f=h_{I_{0}} w^{-1 /(p-1)}$ we get

$$
\mathcal{P}^{*} f(x) \geq\left\langle w^{-\frac{1}{p-1}} h_{I_{0}}, h_{I_{0}}\right\rangle\left|h_{I_{0}^{-}}(x)-h_{I_{0}^{+}}(x)\right|=\frac{1}{\left|I_{0}\right|}\left(\int_{I_{0}} w^{-\frac{1}{p-1}} d \mu\right) \frac{\sqrt{2}}{\sqrt{\left|I_{0}\right|}} X_{I_{0}}(x)
$$

Hence, from the inequality $\int_{X}\left(\mathcal{P}^{*} f\right)^{p} w d \mu \leq C \int_{X}|f|^{p} w d \mu$ that we are assuming, taking $f=$ $h_{I_{0}} w^{-1 /(p-1)}$ we get

$$
\frac{2^{p / 2}}{\left|I_{0}\right|^{3 p / 2}}\left(\int_{I_{0}} w^{-\frac{1}{p-1}} d \mu\right)^{p} w\left(I_{0}\right) \leq C \frac{1}{\left|I_{0}\right|^{p / 2}} \int_{I_{0}} w^{-\frac{1}{p-1}} w d \mu
$$

which implies that $w \in A_{p}^{d y}\left(\mathbb{R}^{+}, d \mu\right)$.
As a final remark, let us observe that from the representation of the Hilbert kernel given in [9] and our result, we can get the well known weighted norm inequalities for the Hilbert transform.

References

[1] Hugo Aimar, Integrales singulares y aproximaciones de la identidad en espacios de tipo homogéneo, Doctoral thesis, Universidad Nacional de Buenos Aires, PEMA-INTEC. Available in http://www.imal.santafeconicet.gov.ar/TesisIMAL/tesisAimarH.pdf 1983.
[2] , Singular integrals and approximate identities on spaces of homogeneous type, Trans. Amer. Math. Soc. 292 (1985), no. 1, 135-153. MR 805957
[3] Hugo Aimar and Roberto A. Macías, Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type, Proc. Amer. Math. Soc. 91 (1984), no. 2, 213-216. MR 740173
[4] Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971, Étude de certaines intégrales singulières. MR 0499948
[5] Roberto A. Macías and Carlos Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 271-309. MR 546296
[6] __ Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257-270. MR 546295
[7] Roberto A. Macías and Carlos A. Segovia, A well-behaved quasi-distance for spaces of homogeneous type, Trabajos de Matemática, Serie I, vol. 32, IAM-CONICET, 1981.
[8] Yves Meyer and Ronald Coifman, Wavelets, Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge, 1997, Calderón-Zygmund and multilinear operators, Translated from the 1990 and 1991 French originals by David Salinger. MR 1456993
[9] Stefanie Petermichl, Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000), no. 6, 455-460. MR 1756958

Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQ.
CCT CONICET Santa Fe, Predio "Alberto Cassano", Colectora Ruta Nac. 168 km 0, Paraje El Pozo, S3007ABA Santa Fe, Argentina.

E-mail address: haimar@santafe-conicet.gov.ar
E-mail address: ivanagomez@santafe-conicet.gov.ar

[^0]: 2010 Mathematics Subject Classification. Primary 42B20, 42B25; Secondary 42C40.
 This work was supported by the CONICET (grant PIP-112-2011010-0877, 2012); ANPCyT-MINCyT (grants PICT-2568,2012; PICT-3631,2015); and UNL (grant CAID-50120110100371LI,2013).

