
ISSN 2451-7100 

 
 
 
 

IMAL preprints  
http://www.imal.santafe-conicet.gov.ar/publicaciones/preprints/index.php 

 

 

ON A DISSOLUTION-DIFFUSION MODEL. EXISTENCE, 

UNIQUENESS, REGULARITY AND SIMULATIONS 

By 

 

María Emilia Castillo and Pedro Morin 

IMAL PREPRINT # 2014-0023 

Publication date: November 20, 2014 

 

Editorial: Instituto de Matemática Aplicada del Litoral 
IMAL (CCT CONICET Santa Fe – UNL) 
http://www.imal.santafe-conicet.gov.ar 

 

Publications Director:  Dr. Rubén Spies  
E-mail: rspies@santafe-conicet.gov.ar  

 

 

mailto:rspies@santafe-conicet.gov.ar


On a dissolution-diffusion model. Existence, uniqueness,

regularity and simulations

Maŕıa Emilia Castillo Pedro Morin

Abstract

We perform a mathematical analysis of a model for drug dissolution-diffusion in non erodible
nor swellable devices. We deduce a model and obtain a coupled nonlinear system which contains a
parabolic equation for the dissolved drug and an ordinary differential equation for the solid drug,
which is assumed to be distributed in the whole domain into microspheres which can differ in size.
We analyze existence, uniqueness, and regularity properties of the system. Existence is proved using
Schauder fixed point theorem. Lack of uniqueness is shown when the initial concentration of dissolved
drug is higher than the saturation density in a region, and uniqueness is obtained in the non-saturated
case. A square root function appears in the equation for the solid drug, and is responsible for the
lack of uniqueness in the oversaturated case. The regularity results are sufficient for the optimal a
priori error estimates of a finite element discretization of the system, which is presented and analyzed
here. Simulations illustrating some features of the solutions and a good agreement with laboratory
experiments are presented. Finally, we obtain error estimates for the finite element method used to
compute the simulations.

1 Introduction

Numerous mathematical approaches have been proposed to give an adequate theoretical background to
the modeling of drug release from polymeric devices [SS, SP]. The interest in this kind of systems has
increased in the medical and pharmaceutical industry, because controlled drug-release systems allow for
predictable release kinetics, small fluctuations of plasma drug level, diminishing the amount of toxic
secondary effects, among other advantages [ECDD, BSBK].

We focus here on a model based on a diffusion equation including a continuum dissolution source
described by the Noyes-Whitney equation; other models are based on a moving dissolution front sep-
arating a region of coexisting solid and dissolved drug from a region of completely dissolved drug;
see [CLG, HILCG] for a detailed description of other models.

Up to now, all mathematical studies have consisted in finding exact solutions for simple geometries
using Fourier analysis, or simplified quasi-stationary assumptions, such as fast or slow dissolution rates
(see [CG] and references therein). The goal of this article is to study qualitative as well as quantitative
properties of a dissolution-diffusion problem modeling the kinetics of a drug inside a polymeric device,
avoiding the assumption of fast or slow dissolution. We first prove existence of solutions, and study
uniqueness and regularity properties. Secondly, we propose and analyze an algorithm for the numerical
approximation of the solutions, where the regularity estimates are instrumental for obtaining optimal a
priori error estimates. The numerical approximations allow us to visualize the behavior of the solutions
and compute some measurable quantities which whos a striking agreement to laboratory experiments.

The rest of the article is organized as follows. In Section 2 we deduce the mathematical model
and prove existence of solutions in Section 3. Uniqueness of solutions is discussed in Section 4 where
uniqueness is proved under the assumption that the initial concentration of dissolved drug is less than
or equal to the maximum solubility, and the existence of multiple solutions is proved in a situation
where the initial concentration of dissolved drug is above saturation. In Section 5 regularity estimates
are obtained for both state variables, concentration of dissolved drug C and area of solid particles per
unit volume a. In Section 6 we propose a finite element discretization and show some numerical results,
which illustrate on the regularity of the solutions and the good agreement with laboratory experiments.
Finally, in Section 7 we prove optimal a priori estimates for the proposed time-space discretization.
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2 Mathematical Model and Weak formulation

We start this section by briefly deducing a model for drug dissolution-diffusion in a non-erodible polymeric
device. We consider a model for one drug, which can be either in a solid or in a dissolved state. We
assume that the solid drug is distributed in particles of equal density, dispersed throughout the whole
device, which can differ in mass and volume, but keep a spherical shape when dissolved [CLG]. We also
assume that they are so small that do not affect the diffusion of the dissolved drug, which thus evolves
by diffusion with constant coefficient.

Under these assumptions we can state the mathematical model on a domain Ω ⊂ R3, occupied by
the polymeric device. If C denotes the concentration of dissolved drug, following the same steps used to
obtain the diffusion equation with Fick’s law we arrive at the following equation:

∂C

∂t
−D∆C = −∂m

∂t
, x ∈ Ω, t > 0, (2.1)

where D is the drug diffusion coefficient and m is the mass of solid drug per unit volume, so that −∂m∂t
is the mass of solid drug being dissolved per unit volume per unit time.

Following [CLG], we use the Noyes-Whitney model for the dissolution of the microspheres, i.e., we
assume that the microspheres dissolve at a rate proportional to the product of their surface area and
the difference between the saturation solubility Cs and the concentration around them. If a denotes the
area of the microspheres of solid drug per unit volume, this can be stated mathematically as

∂m

∂t
(x, t) = −kDa(x, t)(Cs − C(x, t)), x ∈ Ω, t > 0, (2.2)

where kD is the dissolution rate constant of the solid drug particles. Using relations between radius, area
and mass of a sphere we can rewrite (2.2) as

∂a

∂t
= − 4kD

√
πN1/2

ρs︸ ︷︷ ︸
β

√
a(Cs − C), x ∈ Ω, t > 0, (2.3)

where N represents the number of particles per unit volume and ρs is the intrinsic density of the solid
drug particles.

Statement of the problem. Adding initial conditions and boundary conditions of Neumann and
Robin type we arrive at the following problem:

∂C

∂t
−D∆C = kDa(Cs − C), in Ω× (0, tF ),

∂a

∂t
= −β

√
a(Cs − C), in Ω× (0, tF ),

C = C0, in Ω× {0},
a = a0, in Ω× {0},

D
∂C

∂n
= 0, on ΓN × (0, tF ),

D
∂C

∂n
= kB(CB − C), on ΓB × (0, tF ).

(2.4)

This problem is stated over Ω ⊂ Rd (d = 1, 2, 3), which is an open, bounded and connected set with
Lipschitz boundary Γ = ΓB ∪ ΓN . ΓB is the nontrivial part of the boundary where drug is released to
the surrounding medium, and ΓN = Γ\ΓB is the insulated part; CB denotes the drug concentration in
the bulk medium, kB the external mass transfer coefficient, ∂C∂n = ∇C ·n and n denotes the exterior unit
normal to ∂Ω. We assume also that

D, kD, kB , CB ∈ (0,+∞), β ∈ L∞(Ω), β ≥ 0, (2.5)

C0, a0 ∈ L∞(Ω), C0, a0 ≥ 0. (2.6)

Proceeding as usual, integrating by parts in Ω, we arrive at the following weak formulation of the problem.
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Definition 1. The pair (C, a) is called a weak solution of (2.4) if C ∈ L2(0, tF ;H1(Ω)), with Ct ∈
L2(0, tF ;H−1(Ω)), a ∈ H1(0, tF ;L2(Ω)) and

〈Ct(t), v〉+ B[C(t), v] = kD

ˆ
Ω

a(t)(Cs − C(t))v + kBCB

ˆ
ΓB

v, ∀v ∈ H1(Ω), a.e. t ∈ (0, tF )

ˆ
Ω

at(t)w =

ˆ
Ω

β(C(t)− Cs)
√
a(t)w, ∀w ∈ L2(Ω), a.e. t ∈ (0, tF )

C(0) = C0, a(0) = a0,

(2.7)

where 〈f, v〉 stands for the evaluation of the functional f ∈ H−1(Ω) in v ∈ H1(Ω) and

B : H1(Ω)×H1(Ω)→ R, B[C, v] := D

ˆ
Ω

∇C∇v + kB

ˆ
ΓB

Cv.

The space L2(Ω) is the space of Lebesgue measurable functions on Ω which are square integrable,
H1(Ω) denotes the usual Sobolev space of functions in L2(Ω) with weak derivatives of first order in
L2(Ω) and H−1(Ω) denotes the dual space of H1(Ω). The spaces Lp(0, tF ;X) denote the usual spaces

of weakly measurable functions f : [0, tF ]→ X, such that
´ tF

0
‖f(t)‖pX dt <∞. The space H1(0, tF ;X)

denotes the space of functions in L2(0, tF ;X) with weak derivative of first order in L2(0, tF ;X); see [T,
Chapter 3] for details and main results.

Since we only consider weak solutions to (2.4), we will usually omit the word weak in the sequel.

Remark 2. The following Friedrich inequality holds for a constant CF depending on ΓB and Ω:

‖v‖2L2(Ω) ≤ C2
F

(
‖∇v‖2L2(Ω) + ‖v‖2L2(ΓB)

)
, ∀v ∈ H1(Ω). (2.8)

As an immediate consequence of this and the trace theorem, the bilinear form B is coercive and bounded,
i.e., there exist positive constants C1, C2 such that, for all v, w ∈ H1(Ω),

C1‖v‖2H1(Ω) ≤ B[v, v] and B[v, w] ≤ C2‖v‖H1(Ω)‖w‖H1(Ω).

These constants C1, C2 depend only on D, kB , ΓB and Ω.

3 Existence of solutions

In this section we prove the existence of solutions of (2.4). We will do so by using Schauder fixed point
theorem. Problems with similar features have been studied in [AV, DS]. The proofs in [AV] are based on
a regularization of the non-Lipschitz term and hinge upon using powerful tools from [LSU]. The proofs
from [DS] are based on an iteration at the infinite-dimensional level. These proofs do not directly apply
to our problem. Our more elementary approach uses an explicit formula in terms of C for the area of
solid particles a.

3.1 Fixed point formulation.

We notice that if C were known, an explicit formula for a could be obtained by solving an ordinary
differential equation. More precisely, the following lemma holds, whose proof is trivial and is thus
omitted.

Lemma 3. If C ∈ L2(0, tF ;H1(Ω)), Ct ∈ L2(0, tF ;H−1(Ω)), C(0) = C0 and

〈Ct(t), v〉+ B[C(t), v] = kD

ˆ
Ω

a(t)(Cs − C(t))v + kBCB

ˆ
ΓB

v, ∀v ∈ H1(Ω), a.e. t ∈ (0, tF ) (3.1)

with

a(t) = max

{
0,
√
a0 +

1

2

ˆ t

0

β (C(τ)− Cs) dτ

}2

, ∀t ∈ [0, tF ], (3.2)
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then (C, a) is a weak solution of (2.4). In other words, if C is the weak solution of the (linear) diffusion
problem

∂C

∂t
−D∆C + kDaC = kDaCs, in Ω× (0, tF ),

C = C0, in Ω× {0},

D
∂C

∂n
= 0, on ΓN × (0, tF ),

D
∂C

∂n
= kB(CB − C), on ΓB × (0, tF ).

(3.3)

with a satisfying (3.2), then (C, a) is a weak solution of (2.4).

In the following, we will prove the existence of C satisfying (3.1) resorting to Schauder fixed point
theorem [GT, Corollary 11.2, p. 280]. We define

B = L2(0, tF ;L2(Ω)),

G = {u ∈ B : 0 ≤ u ≤ C̄0 for almost all t ∈ [0, tF ] and almost all x ∈ Ω},

with C̄0 = max
{
‖C0‖L∞(Ω), Cs

}
and notice that G is a closed convex subset of B. Furthermore, we

define the mapping T : G → B as follows: given C̃ ∈ G, we define a as

a(t) = max

{
0,
√
a0 +

1

2

ˆ t

0

β
(
C̃(τ)− Cs

)
dτ

}2

, (3.4)

and notice that a ∈ L∞(0, tF ;L∞(Ω)), because (3.4) yields

0 ≤ a ≤
(
‖a0‖1/2L∞(Ω) +

1

2
tF ‖β‖L∞(Ω)C̄0

)2

=: Ā0. (3.5)

Finally, let C = T (C̃) be the weak solution of the linear diffusion equation (3.3) with a given by (3.4),
which exists and is unique due to the basic theory for parabolic PDE [E]. Moreover, using standard
arguments (as in [E, Section 7.1.2]) we obtain that

‖C‖2L2(0,tF ;H1(Ω)) + ‖Ct‖2L2(0,tF ;H−1(Ω))

≤ C3

(
‖C0‖2L2(Ω) + |Ω|tF ‖a‖2L∞(0,tF ;L∞(Ω)) + kBC

2
B |ΓB |tF

)
, (3.6)

with C3 depending only on D, kB , kD, Cs, CB and CF .
In the next section we will prove the existence of the fixed point C of T and existence of weak solutions

of (2.4) will follow from the next lemma, whose proof is also trivial and thus omitted.

Lemma 4. If C ∈ G is a fixed point of T , i.e., T (C) = C, and a is given by (3.2), then (C, a) is a weak
solution of (2.4).

3.2 Existence of a fixed point

We have already noted that G is convex and closed in B, which is one assumption of Schauder fixed point
theorem [GT, Corollary 11.2]. Recalling that for C̃ ∈ G, always C := T (C̃) ∈ L2(0, tF ;L2(Ω)), the next
proposition implies that T (G) ⊂ G, which is another assumption of the theorem.

Proposition 5. Let a ∈ L∞(0, tF ;L∞(Ω)) with a ≥ 0, let C0 ∈ L∞(Ω) with C0 ≥ 0, and let C be the
weak solution of (3.3). Then 0 ≤ C ≤ C̄0 = max

{
‖C0‖L∞(Ω), Cs

}
for almost all x ∈ Ω and almost all

t ∈ [0, tF ]. Moreover, if C0 ≥ CB, then C ≥ CB for almost all x ∈ Ω and almost all t ∈ [0, tF ].

Proof. Setting v =
(
C − C̄0

)
+

:= max{C − C̄0, 0} in (3.1) and taking into account that we have defined

the constant C̄0 as C̄0 = max
{
‖C0‖L∞(Ω), Cs

}
, we obtain the following equality:

〈 (
C − C̄0

)
t
,
(
C − C̄0

)
+

〉
+D

ˆ
Ω

∣∣∣∇ (C − C̄0

)
+

∣∣∣2 + kB

ˆ
ΓB

(C − CB)
(
C − C̄0

)
+

=

ˆ
Ω

kDa(Cs − C)
(
C − C̄0

)
+
,

4

Prep
rin

t

 
IMAL PREPRINT # 2014-0023

                                    ISSN 2451-7100 
Publication date: November 20, 2014



or equivalently

1

2

d

dt

∥∥∥(C − C̄0

)
+

∥∥∥2

L2(Ω)
+D

∥∥∥∇ (C − C̄0

)
+

∥∥∥2

L2(Ω)
+ kB

ˆ
ΓB

(C − CB)
(
C − C̄0

)
+

=

ˆ
Ω

kDa(Cs − C)
(
C − C̄0

)
+
.

Since CB ≤ Cs ≤ C̄0, at those points where
(
C − C̄0

)
+
6= 0 we have C − C̄0 > 0 and then

• C > C̄0 ≥ CB yields (C − CB)
(
C − C̄0

)
+
≥ 0;

• C > C̄0 ≥ Cs implies (Cs − C)
(
C − C̄0

)
+
≤ 0.

We thereupon conclude that 1
2
d
dt

∥∥∥(C − C̄0

)
+

∥∥∥2

L2(Ω)
≤ 0, and thus, for all t > 0,

0 ≤
∥∥∥(C(t)− C̄0

)
+

∥∥∥
L2(Ω)

≤
∥∥∥(C(0)− C̄0

)
+

∥∥∥
L2(Ω)

=
∥∥∥(C0 − C̄0

)
+

∥∥∥
L2(Ω)

= 0,

which readily implies C̄0 − C ≥ 0 for almost every x ∈ Ω and t > 0.
In an analogous way, one can prove that C0 ≥ CB (resp. C0 ≥ 0) implies that C ≥ CB (resp. C ≥ 0)

for almost all t ∈ [0, tF ] and almost all x ∈ Ω.

Another assumption of Schauder fixed point theorem [GT, Corollary 11.2] is the continuity of T :
G → B. Given C̃1, C̃2 ∈ B, let a1, a2 be defined by (3.4) with C̃1, C̃2, instead of C̃, respectively, and
let C1 = T (C̃1), C2 = T (C̃2). Then the difference δC := C1 − C2 is the weak solution to the diffusion
problem

∂δC

∂t
−D∆δC = kD(a1(Cs − C1)− a2(Cs − C2)), in Ω× (0, tF ),

δC(·, 0) = 0, in Ω,

D
∂δC

∂n
= 0, on ΓN × (0, tF ),

D
∂δC

∂n
= −kBδC, on ΓB × (0, tF ).

Standard energy estimates for parabolic problems yield

‖C1 − C2‖2L2(0,tF ;H1(Ω)) ≤ C4

(
‖C̃1 − C̃2‖2L2(0,tF ;L2(Ω)) + ‖a1 − a2‖2L∞(0,tF ;L2(Ω))

)
,

with C4 depending on the problem parameters. We finally observe that, since the mapping x→ (x)+ :=
max{0, x} is Lipschitz continuous with constant one, we have

‖a1 − a2‖2L∞(0,tF ;L2(Ω)) ≤ Ā0tF |Ω|‖β‖2L∞(Ω)‖C̃1 − C̃2‖2L2(0,tF ;L2(Ω)),

so that there exists C5 depending on the problem parameters such that

‖C1 − C2‖2L2(0,tF ;H1(Ω)) ≤ C5‖C̃1 − C̃2‖2L2(0,tF ;L2(Ω)).

We thus conclude that the mapping T : G → B is continuous.
In order to show that all assumptions of Schauder fixed point theorem hold, we still need to prove that

T (G) is precompact in L2(0, tF ;L2(Ω)). This is a consequence of the estimate (3.6) and Theorem 2.1
of page 271 in [T] which implies that the space {v ∈ L2(0, tF ;H1(Ω)) : vt ∈ L2(0, tF ;H−1(Ω))} is
compactly embedded in L2(0, tF ;L2(Ω)). Schauder fixed point theorem [GT, Corollary 11.2] thus implies
the existence of a fixed point C ∈ G of T . We summarize the findings of this section in the following
theorem.

Theorem 6 (Existence). Let Ω ⊂ Rd be a bounded domain with Lipschitz boundary ∂Ω = ΓN ∪ ΓB,
and D, kD, kB and CB positive constants, β ∈ L∞(Ω), β ≥ 0, 0 ≤ CB ≤ Cs, and C0, a0 ∈ L∞(Ω),
a0, C0 ≥ 0. Then there exists a weak solution of (2.4), i.e., there exists a pair (C, a) of functions
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with C ∈ L2(0, tF ;H1(Ω)) and a ∈ L2(0, tF ;L2(Ω)) satisfying Definition 1. Furthermore, the following
estimates are valid:

0 ≤ C ≤ C̄0, 0 ≤ a, a.e. (x, t) ∈ Ω× [0, tF ], (3.7)

and, moreover, if C0 ≥ CB, then C ≥ CB. Also,

a(t) =

(
√
a0 +

1

2

ˆ t

0

β (C(τ)− Cs) dτ

)2

+

, a.e. (x, t) ∈ Ω× [0, tF ], (3.8)

so that

0 ≤ a ≤
(
‖a0‖1/2L∞(Ω) +

1

2
tF ‖β‖L∞(Ω)C̄0

)2

=: Ā0. (3.9)

4 Uniqueness

In this section we will study the uniqueness of weak solutions of problem (2.4). We will consider two
situations that only differ in an assumption on C0 related to the concentration of maximum solubility
Cs (or saturation). We first show a situation with C0 > Cs in some region of Ω where there could exist
at least two solutions. Then we will show that if C0 ≤ Cs in Ω uniqueness holds.

4.1 Initial concentration above saturation

In this section we show that if C0 > Cs in some region of the domain, then there could be at least two
solutions of problem (2.4). Consider the situation where there exists a set of positive measure Ω0 ⊂ Ω
where C0 > Cs + ε > Cs, for some ε > 0, and a0 ≡ 0 in Ω. On the one hand, Theorem 6 guarantees
the existence of a solution (C1, a1) of (2.4) that satisfies the following: Given a set of positive measure
Ω1 ⊂⊂ Ω0, there exists t1 > 0 such that

C1(x, t) > Cs, a1(x, t) =

(
1

2

ˆ t

0

β (C1 − Cs) dτ

)2

+

, x ∈ Ω1, 0 ≤ t < t1,

The first claim is a consequence of the continuity of C1 from [0, tF ] into L2(Ω) and the second one follows
from formula (3.8). As a consequence, a1 > 0 in Ω1 for 0 < t < t1.

On the other hand, we define a2 ≡ 0 and let C2 be the weak solution of the following classical
initial/boundary problem obtained taking a ≡ 0 in (2.4):

Ct −D∆C = 0, in Ω× (0, tF ),

C = C0 in Ω× {0},
D∇C · n = 0 on ΓN × (0, tF ),

D∇C · n = kB(CB − C) on ΓB × (0, tF ).

(4.1)

Then (C2, a2) is also a solution of (2.4), which is clearly different from (C1, a1).

Remark 7. In order to have more than one solution, it is necessary that C0 > Cs in some region of
the domain. In the next subsection we consider the case C0 ≤ Cs, and we show uniqueness of solution,
regardless of the initial condition for a; with the only assumption a0 ≥ 0. If C0 ≤ Cs and a0 ≡ 0, the
problem (2.4) has a unique solution and it is the pair conformed by a ≡ 0 and C the unique solution
of (4.1).

We conjecture that there could be multiple solutions when C0 > Cs in a subset of positive Lebesgue
measure even if a0 > 0 almost everywhere in Ω. We believe that the following situation is feasible: If a0

is small where C0 < Cs, then a will decrease and could attain zero value in finite time in that region. At
the same time, by diffusion, the concentration C could grow up in that region. Then, it could happen
that at a certain time t > 0 there will be a region of positive measure contained in Ω, where a(·, t) = 0
and C(·, t) > Cs. From this point on there could be two solutions like the ones presented above.

This appearance of multiple solutions is related to the high instability present in the initial phase of
crystal formation.
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4.2 Initial concentration below saturation

Theorem 8 (Uniqueness). If C0 ≤ Cs problem (2.4) has a unique solution.

Proof. Let (C1, a1) and (C2, a2) be solutions of (2.4). Then

ˆ
Ω

(a1 − a2)tw =

ˆ
Ω

β((C1 − Cs)
√
a1 − (C2 − Cs)

√
a2)w

=

ˆ
Ω

β(C1 − C2)
√
a1w +

ˆ
Ω

β(Cs − C2)(
√
a2 −

√
a1)w,

for all w ∈ L2(Ω) and almost all t ∈ [0, tF ]. Taking w = a1 − a2 we obtain:

1

2

d

dt
‖a1 − a2‖2L2(Ω) =

ˆ
Ω

β
√
a1(C1 − C2)(a1 − a2) +

ˆ
Ω

β(Cs − C2)(
√
a2 −

√
a1)(a1 − a2). (4.2)

From the assumption, C̄0 = max{‖C0‖L∞(Ω), Cs} = Cs, so that by Proposition 5, 0 ≤ C1, C2 ≤ Cs a.e.,
and Cs − C2 ≥ 0. Also, as a consequence of the second equation in (2.7), 0 ≤ a1 ≤ ‖a0‖L∞(Ω). Due to
the monotonicity of the square root, (

√
a2−

√
a1)(a1− a2) ≤ 0, and the second term of (4.2) is less than

or equal to zero. Hence

d

dt
‖a1 − a2‖2L2(Ω) ≤

ˆ
Ω

(C1 − C2)2 + ‖a0‖L∞(Ω)‖β‖2L∞(Ω)︸ ︷︷ ︸
C

ˆ
Ω

(a1 − a2)2. (4.3)

Analogously,〈
(C1 − C2)t, v

〉
+ B[C1 − C2, v] = kD

ˆ
Ω

(Cs − C2)(a1 − a2)v − kD
ˆ

Ω

(C1 − C2)a1v.

Taking v = C1 − C2 and applying [T, Lemma 1.2, Chapter 3, p. 260] we obtain:

d

dt
‖C1 − C2‖2L2(Ω) ≤ 2kD

ˆ
Ω

(Cs − C2)(a1 − a2)(C1 − C2) ≤ k2
DC

2
s

ˆ
(C1 − C2)2 +

ˆ
(a1 − a2)2,

because 0 ≤ C2 ≤ Cs implies 0 ≤ Cs − C2 ≤ Cs. This bound and (4.3) yield

d

dt

[
‖a1 − a2‖2L2(Ω) + ‖C1 − C2‖2L2(Ω)

]
≤ max

{
1 + k2

DC
2
s , 1 + C

} [
‖a1 − a2‖2L2(Ω) + ‖C1 − C2‖2L2(Ω)

]
,

and the claim follows by Gronwall inequality.

5 Regularity

In this section we present regularity results for the solution (C, a) of problem (2.4) under the hypotheses
that guarantee unique solution. From now on we assume that the assumptions of Theorems 6 and 8 hold
and (C, a) denotes the unique weak solution of (2.4), i.e., 0 ≤ C ≤ Cs, 0 ≤ a ≤ ‖a0‖L∞(Ω) and (3.2)
holds. In each of the statements that follow, we only mention the additional assumptions that imply
further regularity.

Proposition 9. The time derivative of
√
a exists and satisfies

(
√
a)t = −β

2
(Cs − C)χ{√a>0} ∈ L

2(0, tF ;L2(Ω)),

that is,
√
a ∈ H1(0, tF ;L2(Ω)); also (

√
a)t ∈ L∞(0, tF ;L∞(Ω)).
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Proof. From (3.2) we have that
√
a =

(√
a0 − 1

2

´ t
0
β(Cs − C) dτ

)
+

. Since C ∈ L2(0, tF ;H1(Ω)),

∂

∂t

√
a = −1

2
β(Cs − C)χ{√a0− 1

2

´ t
0
β(Cs−C) dτ>0} = −1

2
β(Cs − C)χ{√a>0},

in the weak sense in Ω× (0, tF ), which in turn implies that
√
a ∈ H1(0, tF ;L2(Ω)) and (

√
a)t = −β2 (Cs−

C)χ{√a>0}. Besides, for a fixed t

‖(
√
a)t‖L∞(Ω) ≤

1

2
‖β‖L∞(Ω)‖(Cs − C)‖L∞(Ω) ≤

1

2
Cs‖β‖L∞(Ω),

due to Theorem 6, whence (
√
a)t ∈ L∞(0, tF ;L∞(Ω)).

In the next proposition we prove that the spatial regularity of a and
√
a is higher if

√
a0 and β are also

more regular. It is worth mentioning though, that since there are no space derivatives in the equation
for a, there is no regularizing effect. On the other hand, the appearance of

√
a on the right-hand side of

the equation for at is responsible of two issues. The value of a reaches zero at finite time, and the space
regularity of

√
a (resp. a) cannot be higher than H1(Ω) (resp. H2(Ω)) after that time instant.

Proposition 10. If
√
a0, β ∈ L∞(Ω) ∩H1(Ω), then

√
a, a ∈ L2(0, tF ;H1(Ω)).

Proof. From the assumption on β and the fact that C ∈ L2(0, tF ;H1(Ω)) ∩ L2(0, tF ;L∞(Ω)), we

have β (Cs − C) ∈ L2(0, tF ;H1(Ω)), and
´ t

0
β(Cs − C) ∈ L∞(0, tF ;H1(Ω)), with ∂

∂xi

´ t
0
β(Cs − C) =´ t

0
∂
∂xi

(β(Cs − C)). Thus, for a fixed t ∈ [0, tF ], due to (3.2)

∂

∂xi

√
a =

(
∂

∂xi

√
a0 −

1

2

ˆ t

0

∂

∂xi
(β(Cs − C)(τ)) dτ

)
χ{√a>0},

and
√
a ∈ L2(0, tF ;H1(Ω)).

Since a = (
√
a)2 and

√
a(t) ∈ L∞(Ω) ∩H1(Ω), for each t, we have ∂

∂xi
a = 2

√
a ∂
∂xi

√
a. Now,

√
a ∈

L∞(0, tF ;L∞(Ω)) ∩ L2(0, tF ;H1(Ω)) yields ∂
∂xi

a ∈ L2(0, tF ;L2(Ω)) and thus a ∈ L2(0, tF ;H1(Ω)).

In order to prove higher regularity of C we observe that if the pair (C, a) is a weak solution of (2.4),
then C is a weak solution of the diffusion equation

∂C

∂t
−D∆C = f, in Ω× (0, tF ),

C = C0, in Ω× {0},

D
∂C

∂n
= 0, on ΓN × (0, tF ),

D
∂C

∂n
= kB(CB − C), on ΓB × (0, tF ).

(5.1)

with f = kDa(Cs − C) ∈ L2(0, tF ;L2(Ω)), so that the same proof of Theorem 5 in [E, p. 360] allows us
to conclude the following theorem.

Theorem 11. If C0 ∈ H1(Ω), then

C ∈ L∞(0, tF ;H1(Ω)), Ct ∈ L2(0, tF ;L2(Ω)).

Assuming more regularity of C0 and compatibility with the boundary conditions we obtain higher
regularity of the concentration variable C. The proof of this result is analogous to that of Theorem 5 (ii)
in [E, p. 361], taking into account the different boundary conditions, and using that ft = (kDa(Cs−C))t ∈
L2(0, tF ;L2(Ω)).

Theorem 12. Let C0 ∈ H2(Ω), D ∂C0

∂n = 0 on ΓN , D ∂C0

∂n = kB(CB − C0) on ΓB, then Ct ∈
L∞(0, tF ;L2(Ω)) ∩ L2(0, tF ;H1(Ω)) and Ctt ∈ L2(0, tF ;H−1(Ω)).

If we assume further regularity of ∂Ω and that ΓB and ΓN are separated we can prove more space
regularity for C.
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Theorem 13. Assume C0 ∈ H2(Ω), and D ∂
∂nC0 = 0 on ΓN , D ∂

∂nC0 = kB(CB−C0) on ΓB. If Ω ⊂ Rd
has a boundary Γ ∈ C1,1 such that Γ = ΓB ∪ ΓN and dist{ΓB , ΓN} > 0, then C ∈ L∞(0, tF ;H2(Ω)).

Remark 14. The assumption dist{ΓB , ΓN} > 0 is only necessary for the existence of θ ∈ C∞(Rd) such
that θ |ΓB

= 1 and θ |ΓN
= 0. This will allow for an extension of the boundary values which will in turn

permit the use of elliptic regularity to conclude the assertion of the theorem. Many commercial devices
have their outer boundary releasing drug to the bulk medium, whereas they have an inner boundary
touching a solid elastic core, which is insulating; this assumption is thus fulfilled in practical applications.

Proof. By Theorem 11 we know that C ∈ L∞(0, tF ;H1(Ω)), Ct ∈ L2(0, tF ;L2(Ω)) and

〈Ct, v〉+ B[C, v] + kD

ˆ
Ω

aCv = kD

ˆ
Ω

aCsv + kBCB

ˆ
ΓB

v, ∀v ∈ H1, a.e. t ∈ (0, tF ),

C(0) = C0.

Let us define f := kDCsa−Ct−kDaC. Theorem 11 implies that f(t) ∈ L2(Ω) for almost every t ∈ [0, tF ],
for which C(t) is a weak solution of the following (elliptic) problem:

−D∆C = f, in Ω

D
∂C

∂n
= 0, on ΓN ,

D
∂C

∂n
= −kB(C − CB), on ΓB .

Since dist{ΓB , ΓN} > 0, there exists θ ∈ C∞(Rd) such that θ|ΓB
= 1 and θ|ΓN

= 0. Let us define
g := −kB(C −CB)θ. Then g(t) ∈ H1(Ω) for almost every t ∈ [0, tF ] because C(t) ∈ L∞(Ω) ∩H1(Ω) for
almost every t ∈ [0, tF ] and θ ∈ C∞(Rd).

Moreover, for almost all t ∈ [0, tF ], ‖g‖H1(Ω) ≤ C‖C‖H1(Ω) + C̃ where C, C̃ depend on θ, CB and kB .
By construction, g|ΓB

= −kB(C − CB) and g|ΓN
= 0, and then C(t) is weak solution of

−D∆C + C = f̃ := f + C, in Ω

D
∂C

∂n
= g, on ∂Ω.

Finally by Corollary 2.2.2.6 [Gr, p. 92], we have that C ∈ H2(Ω) and

‖C‖H2(Ω) ≤ ˜̃C
(
‖f + C‖L2(Ω) + ‖g‖H1(Ω)

)
≤ C

(
‖f‖L2(Ω) + ‖C‖L2(Ω) + C1‖C‖H1(Ω) + C̃

)
,

where ˜̃C depend on Ω and D. By Theorems 12 and 11, we have ‖C‖L∞(0,tF ;H2(Ω)) is finite.

It is interesting to note that regularity results for this problem have a limitation due to the presence
of
√
a. This term implies that a vanishes in positive measure sets at finite time, and a(t) does not belong

to H3(Ω) even if a0 belongs to H∞(Ω).

6 Discretization and simulations

In this section we present a finite element discretization and some simulations which show an excellent
agreement with laboratory experiments. Besides, they allow us to visualize some features of the evolution,
such as the lack of regularizing effect on the variable a. The proof of the error estimates is postponed to
Section 7.

6.1 Finite element discretization and error estimates

We consider a conforming and shape regular triangulation T = Th of Ω, such that ∪T∈ThT = Ω̄ with
h := maxT∈Th diam(T ), and the following finite element spaces:

Vh = {v ∈ H1(Ω) : v|T ∈P1, ∀T ∈ Th}, Wh = {w ∈ L2(Ω) : w|T ∈P0, ∀T ∈ Th},
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where P` is the space of polinomials of degree less than or equal to `.
Let ∆t be the time step, and let tn = n∆t, n = 0, 1, . . . . Using a backward Euler discretization for

C and taking into account formula (3.2) for a we arrive at the following definition of Cn and an, which
denote the approximations of C(tn) and a(tn), respectively. Let Cn ∈ Vh and an ∈Wh be defined as:

(Cn, v) + ∆tB(Cn, v) + ∆tkD(Cnan−1, v)

= ∆tkDCs(a
n−1, v) + ∆tkB(CB , v)ΓB

+ (Cn−1, v), ∀v ∈ Vh,
√
an =

(√
an−1 − 1

2

ˆ tn

tn−1

β̄(Cs − C̄n)+

)
+
,

(6.1)

for n = 1, 2, . . . , with C̄n the L2(Ω)-projection of Cn on Wh; C0 ∈ Vh and a0 ∈ Wh the initial discrete
conditions. We chose C0 as the Lagrange interpolant of C0 and a0 as the L2(Ω)-projection of a0 on Wh.

Existence of {(Cn, an)}n≥1, stability bounds and the following error estimates are proven in Section 7.
From now on (C, a) denotes the weak solution to (2.4) and {(Cn, an)}n≥1 are given by (6.1).

Theorem 15. If a ∈ H1(0, tF ;L2(Ω)), C ∈ H1(0, tF ;H1(Ω)) and Ctt ∈ L2(0, tF ;H−1(Ω)), then

max
1≤n≤tF /∆t

‖Cn − C(tn)‖L2(Ω) +
∥∥√an −√a(tn)

∥∥
L2(Ω)

≤ C∗tF
[ ∥∥C0 − C(0)

∥∥
L2(Ω)

+
∥∥√a0 −

√
a(0)

∥∥
L2(Ω)

+ h+ ∆t
]
,

where C∗tF depends on ‖a‖H1(0,tF ;L2(Ω)), ‖C‖H1(0,tF ;H1(Ω)) and ‖Ctt‖L2(0,tF ;H−1(Ω)) and the parameters
of the problem, but is independent of the discretization parameters h and ∆t.

Using the regularity estimates from Section 5 we obtain the following corollary.

Corollary 16. If C0 ∈ H2(Ω), D ∂
∂nC0 = 0 on ΓN , D ∂

∂nC0 = kB(CB − C0) on ΓB then the assertion
of Theorem (15) holds with C∗tF depending on the end time tF , on ‖a0‖L∞(Ω), ‖C0‖H2(Ω) and on the
parameters kD, Cs, ‖β‖L∞(Ω) of the problem, listed in (2.5), but independent of h and ∆t.

Furthermore, if we assume that the assumptions of Theorem 13 hold, then C ∈ L∞(0, tF ;H2(Ω))
and we find a bound for the error of C in a norm analogous to the L2(0, tF ;H1(Ω))-norm.

Theorem 17. Assume that Ω has boundary of class C1,1 and dist{ΓB ,ΓN} 6= 0. If C0 ∈ H2(Ω) and
D ∂
∂nC0 = 0 on ΓN and D ∂

∂nC0 = kB(CB − C0) on ΓB. Then there exists a constant C̃∗tF that depends
on the final time tF , on ‖a0‖L∞(Ω), ‖C0‖H2(Ω) and on the parameters kD, Cs, ‖β‖L∞(Ω) of the problem,
listed in (2.5), but is independent of h and ∆t, and

( M∑
j=1

∆t‖Cj − C(tj)‖2H1(Ω)

)1/2

≤ C̃∗tF
[
‖C0 − C(0)‖H1(Ω) + ‖

√
a0 −

√
a(0)‖L2(Ω) + h+ ∆t

]
.

6.2 Simulations

We now report some qualitative and quantitative properties of the solutions of (2.4), which we obtained
from computing with the numerical method presented in the previous section. The code was developed
in MATLAB using ideas from [FPW, RV] for the fast assembling of the linear systems.

We focus on the solution of the problem on a commercial device. We consider a CIDR device (InterAg
Manufacturing, New Zealand) as the one in Figure 1 loaded with 1.9g of Progesterone. This progesterone-
releasing intravaginal device is used by cattle producers to achieve estrous synchronization which in turn
allow a better outcome of artificial insemination; see [DMNG] and references therein.

The parameter values used for the simulation of the drug release from this device, taken from [DMNG],
are stated in Table 1; C0 denotes the initial concentration of dissolved drug and m0,p, a0,p stand for the
initial mass and area of each particle of solid drug, respectively, whereas Num is the total number
of particles in the device, which we assumed evenly distributed. The diffusion coefficients Dap40 and
Dap60 correspond to a liberation media with 40% and 60% ethanol in water, respectively, and kD is the
dissolution rate of the particles of solid drug. The coefficient kB is a mass transference coefficient and
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Figure 1: CIDR device (InterAg Manufacturing, New Zealand). Photograph (left) and scheme (right). The
inner structure can be observed through transversal cuts denoted by A-A’ and B-B’. Lengths are measured in
millimiters.

C0 0.513 [Kg/m3]
m0,p 1.0550e-12 [Kg]
a0,p 4.5239e-10 [m2]
Dap40 1.670e-10 [m2/s]
Dap60 2.701e-10 [m2/s]
Num 1 791 672 552
kD 6.59e-6 [m/s]
kB 1e-3 [m/s]
Cs 0.513[Kg/m3]
V 1.9075e-5 [m3]
ρs 1.1660285e+03 [Kg/m3]
CB 0

Table 1: Initial conditions and parameter values for the CIDR device.
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Cs is the saturation concentration or maximum solubility. V denotes the volume of the device, ρs the
intrinsic density of the solid drug particles and CB the concentration of drug in the liberation medium.

Even though the device is three-dimensional, we assumed that it is composed of two cylindrical pieces,
insulated at both ends. One piece is 19cm long with cross section A-A’ as in Figure 1 (right), and another
one is 10.37cm long with cross section B-B’. The lengths have been chosen to match the volume of the
original device. This simplification allows us to compute on two-dimensional domains, saving a lot of
computational time; the comparison of drug release with laboratory experiments is excellent, so this
dimension reduction is worthwhile.

6.3 Transversal section A-A’

In order to compute on the cylindrical piece with transversal section A-A’, we generated a mesh with
Gmsh version 2.5.1 [GR] for the A-A’ section and h = 0.22×10−7m, which has 22 847 vertices and 44 392
elements; see Figure 2.

Figure 2: Triangulation of 22 847 vertices and 44 392 elements, for the cross secction A-A’ of the CIDR device.

In Figure 3 we show the distribution, at different time instants, of dissolved drug C and area per unit
volume of the solid drug particles a.

We can observe that C is smoother than a, due to the regularizing effect of the term D∆C in the
differential equation. It can also be observed that there is a front separating the region where a = 0 from
the region where a > 0. The function C is smoother and approximately satisfies a diffusion equation in
the region where a vanishes, with a Robin-type boundary condition in the outer boundary of the device
and Dirichlet-type boundary condition C = Cs at the interface where a starts to be positive.

In order to observe better this features we plot a 3D-graphic of C and a in Figure 4 for t = 84hs and
t = 168hs. We see that C ≈ Cs where a > 0 and C looks like a solution to a pure diffusion equation
where a = 0. It is also worth observing the lack of regularity of a, in contrast to the regularity of C,
which is enforced by the diffusion term D∆C.

We end this section showing in Figure 5 the concentration of dissolved drug C and the area of the
solid drug particles for times t greater than seven days. Even though these devices are used for a one-
week period, it is important to know how much drug remains inside the device, and where, in order to
optimize their shape to minimize negative consequences to the environment.
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Figure 3: Concentration of dissolved drug C (left) and area per unit volume of solid drug particles a (right) at
t = 3hs (top), 84hs (middle) and 168hs (bottom).
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Figure 4: Three-dimensional profile of the dissolved drug concentration C (left) and the area of solid particles
per unit volume a (right) for t = 84hs (top) and t = 168hs (bottom). We see that C ≈ Cs where a > 0 and C
looks like a solution to a pure diffusion equation where a = 0, with a Robin-type boundary condition in the outer
boundary.

Figure 5: Concentration of dissolved drug C (left) and area per unit volume of solid drug particles a (right) at
t = 276hs (top) and t = 336hs (bottom).
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6.4 Transversal section B-B’

Computation of the solution

To compute on the cylindrical piece with transversal section B-B’ as in Figure 1 (right), we generated a
mesh of the B-B’ section with Gmsh, obtaining a triangulation with h = 1.32 × 10−7m, 16 184 vertices
and 30 888 elements (see Figure 6).

Figure 6: Triangulation of 26 184 vertices and 30 888 elements, for the cross secction B-B’ of the CIDR device.

In Figure 7 we show the distribution of dissolved drug and area per unit volume of the solid drug
particles, for different time instants.

6.5 Comparison with experimental data

We now compare our numerical results with experimental data obtained at Instituto de Desarrollo
Tecnológico para la Industria Qúımica (INTEC–CONICET–UNL). They performed measurements of
released drug from CIDR devices in vitro. Several devices were sunk into different stirred containers
with 40% and 60% of ethanol in water. The released drug from the devices was measured after 1, 2, 3,
4, 5, 6, 12, 24 hours, and from that moment on, once every 24 hours, for seven days.

We computed the total amount of released drug at time t from each piece using the following formula:

Q(t) = total amount of initial drug− total amount of drug at time t

= Num×m0,p −
4

3
πρsL

ˆ
Ω

(rn)3

β
− L
ˆ

Ω

C,

where L is the length of the piece and Ω is the two-dimensional cross section.
The sum of the drug released by both pieces according to our numerical calculations, versus the

experimental measurements can be observed in Figure 8.
We observe that the computations according to this proposal fit the experimental data very well.

Visually, the fit is equal to the one obtained in [DMNG], where three-dimensional computations, on a
mesh with 3 816 762 elements were performed. It is interesting to note that adding the contributions
of the two bi-dimensional meshes that we used, we arrive at 75 280 elements and 39 031 vertices. The
computational cost of our proposal is significantly lower.
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Figure 7: Concentration of dissolved drug C (left) and area per unit volume of solid drug particles a (right) at
t = 3hs (top), 84hs (middle) and 168hs (bottom).
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Figure 8: Drug release according to the numerical simulation versus experimental measurements in a solution
of 40% ethanol in water (left) and 60% (right). The simulation was done considering a device composed of
two cylindrical pieces. One shaped as the A-A’ cut and length 19cm, the other one shaped as B-B’ and length
10.37cm. The agreement between our computations and the measurements is remarkable, and comparable to
the computations on the three-dimensional domain reported in [DMNG]; where meshes with almost four million
elements were needed.

7 Proofs of error estimates

The main goal of this section is to prove Theorems 15 and 17, which state error estimates for the
discretization proposed in Section 6.

7.1 Existence

Observing (6.1) we notice that the definition of Cn involves an−1 and not an, so that Cn can be computed
first. Writing the first equation of (6.1) using a basis for Vh we are led to a linear system with a symmetric
positive definite matrix, and existence of Cn is thus guaranteed. The definition of an in the second
equation of (6.1) can be simplified as

√
an =

(√
an−1 − 1

2
∆tβ̄(Cs − C̄n)+

)
+

,

where we have changed the integral in the definition of an by a multiplication by ∆t.
In order not to clutter the notation, in the rest of the article we will use ‖·‖ to denote the L2(Ω)-norm,

‖ · ‖H1 to the note the H1(Ω)-norm, ‖ · ‖L2(H1) to denote the L2(0, tF ;H1(Ω))-norm, etc.

7.2 Stability

From the definition of an we observe that 0 ≤ an ≤ an−1, so that ‖an‖ ≤ ‖an−1‖ ≤ · · · ≤ ‖a0‖.
To study the stability of Cn, we take v = Cn in (6.1) and obtain

(Cn, Cn) + ∆tB(Cn, Cn) + ∆tkD(Cnan−1, Cn)

≤ ∆tkDCs‖an−1‖‖Cn‖+ ∆tkBCB |ΓB |1/2‖Cn‖L2(ΓB) + ‖Cn−1‖‖Cn‖.

By Cauchy inequality

‖Cn‖2 + ∆tB(Cn, Cn) ≤ ∆t

D
k2
DC

2
s‖an−1‖2 + ∆tkBC

2
B |ΓB |+ ‖Cn−1‖2,

which yields the existence of C6, C7, C8 depending on problem data such that

‖Cn‖2 − ‖Cn−1‖2 + ∆tC1‖Cn‖2H1 ≤ ∆t
(
C6‖an−1‖2 + C7

)
≤ C8∆t.
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Adding on n from 1 to M := dtF /∆te we obtain the following stability estimates:

max
1≤n≤M

‖Cn‖2, C1∆t
M∑
n=1

‖Cn‖2H1 ≤ ‖C0‖2 + C8tF . (7.1)

7.3 Error estimation

In what follows we will make use of the L2-projection on Wh and the Ritz projection on Vh.
As in the definition of an, ū denotes the L2-projection of u ontoWh, i.e., ū ∈Wh and (ū, χT ) = (u, χT ),

for all T ∈ Th. Applying Poincaré-Friedrich inequality, using that ū|T = 1
|T |
´
T
u for each T ∈ Th we

obtain that
‖ū− u‖ ≤ C∗h‖u‖H1 , ∀u ∈ H1(Ω), (7.2)

where C∗ is a constant that depends only on the dimension of the space.
Also, we define Rhu as the Ritz projection with respect to the inner product induced by the bilinear

form B(·, ·) in H1(Ω), i.e.,

Rhu ∈ Vh : B(Rhu− u, v) = 0, ∀v ∈ Vh.

Standard interpolation theory [B, BS, Ci] and error estimates of finite elements for stationary problems
allow us to affirm that, if Ω has boundary of class C1,1 and dist(ΓB ,ΓN ) > 0, then

‖Rhv − v‖L2(Ω) ≤ C̃h‖v‖H1(Ω), ∀v ∈ H1(Ω), (7.3)

and
‖Rhv − v‖H1(Ω) ≤ C̃h‖v‖H2(Ω), ∀v ∈ H2(Ω), (7.4)

with C̃ depending on the mesh regularity.

Remark 18. The assumptions about the regularity of ∂Ω and the distance between boundaries of different
kind guarantee that the elliptic problem has H2 regularity, i.e., given a source term L2(Ω) the solution
belongs to H2(Ω). Estimate (7.4) is a consequence of Cèa Lemma and standard interpolation estimates.
The proof of (7.3) uses the Aubin-Nitsche trick.

The following estimates will be used in the proof of the main result. Their proof is straightforwad
and will thus be omitted.

Lemma 19. Let C ∈ H1(0, tF ;H1(Ω)) and Ctt ∈ L2(0, tF ;H−1(Ω)) then

‖∂tRhC(tn)− ∂tC(tn)‖2 ≤ C̃2h2

∆t

ˆ tn

tn−1

‖Ct‖2H1 ds, ‖Ct(tn)− ∂tC(tn)‖2H−1 ≤ ∆t

ˆ tn

tn−1

‖Ctt(s)‖2H−1 ds.

Hereafter, ∂v(tn) = (v(tn)− v(tn−1))/∆t.

In order to prove Theorem 15 we split the error Cn − C(tn) as a sum of two terms:

Cn − C(tn) = (Cn −RhC(tn)) + (RhC(tn)− C(tn)) := θnC + ρnC . (7.5)

The term ρnC is easy to bound using the spatial regularity of C and (7.3)–(7.4). The main goal of the
next lemma is to bound the L2-norm of θnC .

Lemma 20. Under the assumptions of Theorem 15, we have, for n = 1, 2, . . . ,M ,

‖θnC‖2 ≤ ‖θn−1
C ‖2 + C9∆t

(
‖
√
an−1 −

√
a(tn−1)‖2 + ∆t

ˆ tn

tn−1

‖at(s)‖2 ds+ C̃2h2‖C‖2L∞(H1)

+
C̃2h2

∆t

ˆ tn

tn−1

‖Ct(s)‖2H1 ds+ ∆t

ˆ tn

tn−1

‖Ctt(s)‖2H−1 ds

)
,

(7.6)
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Proof. If we denote ∂tC
n = (Cn − Cn−1)/∆t, the first line of (6.1) reads:

B(Cn, v) = kD

ˆ
Ω

(Cs − Cn)an−1v + kBCB

ˆ
ΓB

v −
ˆ

Ω

∂tC
nv, ∀v ∈ Vh.

On the other hand, RhC(tn) satisfies

B(RhC(tn), v) = kD

ˆ
Ω

(Cs − C(tn))a(tn)v + kBCB

ˆ
ΓB

v −
ˆ

Ω

Ct(tn)v,

for all v ∈ Vh. Subtracting the above identities, we have, for all v ∈ Vh

B(Cn −RhC(tn)︸ ︷︷ ︸
θnC

, v) = kD

ˆ
Ω

(Cs − Cn)an−1v − kD
ˆ

Ω

(Cs − C(tn))a(tn)v

+

ˆ
Ω

(Ct(tn)− ∂tCn)v,

= kD

ˆ
Ω

(Cs − C(tn))(an−1 − a(tn))v + kD

ˆ
Ω

(C(tn)− Cn)an−1v

+

ˆ
Ω

(Ct(tn)− ∂tCn)v,

Recalling that θnC = Cn −RhC(tn) and setting v = θnC ∈ Vh we are led to the following bound

B(θnC , θ
n
C) ≤ kD

ˆ
Ω

(Cs − C(tn))(an−1 − a(tn))θnC − kD
ˆ

Ω

(RhC(tn)− C(tn))︸ ︷︷ ︸
ρnC

an−1θnC

+

ˆ
Ω

(
Ct(tn)− ∂tC(tn) + ∂tC(tn)− ∂tRhC(tn)︸ ︷︷ ︸

∂tρnC

+ ∂tRhC(tn)− ∂tCn︸ ︷︷ ︸
−∂tθnC

)
θnC .

Thereforeˆ
Ω

∂tθ
n
C θ

n
C︸ ︷︷ ︸

1
∆t (θnCθnC−θ

n−1
C θnC)

+B(θnC , θ
n
C) ≤ kD

(
Cs‖an−1 − a(tn)‖+ ‖an−1‖L∞‖ρnC‖+

1

kD
‖∂tρnC‖

)
‖θnC‖

+ ‖Ct(tn)− ∂tC(tn)‖H−1‖θnC‖H1 .

where we have used that 0 ≤ C ≤ Cs (cf. Theorem 6). Owing to Cauchy inequality, we obtain

‖θnC‖2 +
∆t

2
B(θnC , θ

n
C) ≤ ‖θn−1

C ‖‖θnC‖+ ∆tC
[(
kDCs‖an−1 − a(tn−1)‖+ kDCs‖a(tn−1)− a(tn)‖

+ kD‖an−1‖∞‖ρnC‖+ ‖∂tρnC‖
)2

+ ‖Ct(tn)− ∂tC(tn)‖2H−1

]
.

Thus, using that 0 ≤ an−1, a(tn−1) ≤ A0,

‖θnC‖2 + ∆tB(θnC , θ
n
C) ≤ ‖θn−1

C ‖2 + 2∆tC
[(
kDCs2

√
A0‖
√
an−1 −

√
a(tn−1)‖

+ kDCs

∥∥∥ˆ tn

tn−1

at(s) ds
∥∥∥+ kDA0‖ρnC‖+ ‖∂tρnC‖

)2

+ ‖Ct(tn)− ∂tC(tn)‖2H−1(Ω)

]
.

Finally, taking into account the estimates of Lemma 19

‖θnC‖2 + ∆tB(θnC , θ
n
C) ≤ ‖θn−1

C ‖2 + C9∆t

(
‖
√
an−1 −

√
a(tn−1)‖2 + ∆t

ˆ tn

tn−1

‖at(s)‖2 ds

+ C̃2h2‖C‖2L∞(H1) +
C̃2h2

∆t

ˆ tn

tn−1

‖Ct(s)‖2H1 ds+ ∆t

ˆ tn

tn−1

‖Ctt(s)‖2H−1 ds

)
.

(7.7)

The claim follows by dropping the term ∆tB(θnC , θ
n
C) from the left-hand side.
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Lemma 21. Under the assumptions of Theorem 15, we have, for n = 1, 2, . . . ,M ,∥∥∥√an −√a(tn)
∥∥∥ ≤ ∥∥∥√an−1 −

√
a(tn−1)

∥∥∥
+ ∆tC10

(
‖θnC‖+ h‖Cn‖H1 + h‖C(tn)‖H1 + ∆t‖Ct‖L∞(L2) + h

)
,

(7.8)

where C10 is a constant depending on Cs, β and C∗.

Proof. Recall that

√
an =

(√
an−1 − 1

2

ˆ tn

tn−1

β̄(Cs − C̄n)+

)
+
,
√
a(tn) =

(√
a(tn−1)− 1

2

ˆ tn

tn−1

β(Cs − C)+

)
+
.

Subtracting both equations and using that the mapping x→ (x)+ is Lipschitz, we obtain

|
√
an −

√
a(tn)| ≤ |

√
an−1 −

√
a(tn−1)|+ 1

2

ˆ tn

tn−1

(
β̄|C − C̄n|+ |β̄ − β|(Cs − C)+

)
dt

≤ |
√
an−1 −

√
a(tn−1)|+ 1

2

ˆ tn

tn−1

β̄
∣∣C̄n − Cn + θnC + ρnC

∣∣ dt

+
1

2

ˆ tn

tn−1

β̄ |C(tn)− C(t)| dt+
1

2
∆tCs|β̄ − β|,

where we have used the decomposition (7.5).
Then, (7.2) yields∥∥∥√an −√a(tn)

∥∥∥ ≤ ∥∥∥√an−1 −
√
a(tn−1)

∥∥∥+ ∆t
‖β‖L∞

2

(
‖C̄n − Cn‖+ ‖θnC‖+ ‖ρnC‖

)
+
‖β‖L∞

2

ˆ tn

tn−1

∥∥∥∥ˆ tn

t

Ct(s)

∥∥∥∥ ds+
1

2
∆tCsC∗h‖β‖H1 ,

and using (7.3) we readily obtain the claim.

Putting together the previous two lemmas we can prove Theorem 15.

Proof of Theorem 15. Using (α+ β)2 ≤ (1 + ∆t)α2 +
(
1 + 1

∆t

)
β2 in (7.8) we obtain∥∥∥√an −√a(tn)

∥∥∥2

≤ (1 + ∆t)
∥∥∥√an−1 −

√
a(tn−1)

∥∥∥2

+ ∆tC2
10 (∆t+ 1)

(
‖θnC‖+ h‖Cn‖H1 + h‖C(tn)‖H1 + ∆t‖Ct‖L∞(L2) + h

)2
And using estimate (7.6) in the above inequality, we have

‖
√
an −

√
a(tn)‖2 ≤ (1 + ∆t)‖

√
an−1 −

√
a(tn−1)‖2

+ C2
10∆t(1 + ∆t)

[
‖θn−1
C ‖2 + C9∆t

(
‖
√
an−1 −

√
a(tn−1)‖2

+ ∆t

ˆ tn

tn−1

‖at(s)‖2 ds+ C̃2h2‖C‖2L∞(H1) +
C̃2h2

∆t

ˆ tn

tn−1

‖Ct(s)‖2H1 ds

+ ∆t

ˆ tn

tn−1

‖Ctt(s)‖2H−1 ds

)
+ h2‖Cn‖2H1 + h2‖C(tn)‖2H1 + ∆t2‖Ct‖2L∞(L2) + h2

]
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Adding this inequality to the estimate (7.6), and defining C11 = max{C9 +1,C2
10C9,C2

10 +C9}, it results

‖
√
an −

√
a(tn)‖2 + ‖θnC‖2 ≤ (1 + C11(∆t+ ∆t2 + ∆t3))

[
‖
√
an−1 −

√
a(tn−1)‖2 + ‖θn−1

C ‖2

+ C9∆t2
ˆ tn

tn−1

‖at(s)‖2 ds+ C9∆tC̃2h2‖C‖2L∞(H1)

+ C9C̃2h2

ˆ tn

tn−1

‖Ct(s)‖2H1 ds+ C9∆t2
ˆ tn

tn−1

‖Ctt(s)‖2H−1 ds

+ C11

(
∆th2‖Cn‖2H1 + ∆th2‖C(tn)‖2H1 + ∆t3‖Ct‖2L∞(L2) + ∆th2

)]
.

Now, 1 +C11(∆t+ ∆t2 + ∆t3)
)
≤ 1 +C12∆t with C12 = C11(1 + tF + t2F ). By induction on n and using

1 + C12 ≥ 1 we obtain

‖
√
an −

√
a(tn)‖2 + ‖θnC‖2 ≤

(
1 + C12∆t

)n
×

{[
‖
√
a0 −

√
a(0)‖2 + ‖θ0

C‖2
]

+ C9∆t2
ˆ tF

0

(
‖at(s)‖2 + ‖Ctt(s)‖2H−1

)
ds

+ C9tF C̃2h2‖C‖2L∞(H1) + C9C̃2h2

ˆ tF

0

‖Ct(s)‖2H1 ds

+ C11

(
C∗2h2∆t

n∑
j=1

‖Cj‖2H1 + tFC2h2‖C‖2L∞(H1) + tF∆t2‖Ct‖2L∞(L2) + tFh
2
)}

.

Therefore, using the stability bound (7.1), and the fact that (1 +C12∆t)n ≤ eC12tn ≤ eC12tF =: CtF , the
claim follows.

Proof of Theorem 17. From (7.7),

‖θjC‖
2 − ‖θj−1

C ‖2 +
∆t

2
B(θjC , θ

j
C) ≤ C9∆t

(∥∥∥√aj−1 −
√
a(tj−1)

∥∥∥2

+ ∆t

ˆ tj

tj−1

‖at(s)‖2 ds

+ C̃2h2‖C‖2L∞(H1) +
C̃2h2

∆t

ˆ tj

tj−1

‖Ct(s)‖2H1 ds+ ∆t

ˆ tj

tj−1

‖Ctt(s)‖2H−1 ds

)
,

and adding from 1 to M = dtF /∆te, as we did in the proof of the stability of ‖Cn‖, we obtain

‖θMC ‖2+
∆t

2

M∑
j=1

B(θjC , θ
j
C) ≤ ‖θ0

C‖2 + C9∆t
M∑
j=1

(
‖
√
aj−1 −

√
a(tj−1)‖2

)
+ C9∆t2

(
‖at‖2L2(L2) + ‖Ctt‖2L2(H−1)

)
+ C9C̃2h2(tF ‖C‖2L∞(H1) + ‖Ct‖2L2(H1))

Taking into account the coercivity of the bilinear form, stated in Remark (2),

C1∆t
M∑
j=1

‖θjC‖
2
H1 ≤ ‖θ0

C‖2 + C9M∆t max
1≤j≤M

‖
√
aj−1 −

√
a(tj−1)‖2

+ C9∆t2(‖at‖2L2(L2) + ‖Ctt‖2L2(H−1)) + C9C̃2h2(tF ‖C‖2L∞(H1) + ‖Ct‖2L2(H1))

and using the estimate of the Theorem 15 and Lemma 19, we arrive at

C1

(
∆t

M∑
j=1

‖θjC‖
2
H1

)1/2

≤ ‖θ0
C‖+ C∗tF [‖C0 − C(0)‖+ ‖

√
a0 −

√
a(0)‖] + C∗tF (h+ ∆t),

which is the desired assertion.

21

Prep
rin

t

 
IMAL PREPRINT # 2014-0023

                                    ISSN 2451-7100 
Publication date: November 20, 2014



Acknowledgments

This work was partially supported by CONICET through grants PIP 112-200801-02182, PIP 112-2011-
0100742, by Universidad Nacional del Litoral through grant CAI+D 501 201101 00476 LI, and by Agencia
Nacional de Promoción Cient́ıfica y Tecnológica, through grants PICT-2008-0622, PICT-2012-2590 (Ar-
gentina)

References

[ECDD] Encyclopedia of Controlled Drug Delivery, Volumes 1-2, John Wiley & Sons, 1999.

[AV] D. Andreucci, C. Verdi, Existence, uniqueness, and error estimates for a model of polymer crys-
tallization, Adv. Math. Sci. Appl. 5 (1995), 391–409.

[BSBK] Bajpai, A. K.; Shukla, S. K.; Bhanu, S. y Kankane, S., Responsive Polymers in Controlled Drug
Delivery. Progress in Polymer Science. Vol: 33 (11), 1088-1118 (2008).

[B] D. Braess, Finite elements. Theory, fast solvers, an applications in solid mechanics, 2nd ed.,
Cambridge University Press, 2001.

[BS] S.C. Brenner and L.R. Scott, The Mathematical Theory of Finite Element Methods, Springer, 2nd
edition (2002).

[CLG] Cabrera, M.I.; Luna, J.A.; Grau R.J.A.; Modeling of Dissolution-Diffusion Controlled Drug Re-
lease from Planar Polymeric Systems with Finite Dissolution Rate and Arbitrary Drug Loading.
Journal of Membrane Science, 280, 693-704 (2006).

[CG] Cabrera, M.I.; Grau, R.J.A.; A Generalized Integral Method for Solving the Design Equations
of Dissolution-Diffusion Controlled Drug Release from Planar, Cylindrical and Spherical Matrix
Devices. Journal of Membrane Science 293, 1-14 (2007).

[Ci] P.G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, New York, 1978.

[DS] J.I. Dı́az, I. Stakgold, Mathematical aspects of the combustion of a solid by a distributed isothermal
gas reaction, SIAM J. Math. Anal. 26, 305–328 (1995).

[E] L.C. Evans, Partial Differential Equations, American Mathematical Society, 1998.

[FPW] S. Funken, D. Praetorius, P. Wissgott, Efficient implementation of adaptive P1-FEM in MAT-
LAB, Comput. Methods Appl. Math. 11 (2011) 460–490.

[GR] C. Geuzaine and J.-F. Remacle. Gmsh: a three-dimensional finite element mesh generator with
built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engi-
neering 79(11), pp. 1309-1331, 2009

[GT] D. Gilbarg, N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-
Verlag, 2001.

[Gr] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, 1985.

[HILCG] I.M. Helbling, J.C.D. Ibarra, J.A. Luna, M.I. Cabrera, R.J.A. Grau, Modeling of drug delivery
from erodible and non-erodible laminated planar devices into finite external medium. Journal of
Membrane Science, 350, 10–18 (2010).
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