IMAL preprints

http://www.imal.santafe-conicet.gov.ar/publicaciones/preprints/index.php

ON THE CALDERÓN-ZYGMUND STRUCTURE OF PETERMICHL'S KERNEL. WEIGHTED INEQUALITIES By

Hugo Aimar and Ivana Gómez

IMAL PREPRINT # 2017-0041

Publication date: October 2, 2017

Editorial: Instituto de Matemática Aplicada del Litoral IMAL (CCT CONICET Santa Fe – UNL) http://www.imal.santafe-conicet.gov.ar

Director de Publicaciones: Dr. Rubén Spies E-mail: rspies@santafe-conicet.gov.ar

ON THE CALDERÓN-ZYGMUND STRUCTURE OF PETERMICHL'S KERNEL. WEIGHTED INEQUALITIES

HUGO AIMAR AND IVANA GÓMEZ

ABSTRACT. We show that Petermichl's dyadic operator \mathcal{P} (S. Petermichl (2000), *Dyadic shifts* and a logarithmic estimate for Hankel operators with matrix symbol) is a Calderón-Zygmund type operator on an adequate metric normal space of homogeneous type. As a consequence of a general result on spaces of homogeneous type, we get weighted boundedness of the maximal operator \mathcal{P}^* of truncations of the singular integral. We show that dyadic A_p weights are the good weights for the maximal operator \mathcal{P}^* of the scale truncations of \mathcal{P} .

1. Introduction

In [9], Stefanie Petermichl proves a remarkable identity that provides the Hilbert kernel $\frac{1}{x-y}$ in $\mathbb R$ as a mean value of dilations and translations of a basic kernel defined in terms of dyadic families on $\mathbb R$. The basic kernel for a fixed dyadic system $\mathcal D$ is described in terms of Haar wavelets. Assume that $\mathcal D$ is the standard dyadic family on $\mathbb R$, i.e. $\mathcal D = \cup_{j\in\mathbb Z} \mathcal D^j$ with $\mathcal D^j = \{I_k^j: k \in \mathbb Z\}$ and $I_k^j = [\frac{k}{2^j}, \frac{k+1}{2^j}]$. Let $\mathscr H$ be the standard Haar system built on the dyadic intervals in $\mathcal D$. There is a natural bijection between $\mathscr H$ and $\mathcal D$. We shall use $\mathcal D$ as the index set and we shall write h_I to denote the function $h_I(x) = |I|^{-1/2} (X_{I^-}(x) - X_{I^+}(x))$ where I^- and I^+ are the respective left and right halves of I, X_E is, as usual, the indicator function of E and E denote the Lebesgue measure of the measurable set E. With the above notation, the basic Petermichl's operator on $L^2(\mathbb R)$ is given by

$$\mathcal{P}f(x) = \sum_{I \in \mathcal{D}} \langle f, h_I \rangle (h_{I^-}(x) - h_{I^+}(x)), \tag{1.1}$$

where, as usual, $\langle f, h_I \rangle = \int_{\mathbb{R}} f(y)h_I(y)dy$. Hence, at least formally, the operator \mathcal{P} is defined by the nonconvolution nonsymmetric kernel

$$P(x, y) = \sum_{h \in \mathcal{D}} h_I(y)(h_{I^-}(x) - h_{I^+}(x))$$

= $P^+(x, y) + P^-(x, y)$;

with

$$P^{+}(x,y) = \sum_{I \in \mathcal{D}^{+}} h_{I}(y)(h_{I^{-}}(x) - h_{I^{+}}(x))$$
(1.2)

and $\mathcal{D}^+ = \{I_k^j \in \mathcal{D} : k \ge 0\}.$

Let us observe that for $x \ge 0$, $y \ge 0$ and $x \ne y$ the series $\sum_{I \in \mathcal{D}^+} h_I(y)[h_{I^-}(x) - h_{I^+}(x)]$ is absolute convergent. In fact

$$\sum_{I \in \mathcal{D}^+} |h_I(y)| |h_{I^-}(x) - h_{I^+}(x)| = \sum_{I \in \mathcal{D}^+, I \supseteq I(x, y)} \frac{1}{\sqrt{|I|}} |h_{I^-}(x) - h_{I^+}(x)|$$

²⁰¹⁰ Mathematics Subject Classification. Primary 42B20, 42B25; Secondary 42C40.

This work was supported by the CONICET (grant PIP-112-2011010-0877, 2012); ANPCyT-MINCyT (grants PICT-2568,2012; PICT-3631,2015); and UNL (grant CAID-50120110100371LI,2013).

$$\leq \sum_{I \in \mathcal{D}^+, I \supset I(x,y)} \frac{2\sqrt{2}}{|I|} = \frac{4\sqrt{2}}{|I(x,y)|}$$

where I(x, y) is the smallest dyadic interval in \mathbb{R} containing x and y.

The aim of this paper is twofold. First we show that \mathcal{P}^+ (and \mathcal{P}^-) the operator induced by the kernel P^+ (resp. P^-) is of Calderón–Zygmund type in the normal space of homogeneous type \mathbb{R}^+ (resp. \mathbb{R}^-) with the dyadic ultrametric $\delta(x,y)=\inf\{|I|: x,y\in I \text{ and } I\in\mathcal{D}\}$ and Lebesgue measure. Second, by an application of the known weighted norm inequalities for singular integrals in normal spaces of homogeneous type, we show that the operator $\mathcal{P}^*f(x)=\sup_{\{l,m\in\mathbb{Z}\}}\left|\sum_{\{I\in\mathcal{D}^+,2^l\leq |I|<2^m\}}\langle f,h_I\rangle(h_{I^-}(x)-h_{I^+}(x))\right|$ is bounded on $L^p(\mathbb{R}^+,wdx)$ if and only if $w\in A_p^{dy}(\mathbb{R}^+)$ when $1< p<\infty$.

In §2 we prove that \mathcal{P}^+ is of Calderón–Zygmund in an adequate space of homogeneous type. In Section 3 we give the characterization of the dyadic weights as those for which the maximal operator of the scale truncations of \mathcal{P}^+ is bounded in $L^p(\mathbb{R}^+, wdx)$ for 1 .

2. Petermichl's operator as a Calderón-Zygmund operator

Following [8], a linear and continuous operator $T: \mathcal{D}(\mathbb{R}^n) \to \mathcal{D}'(\mathbb{R}^n)$, with \mathcal{D} and \mathcal{D}' the test functions and the distributions on \mathbb{R}^n , is a Calderón-Zygmund operator if there exists $K \in L^1_{loc}(\mathbb{R}^n \times \mathbb{R}^n \setminus \Delta)$ where Δ is the diagonal of $\mathbb{R}^n \times \mathbb{R}^n$ such that

(1) there exists $C_0 > 0$ with

$$|K(x,y)| \le \frac{C_0}{|x-y|^n}, \quad x \ne y;$$

(2) there exist C_1 and $\gamma > 0$ such that

(2.a)
$$|K(x', y) - K(x, y)| \le C_1 \frac{|x' - x|^{\gamma}}{|x - y|^{n+\gamma}}$$
 when $2|x' - x| \le |x - y|$;
(2.b) $|K(x, y') - K(x, y)| \le C_1 \frac{|y' - y|^{\gamma}}{|x - y|^{n+\gamma}}$ when $2|y' - y| \le |x - y|$;

- (3) T extends to $L^2(\mathbb{R}^n)$ as a continuous linear operator;
- (4) for φ and $\psi \in \mathcal{D}(\mathbb{R}^n)$ with supp $\varphi \cap \text{supp } \psi = \emptyset$ we have

$$\langle T\varphi, \psi \rangle = \iint_{\mathbb{R}^n \times \mathbb{R}^n} K(x, y) \varphi(x) \psi(y) dx dy.$$

With a little effort the notions of Calderón-Zygmund operator and Calderón-Zygmund kernel K (i.e. satisfying (1) and (2)) can be extended to normal metric spaces of homogeneous type. Even when the formulation can be stated in quasi-metric spaces for our application it shall be enough the following context. Let (X, d) be a metric space. If there exists a Borel measure μ on X such that for some constants $0 < \alpha \le \beta < \infty$ such that the inequalities $\alpha r \le \mu(B(x, r)) \le \beta r$ hold for every r > 0 and every $x \in X$, we shall say that (X, d, μ) is a normal space. As usual $B(x, r) = \{y \in X : d(x, y) < r\}$. In particular, (X, d, μ) is a space of homogeneous type in the sense of [4], [6], [5], [2], and many problems of harmonic analysis find there a natural place to be solved.

In this setting in [6] a fractional order inductive limit topology is given to the space of compactly supported Lipschitz γ functions (0 < γ < 1). We shall still write $\mathcal{D} = \mathcal{D}(X,d)$ to denote this test functions space. And $\mathcal{D}' = \mathcal{D}'(X,d)$ its dual, the space of distributions. So, the extension of the definition of Calderón-Zygmund operators to this setting becomes natural.

Definition 1. Let (X, d, μ) be a normal metric measure space such that continuous functions are dense in $L^1(X, \mu)$. We say that a linear and continuous operator $T: \mathcal{D} \to \mathcal{D}'$ is Calderón-Zygmund on (X, d, μ) if there exists $K \in L^1_{loc}(X \times X \setminus \Delta)$, where Δ is the diagonal in $X \times X$, such that

(i) there exists $C_0 > 0$ with

$$|K(x,y)| \le \frac{C_0}{d(x,y)}, \quad x \ne y;$$

- (ii) there exist $C_1 > 0$ and $\gamma > 0$ such that
 - (ii.a) $|K(x', y) K(x, y)| \le C_1 \frac{d(x', x)^{\gamma}}{d(x, y)^{1+\gamma}}$ when $2d(x', x) \le d(x, y)$;

(ii.b)
$$|K(x, y') - K(x, y)| \le C_1 \frac{d(y, y')^{\gamma}}{d(x, y)^{1+\gamma}}$$
 when $2d(y', y) \le d(x, y)$;

- (iii) T extends to $L^2(X, \mu)$ as a continuous linear operator;
- (iv) for φ and $\psi \in \mathcal{D}$ with $d(\text{supp }\varphi, \text{supp }\psi) > 0$ we have

$$\langle T\varphi, \psi \rangle = \iint_{X \times X} K(x, y) \varphi(x) \psi(y) d(\mu \times \mu)(x, y).$$

Our first result shows that \mathcal{P}^+ and \mathcal{P}^- are Calderón-Zygmund operators. In what follows we shall keep using P for P^+ and \mathcal{P} for \mathcal{P}^+ .

Theorem 2. There exists a metric δ on $\mathbb{R}^+ = \{x : x \ge 0\}$ such that $(\mathbb{R}^+, \delta, |\cdot|)$ is a normal space where δ -continuous functions are dense in $L^1(\mathbb{R}^+, dx)$ and P can be written, for $x \ne y$ both in \mathbb{R}^+ , as

$$P(x,y) = \frac{\Omega(x,y)}{\delta(x,y)},$$
(2.1)

where Ω is bounded and δ -smooth. Moreover, \mathcal{P} is a Calderón-Zygmund operator on $(\mathbb{R}^+, \delta, |\cdot|)$.

Proof. For $x \neq y$ two points in \mathbb{R}^+ , define $\delta(x,y) = \inf\{|I| : x,y \in I \in \mathcal{D}\}$. Define also $\delta(x,x) = 0$ for every $x \in \mathbb{R}^+$. It is easy to see that δ is an ultra-metric on \mathbb{R}^+ . This means that the triangle inequality improves to $\delta(x,z) \leq \sup\{\delta(x,y),\delta(y,z)\}$ for every x,y and $z \in \mathbb{R}^+$. Notice that $|x-y| \leq \delta(x,y)$ but they are certainly not equivalent. Also, for $x \in \mathbb{R}^+$ and r > 0 given, taking $m \in \mathbb{Z}$ such that $2^{-m} < r \leq 2^{-m+1}$ we see that $B_\delta(x,r) = \{y \in \mathbb{R}^+ : \delta(x,y) < r\} = \{y \in \mathbb{R}^+ : \delta(x,y) \leq 2^{-m}\} = I_{k(x)}^m$, where k(x) is the only index $k \in \mathbb{N} \cup \{0\}$ such that $x \in I_k^m$. Hence the Lebesgue measure of $B_\delta(x,r)$ is that of the interval $I_{k(x)}^m$. Precisely, $|B_\delta(x,r)| = 2^{-m}$. So that $\frac{r}{2} \leq |B_\delta(x,r)| < r$, for every $x \in \mathbb{R}^+$ and every r > 0. In terms of our above definitions (\mathbb{R}^+ , δ, $|\cdot|$) is a normal metric space. The integrability properties of powers of δ resemble completely those, of the powers of x. In fact, for fixed $x \in \mathbb{R}^+$, the function of $y \in \mathbb{R}^+$ given by $1/\delta^\alpha(x,y)$ is integrable inside a δ -ball when $\alpha < 1$. It is integrable outside a δ -ball when $\alpha > 1$. In particular, $1/\delta(x,y)$ is neither locally nor globally integrable on \mathbb{R}^+ .

Notice now that real valued simple functions built on the dyadic intervals are continuous as functions defined on (\mathbb{R}^+, δ) . In fact, for $I \in \mathcal{D}$ we have that $|\mathcal{X}_I(x) - \mathcal{X}_I(y)|$ equals zero for x and y in I or for x and y outside I. Assume that $x \in I$ and $y \notin I$, then $\delta(x, y) \geq 2|I|$. So that $|\mathcal{X}_I(x) - \mathcal{X}_I(y)| \leq \delta(x, y)(2|I|)^{-1}$ for every x and $y \in \mathbb{R}^+$. In other words, for $I \in \mathcal{D}$, \mathcal{X}_I is Lipschitz with respect to δ with constant $(2|I|)^{-1}$. Hence δ -continuous functions are dense in $L^1(\mathbb{R}^+, dx)$.

The operator \mathcal{P} is actually defined as an operator in $L^2(\mathbb{R}^+, dx)$. For $f \in L^2(\mathbb{R}^+, dx)$,

$$\mathcal{P}f(x) = \sum_{I \in \mathcal{D}^+} \langle f, h_I \rangle (h_{I^-}(x) - h_{I^+}(x))$$

$$= \sum_{I \in \mathcal{D}^+} \langle f, h_I \rangle h_{I^-}(x) - \sum_{I \in \mathcal{D}^+} \langle f, h_I \rangle h_{I^+}(x).$$

Hence $\|\mathcal{P}f\|_2^2 \leq 2\sum_{I\in\mathcal{D}^+} |\langle f,h_I\rangle|^2 = 2\|f\|_2^2$, which proves (iii) in Definition 1. In particular, if φ is a simple function built on the dyadic intervals, we see that $\mathcal{P}\varphi \in L^2(\mathbb{R}^+, dx)$. So that when ψ is another simple function such that $\delta(\operatorname{supp}\varphi, \operatorname{supp}\psi) > 0$, the two variables function $F(x,y) = \varphi(x)\psi(y)$ is simple in $\mathbb{R}^+ \times \mathbb{R}^+$ and for some $\varepsilon > 0$, $\operatorname{supp} F \cap \{\delta < \varepsilon\} = \emptyset$, we have that, since only a finite subset of \mathcal{D}^+ is actually involved,

$$\iint_{\mathbb{R}^{+}\times\mathbb{R}^{+}} \left(\sum_{I\in\mathcal{D}^{+}} h_{I}(y) [h_{I^{-}}(x) - h_{I^{+}}(x)] \right) \varphi(y) \psi(x) dy dx$$

$$= \int_{x\in\mathbb{R}^{+}} \left(\int_{y\in\mathbb{R}^{+}} P(x, y) \varphi(y) \right) \psi(x) dx$$

$$= \int_{x\in\mathbb{R}^{+}} \mathcal{P}\varphi(x) \psi(x) dx$$

$$= \langle \mathcal{P}\varphi, \psi \rangle.$$

Hence $P(x, y) = \sum_{I \in \mathcal{D}^+} h_I(y) [h_{I^-}(x) - h_{I^+}(x)]$ is the kernel for \mathcal{P} . Let us now show that $P(x, y) = \frac{\Omega(x, y)}{\delta(x, y)}$ for $x \neq y$. For $J \in \mathcal{D}^+$ define

$$\Omega_J(x, y) = \Theta_J^1(y)\Theta_J^2(x)$$

where

$$\Theta_{J}^{1}(y) = X_{J^{-}}(y) - X_{J^{+}}(y)
\Theta_{J}^{2}(x) = (X_{J^{-+}}(x) + X_{J^{+-}}(x)) - (X_{J^{--}}(x) + X_{J^{++}}(x)).$$

Let us denote with I(x, y) the smallest interval containing x and y, then we have

$$P(x,y) = \sum_{I \in \mathcal{D}^+} h_I(y) [h_{I^-}(x) - h_{I^+}(x)] = \sqrt{2} \sum_{I \in \mathcal{D}^+, I \supseteq I(x,y)} \frac{1}{|I|} \Omega_I(x,y).$$

Since $|I(x, y)| = \delta(x, y)$ and in the last series we are adding on all the dyadic ancestors of I(x, y), including I(x, y) itself,

$$P(x,y) = \frac{\sqrt{2}}{\delta(x,y)} \sum_{m=0}^{\infty} \frac{1}{2^m} \Omega_{I^{(m)}(x,y)}(x,y) = \frac{\Omega(x,y)}{\delta(x,y)}$$

with $I^{(m)}(x, y)$ the m-th ancestor of I(x, y) and

$$\Omega(x, y) = \sqrt{2} \sum_{m=0}^{\infty} 2^{-m} \Omega_{I^{(m)}(x, y)}(x, y).$$

Hence (i) in Definition 1 holds with $C_0 = 2^{5/2}$.

Let us check (ii.a). Let x, y and $x' \in \mathbb{R}^+$ be such that $\delta(x, x') \leq \frac{1}{2}\delta(x, y)$. Let I(x, y) be the smallest dyadic interval containing x and y. Then $|I(x, y)| = \delta(x, y)$. In a similar way $|I(x, x')| = \delta(x, x')$ and $|I(x', y)| = \delta(x', y)$. Since those three intervals are all dyadic and since $|I(x, x')| \leq \frac{1}{2} |I(x, y)|$, we necessarily must have that x' belongs to the same half of I(x, y) as x does. Hence I(x', y) = I(x, y) and certainly also are the same all the ancestors $I^{(m)}(x', y) = I^{(m)}(x, y)$. Now,

$$\begin{split} \frac{1}{\sqrt{2}} \left| P(x', y) - P(x, y) \right| &= \left| \frac{\Omega(x', y)}{\delta(x', y)} - \frac{\Omega(x, y)}{\delta(x, y)} \right| \\ &\leq \frac{\left| \Omega(x', y) - \Omega(x, y) \right|}{\delta(x, y)} + \left| \Omega(x', y) \right| \left| \frac{1}{\delta(x', y)} - \frac{1}{\delta(x, y)} \right| \end{split}$$

Publication date: October 2, 2017

$$= I + II.$$

In order to estimate I, let us first explore the δ -regularity of each Ω_I . Let us prove that

- (a) for fixed $y \in \mathbb{R}^+$ we have that $|\Omega_J(x', y) \Omega_J(x, y)| \le \frac{8}{|J|} \delta(x, x')$; and
- (b) for fixed $x \in \mathbb{R}^+$, $|\Omega_J(x, y') \Omega_J(x, y)| \le \frac{2}{|J|} \delta(y, y')$.

Let us check (a). The regularity in the second variable is similar. Since the indicator function of a dyadic interval I is δ -Lipschitz with constant $\frac{1}{2|I|}$, we have

$$\begin{split} |\Omega_{J}(x',y) - \Omega_{J}(x,y)| &= \left|\Theta_{J}^{1}(y)(\Theta_{J}^{2}(x') - \Theta_{J}^{2}(x))\right| \\ &= \left|\Theta_{J}^{2}(x') - \Theta_{J}^{2}(x)\right| \\ &\leq |X_{J^{-+}}(x') - X_{J^{-+}}(x)| + |X_{J^{+-}}(x') - X_{J^{+-}}(x)| + \\ &+ |X_{J^{--}}(x') - X_{J^{--}}(x)| + |X_{J^{++}}(x') - X_{J^{++}}(x)| \\ &\leq 4 \frac{4}{2|J|} \delta(x,x'). \end{split}$$

Since the series defining Ω is absolutely convergent, from the above remarks, we have

$$I \leq \frac{1}{\delta(x,y)} \sum_{m=0}^{\infty} 2^{-m} \left| \Omega_{I^{(m)}(x',y)}(x',y) - \Omega_{I^{(m)}(x,y)}(x,y) \right|$$

$$= \frac{1}{\delta(x,y)} \sum_{m=0}^{\infty} 2^{-m} \left| \Omega_{I^{(m)}(x,y)}(x',y) - \Omega_{I^{(m)}(x,y)}(x,y) \right|$$

$$\leq \frac{8}{\delta(x,y)} \sum_{m=0}^{\infty} 2^{-m} \frac{\delta(x,x')}{\left| I^{(m)}(x,y) \right|}$$

$$= 16 \frac{\delta(x,x')}{\delta^{2}(x,y)}.$$

Let us estimate II. Since $|\Omega|$ is bounded above by 2 and δ is a metric on \mathbb{R}^+ , we have

$$II \le 2 \frac{|\delta(x, y) - \delta(x', y)|}{\delta(x, y)\delta(x', y)} \le 2 \frac{\delta(x, x')}{\delta(x, y)\delta(x', y)}$$

as we already observed, under the current conditions, $\delta(x',y) = \delta(x,y)$. And we get the desired type estimate $II \leq 2\frac{\delta(x,x')}{\delta(x,y)}$. Hence $|P(x',y) - P(x,y)| \leq \sqrt{2} \frac{14}{3} \frac{\delta(x,x')}{\delta^2(x,y)}$ when $\delta(x,x') \leq \frac{1}{2} \delta(x,y)$.

The analogous procedure, using (b) and a similar geometric consideration for x, y, y' with $\delta(y, y') \le \frac{1}{2}\delta(x, y)$ gives

$$|P(x,y') - P(x,y)| \le \sqrt{2} 12 \frac{\delta(y,y')}{\delta^2(x,y)}.$$

The next result contains some additional properties of P that shall be used in the next section in order to get weighted inequalities for the maximal operator of the truncations of \mathcal{P} .

As usual, for Calderón-Zygmund operators, the truncations of the kernel and the associated maximal operator play a central role in the analysis of the boundedness properties of the operator. For $0 < \varepsilon < R < \infty$ set

$$P_{\varepsilon,R}(x,y) = X_{\{\varepsilon \le \delta(x,y) < R\}} P(x,y) = X_{\{\varepsilon \le \delta(x,y) < R\}} \frac{\Omega(x,y)}{\delta(x,y)}.$$

Sometimes, for example when P acts on $L^p(\mathbb{R}^+, dx)$ with p > 1, only the local truncation about the diagonal is actually needed. For $\varepsilon > 0$, $P_{\varepsilon,\infty}(x,y) = X_{\{\delta(x,y) \ge \varepsilon\}}(x,y)P(x,y)$. Since the original form of Petermichl's kernel is provided in terms of the Haar–Fourier analysis, a scale

truncation is still possible and natural. For l < m both in \mathbb{Z} we consider also the scale truncation of P between 2^l and 2^m . In other words,

$$P^{l,m}(x,y) = \sum_{\{I \in \mathcal{D}^+: 2^l \le |I| < 2^m\}} h_I(y) [h_{I^-}(x) - h_{I^+}(x)].$$

Since δ takes only dyadic values, $P_{\varepsilon,R}$ can also be written as $P_{2^{\lambda},2^{\mu}}$ for λ and $\mu \in \mathbb{Z}$. For simplicity we shall write $P_{\lambda,\mu}$ to denote $P_{2^{\lambda},2^{\mu}}$. Hence in our notation the distinction between the two truncations is only positional: $P^{l,m}$ is scale truncation; $P_{l,m}$ is metric truncation. Let us compare these two kernels and the operators induced by them. The calligraphic versions $\mathcal{P}^{l,m}$ and $\mathcal{P}_{l,m}$ denote the operators induced by $P^{l,m}$ and $P_{l,m}$ respectively.

In the next statement we use two notations for the ancestrality of a dyadic interval. Given $I \in \mathcal{D}^+$, $I^{(n)}$ denotes, as before, the *n*-th ancestor of *I*. Instead \widehat{I}^j denotes the only, if any, ancestor of I in the level \mathcal{D}^j of the dyadic interval. For instance if $I = [\frac{3}{2}, 2)$, then $I^{(1)} = [1, 2)$, $I^{(2)} = [0, 2), \widehat{I}^0 = [1, 2), \widehat{I}^3 = [0, 8).$

Lemma 3. Let l and m in \mathbb{Z} with l < m. Then

(1) $P^{l,m}(x, y) = P_{l,m}(x, y) + Q_{l,m}(x, y)$, where

$$Q_{l,m}(x,y) = P_{l,m}(x,y) + Q_{l,m}(x,y), where$$

$$Q_{l,m}(x,y) = \begin{cases} 0, & \text{for } \delta(x,y) \geq 2^m; \\ \sqrt{2} \sum\limits_{j=l}^{m-1} 2^{-j} \Omega_{\widehat{I^j}(x,y)}(x,y), & \text{for } 0 < \delta(x,y) < 2^l; \\ -\frac{\sqrt{2}}{\delta(x,y)} \sum\limits_{n=\log_2 \frac{2}{\delta(x,y)}}^{\infty} 2^{-n} \Omega_{\widehat{I^{(n)}}(x,y)}(x,y), & \text{when } 2^l \leq \delta(x,y) < 2^m. \end{cases}$$

$$P^{l,m} \text{ belongs to } L^1(\mathbb{R}^+, dx) \text{ in each variable when the other variable remains } P^{l,m}(x,y) = P_{l,m}(x,y) + Q_{l,m}(x,y) + Q_{l,m}(x,$$

(2) $P^{l,m}$ belongs to $L^1(\mathbb{R}^+, dx)$ in each variable when the other variable remains fixed. Moreover

$$\int_{y\in\mathbb{R}^+} P^{l,m}(x,y)dx = \int_{y\in\mathbb{R}^+} P^{l,m}(x,y)dy = 0.$$

- $(3) \left| Q_{l,m}(x,y) \right| \le 2 \sqrt{2} \left(2^{-l} X_{\{\delta(x,y) < 2^l\}}(x,y) + 2^{-m} X_{\{\delta(x,y) < 2^m\}} \right).$
- (4) The inequality $\left| \int_{y \in \mathbb{R}^+} Q_{l,m}(x,y) dy \right| \le 2\sqrt{2}$ holds for every l,m in \mathbb{Z} and every $x \in \mathbb{R}^+$.
- (5) The sequence $\int_{y\in\mathbb{R}^+} Q_{l,0}(x,y)dy$ converges uniformly in $x\in\mathbb{R}^+$ for l tends to $-\infty$.

Proof. Let us rewrite together the two truncations of P for the same values of l and m with l < m,

$$P^{l,m}(x,y) = \sum_{I \in \mathcal{D}^+, 2^l \le |I| < 2^m} h_I(y) [h_{I^-}(x) - h_{I^+}(x)];$$

$$P_{l,m}(x,y) = X_{\{2^l \le \delta(x,y) < 2^m\}}(x,y) \frac{\Omega(x,y)}{\delta(x,y)}$$

with $\Omega(x,y) = \sqrt{2} \sum_{n=0}^{\infty} 2^{-n} \Omega_{I^{(n)}(x,y)}(x,y)$. Let us compute $P^{l,m}(x,y)$ for the three bands around the diagonal Δ of $\mathbb{R}^+ \times \mathbb{R}^+$ determined by 2^l and 2^m . First, assume that $0 < \delta(x, y) < 2^l$. Then

$$P^{l,m}(x,y) = \sqrt{2} \sum_{\substack{I \in \mathcal{D}^+ \\ 2^{l} < |I| < 2^m}} \frac{1}{|I|} \Omega_I(x,y).$$

Since supp $\Omega_I \subset I \times I$, once (x, y) is given, with $\delta(x, y) < 2^l$, the sum above is performed only on those dyadic intervals I for which $2^{l} \le |I| < 2^{m}$ that contain I(x, y); the smallest dyadic interval

containing both x and y. Hence

$$P^{l,m}(x,y) = \sqrt{2} \sum_{i=l}^{m-1} \frac{1}{2^{i}} \Omega_{\widehat{I}^{j}(x,y)}(x,y) = Q_{l,m}(x,y) = Q_{l,m}(x,y) + P_{l,m}(x,y)$$

in the δ -strip $\{(x,y): \mathbb{R}^+ \times \mathbb{R}^+ : \delta(x,y) < 2^l\}$. Second, assume that $\delta(x,y) \geq 2^m$. Then no dyadic interval I containing both x and y has a measure less than 2^m . So that $P^{l,m}$ vanishes when $\delta(x,y) \geq 2^m$ and again $P^{l,m} = Q_{l,m} + P_{l,m}$. The third and last case to be considered is when $2^l \leq \delta(x,y) < 2^m$. Again the non-vanishing condition for $\Omega_I(x,y)$ requires $I \supseteq I(x,y)$, hence

$$P^{l,m}(x,y) = \sqrt{2} \sum_{\substack{I \in \mathcal{D} \\ |I| < 2^m \\ I \supset I(x,y)}} \frac{1}{|I|} \Omega_I(x,y).$$

Since $I \supseteq I(x, y)$ then, in the above sum, I has to be an ancestor of I(x, y). Hence $|I| = 2^n |I(x, y)| = 2^n \delta(x, y)$ for some n = 0, 1, 2, ... The upper restriction on the measure of I, $|I| < 2^m$, provides an upper bound for n. In fact, since $2^m > |I| = 2^n \delta(x, y)$, $n \le (\log_2 2^m \delta^{-1}(x, y)) - 1$. Notice that $2^m \delta^{-1}(x, y)$ is an integral power of 2, so that $\log_2 2^m \delta^{-1}(x, y) \in \mathbb{Z}$. Hence

$$P^{l,m} = \frac{\sqrt{2}}{\delta(x,y)} \sum_{n=0}^{\log_2 \frac{2^m}{\delta(x,y)} - 1} \frac{1}{2^n} \Omega_{I^{(n)}(x,y)}(x,y)$$

$$= \frac{\sqrt{2}}{\delta(x,y)} \left(\Omega(x,y) - \sum_{n=\log_2 \frac{2^m}{\delta(x,y)}}^{\infty} \frac{1}{2^n} \Omega_{I^{(n)}(x,y)}(x,y) \right)$$

$$= P_{l,m}(x,y) + Q_{l,m}(x,y),$$

and (1) is proved.

In order to prove (2), notice that for x fixed $P^{l,m}(x,\cdot)$ is a finite linear combination of Haar functions in the variable y. Hence $P^{l,m}(x,\cdot)$ is an $L^1(\mathbb{R}^+,dx)$ function and its integral in y vanishes, since each Haar function has mean value zero. An analogous argument hold for y fixed and $P^{l,m}(\cdot,y)$.

Let us get the bound in (3). We only have to check it in the bands $\{\delta(x,y) < 2^l\}$ and $\{2^l \le \delta(x,y) < 2^m\}$. Let us first take $\delta(x,y) < 2^l$. Then

$$|Q_{l,m}(x,y)| = \sqrt{2} \left| \sum_{j=l}^{m-1} 2^{-j} \Omega_{\widehat{I}^{j}(x,y)}(x,y) \right| \le \sqrt{2} \sum_{j=l}^{m} 2^{-j} \le 2\sqrt{2}2^{-l},$$

as desired. Assume now that $2^l \le \delta(x, y) < 2^m$. Then

$$|Q_{l,m}(x,y)| \le \sqrt{2} \frac{1}{\delta(x,y)} \sum_{n=\log_2 \frac{2^m}{\delta(x,y)}}^{\infty} 2^{-n} = 2\sqrt{2} \frac{1}{\delta(x,y)} \frac{\delta(x,y)}{2^m} = 2\sqrt{2} 2^{-m}.$$

For the proof of (4) notice that from (3) we have that, for fixed x and fixed l and m, as a function of y, $Q_{l,m}(x,y)$, and hence $P_{l,m}(x,y)$, is integrable. Then

$$\left| \int_{y \in \mathbb{R}^+} Q_{l,m}(x,y) dy \right| \leq 2 \sqrt{2} \int_{y \in \mathbb{R}^+} \left\{ 2^{-l} X_{\left\{ \delta(x,y) < 2^l \right\}}(x,y) + 2^{-m} X_{\left\{ \delta(x,y) < 2^m \right\}}(x,y) \right\} dy = 2 \sqrt{2}.$$

Let us prove (5). From the expression in (1) for $Q_{l,0}$, we have

$$\int_{y \in \mathbb{R}^{+}} Q_{l,0}(x,y) dy = \sqrt{2} \int_{B_{\delta}(x,2^{l})} \left(\sum_{j=l}^{-1} 2^{-j} \Omega_{\widehat{I}^{j}(x,y)}(x,y) \right) dy +$$

$$- \sqrt{2} \int_{B_{\delta}(x,1) \setminus B_{\delta}(x,2^{l})} \frac{1}{\delta(x,y)} \left(\sum_{n=\log_{2} \frac{1}{\delta(x,y)}}^{\infty} \frac{1}{2^{n}} \Omega_{I^{(n)}(x,y)}(x,y) \right) dy$$

$$= \sqrt{2} \sum_{j=l}^{-1} 2^{-j} \int_{B_{\delta}(x,2^{l})} \Omega_{\widehat{I}^{j}(x,y)}(x,y) dy - \sqrt{2} \sum_{i=l}^{-1} 2^{-i} \int_{\{y:\delta(x,y)=2^{i}\}} \left(\sum_{n=-i}^{\infty} \frac{1}{2^{n}} \Omega_{I^{(n)}(x,y)}(x,y) \right) dy$$

$$= \sqrt{2} \left(\sum_{j=l}^{-1} 2^{-j} 2^{l} \widehat{\sigma}_{l,j}(x) - \frac{1}{2} \sum_{i=l}^{-1} 2^{-i} \sum_{n=-i}^{\infty} 2^{-n} 2^{i} \sigma_{n,i}(x) \right),$$

where $\widehat{\sigma}_{l,j}(x) = \oint_{B_{\delta}(x,2^l)} \Omega_{\widehat{I}^j(x,y)}(x,y) dy$ and $\sigma_{n,i}(x) = \oint_{\{\delta(x,y)=2^i\}} \Omega_{I^{(n)}(x,y)}(x,y) dy$ and $\oint_E f$ denotes the mean value of f on E. So that

$$\int_{y \in \mathbb{R}^+} Q_{l,0}(x,y) dy = \sqrt{2} \sum_{i=0}^{-l-1} 2^{-i} \widehat{\sigma}_{l,i+l}(x) - \frac{\sqrt{2}}{2} \left(\sum_{n=1}^{-l} 2^{-n} \sum_{i=-n}^{-1} \sigma_{n,i}(x) + \sum_{n=-l+1}^{\infty} 2^{-n} \sum_{i=l}^{-1} \sigma_{n,i}(x) \right).$$

Since in the definitions of $\widehat{\sigma}$ and σ we are taking mean values of functions with L^{∞} -norm equal to 1, we certainly have that $|\widehat{\sigma}| \le 1$ and $|\sigma| \le 1$. Hence $\left|\sum_{i=-n}^{-1} \sigma_{n,i}(x)\right| \le n$, and $\left|\sum_{i=l}^{-1} \sigma_{n,i}(x)\right| \le |l| = -l$. So the first term in the expression for the integral is dominated by the geometric series $\sum_{i\ge 0} 2^{-i}$, the second term is dominated by the convergent series $\sum_{n=1}^{\infty} n2^{-n}$ and the third term is bounded by $|l| \sum_{n=-l+1}^{\infty} 2^{-n}$ which tends to zero as |l| tends to infinity.

Let us notice that (4) and (5) in the above lemma hold also integrating in the variable x.

One more remark is in order; P is dyadically homogeneous of degree -1 and Ω of degree zero. In other words $P(2^j x, 2^j y) = 2^{-j} P(x, y)$ and $\Omega(2^j x, 2^j y) = \Omega(x, y)$.

From the above lemma, we conclude that with

$$\mathcal{P}^* f(x) = \sup_{\substack{l < m \\ l, m \in \mathbb{Z}}} \left| \int_{\mathbb{R}^+} P^{l,m}(x, y) f(y) dy \right|, \text{ and}$$

$$\mathcal{P}_* f(x) = \sup_{\substack{l < m \\ l, m \in \mathbb{Z}}} \left| \mathcal{P}_{l,m}(x, y) \right|$$

we have

$$\mathcal{P}_* f(x) \le 4\sqrt{2}M_{dy}f(x) + \mathcal{P}^* f(x), \text{ and}$$

 $\mathcal{P}^* f(x) \le 4\sqrt{2}M_{dy}f(x) + \mathcal{P}_* f(x),$ (2.2)

where

$$M_{dy}f(x) = \sup_{x \in I \in \mathcal{D}^+} \frac{1}{|I|} \int_I |f(y)| \, dy$$

the dyadic maximal operator.

3. Weighted norm inequalities for the Petermichl's operator

We shall see in this section that \mathcal{P} satisfies all the conditions in [1] in order to show the $L^p(\mathbb{R}^+, wdx)$ boundedness for $w \in A_p(\mathbb{R}^+, \delta, dx)$ which coincides with the dyadic Muckenhoupt

weights in \mathbb{R}^+ . For the sake of completeness we proceed to provide the statement of the main result in [1] on normal spaces of homogeneous type for general Calderón-Zygmund operators.

Let X be a set. A quasi-distance on X is a nonnegative and symmetric function d on $X \times X$, vanishing only on the diagonal of $X \times X$ such that for some $\kappa > 0$ the inequality $d(x, z) \le \kappa(d(x, y) + d(y, z))$ holds for every x, y and $z \in X$. The main results on the structure of quasi-metric spaces are contained in [6]. The Borel sets in X are those in the σ -algebra generated by the topology induced in X by the neighborhoods defined by the d-balls. If the d-balls are Borel sets and μ is a positive Borel measure such that for some constant A the inequalities

$$0 < \mu(B(x, 2r)) \le A\mu(B(x, r)) < \infty$$

hold for every $x \in X$ and every r > 0, where $B(x, r) = \{y \in X : d(x, y) < r\}$, we say the (X, d, μ) is a space of homogeneous type.

Let (X, d, μ) be a space of homogeneous type such that continuous functions are dense in $L^1(X, \mu)$. Let 1 , a nonnegative and locally integrable function <math>w defined on X is said to satisfy the Muckenhoupt A_p condition, or $w \in A_p(X, d, \mu)$, if there exists a constant C such that

$$\left(\int_{B} w d\mu\right) \left(\int_{B} w^{-\frac{1}{p-1}} d\mu\right)^{p-1} \le C$$

for every *d*-ball *B*. As before, $\oint_E w d\mu = \mu(E)^{-1} \oint_E w(x) d\mu(x)$. A weight *w* is said to belong to A_{∞} if there exist two constants *C* and $\eta > 0$ such that the inequality

$$\frac{w(E)}{w(B)} \le C \left(\frac{\mu(E)}{\mu(B)}\right)^{\eta}$$

holds for every ball B and every measurable subset E of B. The Hardy-Littlewood maximal function in this setting is, naturally, given by

$$Mf(x) = \sup_{x \in B} \frac{1}{\mu(B)} \int_{B} |f| \, d\mu.$$

The results in [7] show the reverse Hölder inequality for A_p weights and, as a consequence, the boundedness of the Hardy–Littlewood maximal in $L^p(X, wd\mu)$ when $w \in A_p$.

Theorem 4 ([7], [3]). Let (X, d, μ) be a space of homogeneous type and $1 . Then <math>w \in A_p$ if and only if for some constant C we have

$$\int_X (Mf(x))^p w(x) dx \le C \int_X |f(x)|^p w(x) d\mu(x)$$

for every measurable function f.

For singular integrals, the detection of the correct integral singularity of the space is attained after normalization of the space (X, d, μ) ([6]). We shall assume here that (X, d, μ) is a normal space in the sense that there exist two constants $0 < \alpha \le \beta < \infty$ such that $\alpha r \le \mu(B(x, r)) \le \beta r$. Let us only recall two particular instances of this situation. The first, $X = \mathbb{R}^n$, $d(x, y) = |x - y|^n$ and μ Lebesgue measure. The second, $X = \mathbb{R}^+$, $d(x, y) = \delta(x, y) = |I(x, y)|$, where I(x, y) is the smallest dyadic interval containing x and y. In this case μ is one dimensional Lebesgue measure.

The next statement collects the boundedness results for singular integrals in [1].

Theorem 5 ([1]). Let (X, d, μ) be a normal space such that continuous functions are dense in L^1 . Assume that for every r > 0 and every $x_0 \in X$ we have that $\mu(B(x, r) \triangle B(x_0, r)) \rightarrow 0$ when $d(x, x_0) \rightarrow 0$, where $E \triangle F$ denotes the symmetric difference of E and E. Let E be a Calderón-Zygmund operator on E0, E1 in the sense of Definition 1 in §2. Let E1 be the kernel of E2. Assume that the kernel E3 satisfies also,

- (iii) for every R > r > 0, we have
 - (iii.a) $\left| \int_{r \leq d(x,y) < R} K(x,y) d\mu(y) \right|$ is bounded uniformly in r, R and x. Moreover, $\int_{r \leq d(x,y) < 1} K(x,y) d\mu(y)$ converges uniformly in x when r tends to zero.
 - (iii.b) $\left| \int_{r \leq d(x,y) < R} K(x,y) d\mu(x) \right|$ is bounded uniformly in r, R and y. Moreover, $\int_{r \leq d(x,y) < 1} K(x,y) d\mu(x)$ converges uniformly in y when r tends to zero.

Then, with $T_{R,r}f(x) = \int_{y \in X} K_{R,r}(x,y) f(y) d\mu(y)$, $K_{R,r} = \mathcal{X}_{r \leq d < R} K$ and $T_*f(x) = \sup_{\varepsilon > 0} |T_{\infty,\varepsilon}f(x)|$, we have

- (1) for $1 there exists the <math>L^p(X, \mu)$ limit Tf of $T_{R,r}f$ when $R \to +\infty$ and $r \to 0$;
- (2) for $f \in L^p(X, \mu)$ and 1 we have Cotlar's inequality

$$T_* f(x) \le CM(T f(x)) + CM f(x);$$

(3) the maximal operator T_* is of weak type (1,1). In other words, for some constant C > 0 we have

$$\mu\left(\left\{T_{*}f>\lambda\right\}\right)\leq\frac{C}{\lambda}\left\|f\right\|_{L^{1}};$$

(4) for $w \in A_{\infty}(X, \mu)$

$$\int_X [T_* f(x)]^p w(x) d\mu(x) \le C \int_X [M f(x)]^p w(x) d\mu(x);$$

(5) for $w \in A_p(X, \mu)$ we have

$$\int_X [T_*f(x)]^p w(x) d\mu(x) \le C \int_X |f(x)|^p w(x) d\mu(x).$$

As a consequence of the above result and of the results in Section 2, we get the weighted boundedness of the maximal operators associated to Petermichl's kernel. We say that w defined on \mathbb{R}^+ is in $A_p^{dy}(\mathbb{R}^+, dx)$ if the inequality $(\int_I w d\mu) (\int_I w^{-1/(p-1)} d\mu)^{p-1} \leq C$ holds for every $I \in \mathcal{D}^+$.

Theorem 6. For $1 and <math>w \in A_p^{dy}(\mathbb{R}^+, dx)$ we have that \mathcal{P}_* is bounded in $L^p(\mathbb{R}^+, wdx)$.

Proof. Let us check that we are in the hypothesis of Theorem 5. As we already proved $X = \mathbb{R}^+$, $d = \delta$ and μ =Lebesgue measure, provide a normal space in which δ-Lipschitz functions are dense in $L^1(\mathbb{R}^+, dx)$. In order to prove that $|B_\delta(x, r)| \Delta B_\delta(x_0, r)|$ tends to zero when x tends to x_0 for fixed positive r, just notice that when $\delta(x, x_0) < r/2$, $B_\delta(x, r)$ and $B_\delta(x_0, r)$ coincide. From Theorem 2 we have the kernel P(x, y) satisfies (i) and (ii) in the Definition of Calderón–Zygmund operator. On the other hand, since $P^{l,m} = P_{l,m} + Q_{l,m}$ from (2), (4) and (5) in Lemma 3, we get (iii) in Theorem 5. Then we can apply Theorem 5 to obtain the boundedness properties of \mathcal{P}_* in particular the weighted boundedness contained in (5). It only remains to observe that $A_p(\mathbb{R}^+, \delta, dx) = A_p^{dy}(\mathbb{R}^+, dx)$

Theorem 7. Let $1 . Then <math>\mathcal{P}^*$ is bounded in $L^p(\mathbb{R}^+, wdx)$ if and only if $w \in A_p^{dy}(\mathbb{R}^+, dx)$.

Proof. The sufficiency of $w \in A_p^{dy}(\mathbb{R}^+, dx)$ for the boundedness of \mathcal{P}^* in $L^p(\mathbb{R}^+, wdx)$, 1 , follows from (2.2), Theorem 6 and Theorem 4, since <math>Mf in $(\mathbb{R}^+, \delta, dx)$ is the dyadic Hardy-Littlewood maximal function $M_{dy}f$. Let us finally show that $A_p^{dy}(\mathbb{R}^+, dx)$ is necessary for the $L^p(\mathbb{R}^+, wdx)$. Assume that w is a weight in X such that \mathcal{P}^* is bounded as an operator on $L^p(X, wd\mu)$. Since $\mathcal{P}^*f(x) \geq \left|\sum_{I \in \mathcal{D}, |I| = |I_0|} \langle f, h_I \rangle (h_{I^-}(x) - h_{I^+}(x))\right|$ for any $I_0 \in \mathcal{D}$, taking $f = h_{I_0} w^{-1/(p-1)}$ we get

$$\mathcal{P}^*f(x) \ge \left\langle w^{-\frac{1}{p-1}} h_{I_0}, h_{I_0} \right\rangle \left| h_{I_0^-}(x) - h_{I_0^+}(x) \right| = \frac{1}{|I_0|} \left(\int_{I_0} w^{-\frac{1}{p-1}} d\mu \right) \frac{\sqrt{2}}{\sqrt{|I_0|}} \mathcal{X}_{I_0}(x).$$

Publication date: October 2, 2017

Hence, from the inequality $\int_X (\mathcal{P}^* f)^p w d\mu \le C \int_X |f|^p w d\mu$ that we are assuming, taking $f = h_{I_0} w^{-1/(p-1)}$ we get

$$\frac{2^{p/2}}{|I_0|^{3p/2}} \left(\int_{I_0} w^{-\frac{1}{p-1}} d\mu \right)^p w(I_0) \le C \frac{1}{|I_0|^{p/2}} \int_{I_0} w^{-\frac{1}{p-1}} w d\mu$$

which implies that $w \in A_p^{dy}(\mathbb{R}^+, d\mu)$.

As a final remark, let us observe that from the representation of the Hilbert kernel given in [9] and our result, we can get the well known weighted norm inequalities for the Hilbert transform.

REFERENCES

- [1] Hugo Aimar, *Integrales singulares y aproximaciones de la identidad en espacios de tipo homogéneo*, Doctoral thesis, Universidad Nacional de Buenos Aires, PEMA–INTEC. Available in http://www.imal.santafeconicet.gov.ar/TesisIMAL/tesisAimarH.pdf, 1983.
- [2] ______, Singular integrals and approximate identities on spaces of homogeneous type, Trans. Amer. Math. Soc. **292** (1985), no. 1, 135–153. MR 805957
- [3] Hugo Aimar and Roberto A. Macías, Weighted norm inequalities for the Hardy-Littlewood maximal operator on spaces of homogeneous type, Proc. Amer. Math. Soc. 91 (1984), no. 2, 213–216. MR 740173
- [4] Ronald R. Coifman and Guido Weiss, *Analyse harmonique non-commutative sur certains espaces homogènes*, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971, Étude de certaines intégrales singulières. MR 0499948
- [5] Roberto A. Macías and Carlos Segovia, *A decomposition into atoms of distributions on spaces of homogeneous type*, Adv. in Math. **33** (1979), no. 3, 271–309. MR 546296
- [6] _____, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 546295
- [7] Roberto A. Macías and Carlos A. Segovia, *A well-behaved quasi-distance for spaces of homogeneous type*, Trabajos de Matemática, Serie I, vol. 32, IAM–CONICET, 1981.
- [8] Yves Meyer and Ronald Coifman, Wavelets, Cambridge Studies in Advanced Mathematics, vol. 48, Cambridge University Press, Cambridge, 1997, Calderón-Zygmund and multilinear operators, Translated from the 1990 and 1991 French originals by David Salinger. MR 1456993
- [9] Stefanie Petermichl, *Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol*, C. R. Acad. Sci. Paris Sér. I Math. **330** (2000), no. 6, 455–460. MR 1756958

INSTITUTO DE MATEMÁTICA APLICADA DEL LITORAL, UNL, CONICET, FIQ.

CCT CONICET Santa Fe, Predio "Alberto Cassano", Colectora Ruta Nac. 168 km 0, Paraje El Pozo, S3007ABA Santa Fe, Argentina.

E-mail address: haimar@santafe-conicet.gov.ar

E-mail address: ivanagomez@santafe-conicet.gov.ar