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POSET PRODUCT AND BL-ALGEBRAS

MANUELA BUSANICHE AND CONRADO GOMEZ

Abstract. We give sufficient conditions for a BL-algebra to be iso-
morphic to a poset product of BL-chains which are poset product-
indecomposable.

Introduction

The variety BL of BL-algebras is the algebraic counterpart of BL, the logic
introduced by Hájek in [12] which includes a fragment common to the most
important fuzzy logics (Łukasiewicz, Gödel and product logics). An essential
result for studying BL is the subdirect representation theorem (see [12]),
which states that each BL-algebra is a subdirect product of totally ordered
BL-algebras (BL-chains). This theorem not only says that each BL-algebra
is a subalgebra of the direct product of BL-chains, but also reveals that the
main structures in the study of BL-algebras are its totally ordered members.
Another important result is the decomposition theorem given by Aglianò
and Montagna in [1]. They proved that any BL-chain is an ordinal sum
of simpler structures, namely totally ordered Wajsberg hoops. Since the
subdirect representation theorem provides an embedding which in general
is not surjective and the ordinal sum representation cannot be extended to
non totally ordered BL-algebras, none of these tools can be used to obtain a
genuine representation theorem for BL-algebras.

Having in mind that every BL-algebra can be embedded into the direct
product of BL-chains which in turn admit a further decomposition as ordinal
sums, Jipsen and Montagna introduced and studied a construction called
poset product with the aim of encompassing both the direct product and
ordinal sum constructions (see [13, 14, 15, 16]). Briefly, the poset product is
a subset of a direct product which is defined by using a partial order over
the index set.

Although it was defined for a larger class of structures, the poset product
construction can, however, be used to shed some light into the structure
of BL-algebras because it provides many examples of non totally ordered
BL-algebras. Indeed, based on the results of [16], it is shown in [6] that
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2 M. BUSANICHE AND C. GOMEZ

every BL-algebra is a subalgebra of a poset product of a collection of BL-
chains. Moreover, as a consequence of [15], the Di Nola’s and Lettieri’s
representation theorem for finite BL-algebras ([10]) can be rephrased: every
finite BL-algebra is isomorphic to the poset product of a finite family of finite
MV-chains with respect to a poset which is a forest (i.e. the downset of
every element is a chain). Unfortunately, the goal of getting a representation
for each BL-algebra using the poset product construction cannot be achieved
(even when dealing with chains, as explained in [2, 5]). Nevertheless, the
poset product construction is an important tool to represent some non-trivial
BL-algebras in terms of simpler BL-chains. The present paper is intended to
describe a family of BL-algebras that can be represented as a poset product
of indecomposable (in the poset product sense) BL-chains.

This article is organized as follows. In the first section we provide pre-
liminaries about BL-algebras and present some key examples that will help
to understand the main results of the paper. The second section offers the
background on poset product and the definition of indecomposable BL-chain.
It also presents a detailed study of the Gödel subalgebra of the poset product
of indecomposable BL-chains and the characterization of its (completely)
join irreducible elements as far as they are relevant for the third section,
which is where the main results are. In Section 3 we introduce the family
of sound BL-algebras that depend on its idempotent and prove that these
algebras are representable as a poset product indexed by a forest which is
isomorphic to the prime spectrum of its Gödel subalgebra. This section
is divided into five subsections. In the first one we define those that will
be the Gödel subalgebras of representable BL-algebras. In the second we
define sound BL-algebras that depends on its idempotent as BL-algebras that
satisfy four conditions and we provide examples to show the independence
of these conditions. In the third subsection is the morphism which embeds
sound BL-algebras that depends of its idempotent into poset products of
indecomposable BL-chains. Before proving surjectivity in the last subsection,
we show that the index set arising from the embedding theorem is a well
partial order. The last section of the paper is devoted to compare our results
with some previous one.

To make the paper self-contained we have included all necessary definitions
and we have explained the different constructions, providing examples of
them. Further details on BL can be found in [1, 6, 8, 12].

1. Preliminaries

In this first section we offer the necessary background on BL-algebras and
fix notation. Then main sources are [1, 6, 9, 12].

1.1. Basic hoops and BL-algebras. A basic hoop is an algebra W =
〈W, ·,→, 1〉 of type 〈2, 2, 0〉 such that 〈W, ·, 1〉 is a commutative monoid and
for all a, b, c ∈W :
1. a→ a = 1,
2. a · (a→ b) = b · (b→ a),
3. a→ (b→ c) = (a · b)→ c,
4. (((a→ b)→ c) · ((b→ a)→ c))→ c = 1.
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POSET PRODUCT AND BL-ALGEBRAS 3

Every basic hoop has a residuated lattice structure, where the lattice order
is defined by a ≤ b if and only if a→ b = 1 and the residuation is

a · b ≤ c if and only if a ≤ b→ c.

The lattice operations are defined by

a ∧ b = a · (a→ b) and a ∨ b = ((a→ b)→ b) ∧ ((b→ a)→ a),

thus 1 is the greatest element. In addition, a basic hoop satisfies the
prelinearity identity

(a→ b) ∨ (b→ a) = 1,
which implies that every basic hoop is a subdirect product of totally ordered
basic hoops. A trivial hoop is a hoop with universe {1}.

A BL-algebra is a bounded basic hoop, that is, it is an algebra A =
〈A, ·,→, 0, 1〉 of type 〈2, 2, 0, 0〉 such that 〈A, ·,→, 1〉 is a basic hoop and 0
is the lower bound of the lattice structure. A BL-chain is a totally ordered
BL-algebra.

We presented the definition of BL-algebras as basic hoops because we will
draw upon its hoop structure along the paper. Alternatively, an equivalent
definition in terms of residuated lattices can be given (we refer the reader to
[6, 11] for details).

1.2. Filters of BL-algebras. A filter of a BL-algebra (basic hoop) A is
a non-empty subset F ⊆ A satisfying that if a ∈ F and a → b ∈ F , then
b ∈ F . A filter F of A is proper if F 6= A. Filters can also be characterized
as non-empty upwards closed subsets of A such that a · b ∈ F for all a, b ∈ F
(see [12]).

The intersection of any family of filters of a BL-algebra A is still a filter
of A. For every subset W ⊆ A, the intersection of all filters F ⊇W is said
to be the filter generated by W and is denoted 〈W 〉. In particular, for each
element w of a BL-algebra A, the filter 〈w〉 = 〈{w}〉 is called the principal
filter generated by w.

A filter F of A is called prime provided that it is proper and for all
a, b ∈ A, if a ∨ b ∈ F , then either a ∈ F or b ∈ F . Though no topology will
be considered, we will refer to the set of prime filters of A as prime spectrum
and we will denote it by Spec(A).

If F is a filter of A, then the binary relation ≡F on A defined by

a ≡F b if and only if a→ b ∈ F and b→ a ∈ F

is a congruence relation. Given a ∈ A, let a/F be the equivalence class of
a with respect to ≡F . The quotient set A/F endowed with corresponding
operations becomes a BL-algebra A/F called the quotient algebra of A by
the filter F . There is a bijective correspondence between the set of filters
of A including F and the set of filters of A/F . In [12] it is shown that the
quotient of a BL-algebra modulo a filter is a BL-chain if and only if the filter
is prime.

Lemma 1.1. If F is a totally ordered family of (prime) filters of a BL-algebra
A, then

⋂
F and

⋃
F are (prime) filters of A.
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4 M. BUSANICHE AND C. GOMEZ

Proof. The intersection of any family of filters is a filter. The fact that the
family F is totally ordered by inclusion ensures that primality is preserved in
the intersection. For the join, let F = {Fi}i∈I , so that F =

⋃
i∈I Fi. Clearly,

F is a non-empty upset which is closed under · because F is totally ordered.
Thus F is a filter of A. Let Fi ∈ F . Since Fi and F are filters of A such that
Fi ⊆ F , F/Fi is a filter of A/Fi. By application of the Second Isomorphism
Theorem ([4, Th. 6.15]), it follows that

A/F ∼=
A/Fi

F/Fi
.

Being A/F the homomorphic image of the BL-chain A/Fi, A/F is also a
BL-chain. Then F ∈ Spec(A). �

Lemma 1.2. Let A be a BL-algebra and F a filter of A. If a ∈ A \ F , then
there is a prime filter G such that F ⊆ G and a /∈ G.

As a consequence, each proper filter of a BL-algebra is the intersection of
all prime filters containing it. In particular,
Corollary 1.3. For each BL-algebra A,

⋂
F∈Spec(A) F = {1}.

The previous results have a fundamental role in the proof of the subdirect
representation theorem for BL-algebras, on which the importance of the
study of BL-chains relies.

1.3. The ordinal sum construction. The ordinal sum construction has
proved to be a very effective tool to describe BL-chains. Indeed, they are
characterized as ordinal sums of irreducible hoops in [1].
Definition 1.4. Let 〈I,≤〉 be a totally ordered set. For each i ∈ I, let
Wi = 〈Wi, ·i,→i, 1〉 be a totally ordered hoop such that for every i 6= j,
Wi ∩Wj = {1}. Then the ordinal sum of this family is the hoop

⊕
i∈I Wi =

〈
⋃

i∈I Wi, ·,→, 1〉 where the operations · and → are given by

a · b =


a ·i b if a, b ∈Wi;
a if a ∈Wi \ {1}, b ∈Wj and i < j;
b if b ∈Wi \ {1}, a ∈Wj and i < j.

and

a→ b =


1 if a ∈Wi \ {1}, b ∈Wj and i < j;
a→i b if a, b ∈Wi;
b if b ∈Wi, a ∈Wj and i < j.

Note that the ordinal sum
⊕

i∈I Wi of a family {Wi : i ∈ I} of totally
ordered hoops is a BL-chain whenever I has a least element i0 and Wi0 is
lower bounded. This way, the resulting constant bottom in the ordinal sum
is the bottom of the first summand.

A Wajsberg hoop is a basic hoop which verifies the equation (a → b) →
b = (b → a) → a. For totally ordered basic hoops, this condition captures
the idea of sum irreducibility. Since each non-trivial BL-chain admits (up
to isomorphism) a unique decomposition into an ordinal sum of non-trivial
totally ordered Wajsberg hoops, a complete description of BL-chains in terms
of ordinal sums can be given.
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POSET PRODUCT AND BL-ALGEBRAS 5

Abuse of notation: ordinal sums with bounded summands will be referred
as sums of BL-chains instead of hoops reducts of BL-chains.

1.4. Key examples of Wajsberg hoops and BL-chains. In any BL-
algebra a unary operation of negation ¬ can be defined as ¬a = a→ 0.

An MV-algebra (see [7]) is a BL-algebra in which the identity ¬¬a = a
holds. The subvariety of MV-algebras is the algebraic semantics for the
infinite-valued logic of Łukasiewicz (see [12]). The standard MV-chain
[0, 1][0, 1][0, 1]MV is the MV-algebra whose universe is the real unit interval [0, 1]
and the operations · and → are a · b = max(0, a + b − 1) and a → b =
min(1, 1− a+ b). For n ≥ 2, Łn is the subalgebra of [0, 1][0, 1][0, 1]MV with universe{

0
n−1 ,

1
n−1 ,

2
n−1 , . . . ,

n−1
n−1

}
. Ł2 is simply the two-element Boolean algebra.

A product algebra is a BL-algebra that fulfils the identities a∧¬a = 0 and
(¬¬c · ((a · c) → (b · c))) → (a → b) = 1. Product algebras correspond to
product fuzzy logic (see [12]). The standard product chain is the algebra
[0, 1][0, 1][0, 1]Π = 〈[0, 1], ·,→, 0, 1〉 where · is the usual product over the real interval
[0, 1] and → is given by

a→ b =
{
b/a if a > b;
1 if a ≤ b.

Totally ordered Wajsberg hoops can be either lower bounded or not.
Bounded totally ordered Wajsberg hoops are bottom-free reducts of MV-
chains, while unbounded are cancellative Wajsberg hoops; that is, they satisfy
the equality a→ (a · b) = b (see [3]). A key example of cancellative Wajsberg
hoop arises by considering the hoop reduct of the algebra [0, 1]Π \ {0}; i.e.
considering the operations on (0, 1] as restrictions of the corresponding
operations on [0, 1][0, 1][0, 1]Π. This cancellative hoop is denoted by (0, 1](0, 1](0, 1]Π. It is
important to note that

[0, 1][0, 1][0, 1]Π ∼= Ł2 ⊕ (0, 1](0, 1](0, 1]Π.

1.5. Idempotent elements in BL-algebras. An element i in a BL-al-
gebra A is called idempotent if i · i = i. Id(A) will stand for the set of
idempotent elements of A. If A is a BL-algebra, then i ∈ Id(A) if and only
if i · a = i∧ a for all a ∈ A. Hence, if i ∈ Id(A), for each a, b in A, i ≤ a→ b
if and only if i∧ a ≤ b. Consequently, the set Id(A) forms a subalgebra of A
which is a Gödel algebra (see [12]).

Given a subset W of a partially ordered set A, [W ) will denote the upset
of W ; that is, [W ) = {a ∈ A : a ≥ w for some w ∈ W}. Similarly for the
downsets (W ].
Theorem 1.5. Let A be a BL-algebra and B a subalgebra of Id(A). If F
is a filter of B, then [F ) is a filter of A. In addition, a ≡[F ) b if and only if
there exists i ∈ F such that a ∧ i = b ∧ i.

Let A be a BL-algebra (BL-chain) and i, j ∈ A idempotent elements such
that i < j. Then the set [i, j]A = {a ∈ A : i ≤ a ≤ j} with the lattice
and product operations inherited from A and the implication →ij given by
a→ij b = (j ∧ (a→ b)) ∨ i has a BL-algebra (BL-chain) structure.
Corollary 1.6. If i ∈ Id(A), then the mapping a/[i) 7→ a ∧ i defines an
isomorphism from the quotient algebra A/[i) onto the segment algebra [0, i][0, i][0, i]A.
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6 M. BUSANICHE AND C. GOMEZ

Recall from [9] that an element a which is not the bottom element of a
lattice L is called ∨-irreducible if for all b, c ∈ L, a = b ∨ c implies a = b or
a = c (alternatively, b ∨ c < a whenever b < a and c < a). If an element in a
lattice is not the supremum of all elements strictly below it, or equivalently
if it has a unique subcover, then it is said to be completely ∨-irreducible (see
[11]). If a ∈ L is a completely ∨-irreducible element, then b � a will mean
that b is the predecessor of a in L.

Let A be a BL-algebra and i ∈ Id(A). It is obvious that if [i) ∈ Spec(A),
then i is a ∨-irreducible element. The converse is a straightforward con-
sequence of the prelinearity property of BL. Further, if i ∈ Id(A) is ∨-
irreducible, then (i] = {a ∈ A : a ≤ i} is a totally ordered downset of
∨-irreducible elements. From now on,

JA will denote the set {i ∈ A : i ∈ Id(A) is ∨-irreducible in Id(A)}

and SA will denote its subset of completely ∨-irreducible elements.
For the next remark, recall that a poset 〈P,≤〉 is called forest if for every

p ∈ P the downset of p is totally ordered.

Remark 1.7. The poset of ∨-irreducible elements JA of a BL-algebra A is
a forest. Thus SA is a forest as well.

2. The poset product construction

We recall the definition of poset product of BL-algebras and some of its
properties. This construction was introduced in a more general framework
for the study of a class of algebras that properly contains the class BL (the
interested reader should see [13, 15, 16]).

Definition 2.1. Let P = 〈P,≤〉 be a poset and let {Ap : p ∈ P} be a
collection of BL-algebras. Up to isomorphism we can (and we will) assume
that all Ap share the same neutral element 1 and the same minimum element 0.
The poset product

⊗
p∈P Ap is the residuated lattice A = 〈A, ·,→,∨,∧,⊥,>〉

defined as follows:
1. The domain of A is the set of all maps x belonging to

∏
p∈P Ap such that

for all p ∈ P , if xp 6= 1, then xq = 0 for all q > p.
2. > is the map whose value in each coordinate is 1, and ⊥ is the one whose

value in each coordinate is 0.
3. The monoid operation and the lattice operations are defined pointwise.
4. The residual is

(x→ y)p =
{
xp →p yp if xq ≤q yq for all q < p;
0 otherwise.

where the subscript p denotes realization of operations and of order in Ap

(we will often omit subscripts when there is no danger of confusion).

It is worth noting that an element x ∈
∏

p∈P Ap is in the poset product if
and only if {p ∈ P : 0 < hp < 1} is an antichain and {p ∈ P : xp = 1} is a
downset (hence {p ∈ P : xp = 0} is an upset).
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POSET PRODUCT AND BL-ALGEBRAS 7

2.1. Representability. While the poset product construction preserves
many properties of residuated lattices (details in [15, 16]), the prelinearity
property of BL is not preserved without some additional requirements.

Theorem 2.2 (see [6]). Suppose that P is a forest and that for all p ∈ P ,
Ap is a BL-chain. Then

⊗
p∈P Ap is a BL-algebra.

So it is natural to wonder when a BL-algebra is isomorphic to a poset
product of simpler structures. This question is addressed in [6], where it is
shown that every BL-algebra can be embedded into a poset product of a
family of MV-chains and product chains. The case of BL-chains is analyzed
in [5] by comparing the ordinal sum and the poset product constructions.

An algebra A is said to be poset product indecomposable (indecomposable,
for short) if A is non-trivial and if A is a poset product of two algebras A1
and A2, then either A1 or A2 is trivial.

Lemma 2.3 (see [5]). A non-trivial BL-chain A is indecomposable if and
only if Id(A) ∼= Ł2.

Observe that a BL-chain is indecomposable if and only if it is isomorphic
to W ⊕ (

⊕
i∈I Wi), where W is an MV-chain and for each i ∈ I, Wi is

an unbounded totally ordered Wajsberg hoop. Therefore MV-chains and
product chains are indecomposable. Because of Theorem 2.2, in the present
paper we only care for poset products whose factors are indecomposable
chains.

Definition 2.4. A BL-algebra is representable (by a poset product) if it is
isomorphic to the poset product of a family of indecomposable BL-chains
indexed by a forest.

2.2. Idempotent elements in a poset product. We fix a forest P and
a family {Ai : i ∈ P} of indecomposable BL-chains. Let A be the poset
product

A =
⊗
i∈P

Ai.

For each downset Q ⊆ P , its characteristic function χQ is an element of A.
For each p ∈ P , let ↓ p = {i ∈ P : i ≤ p}. If x ∈ A, then
1. Ox = {i ∈ P : xi = 1} is a downset of P .
2. x ∈ Id(A) if and only if x = χOx .
3. If x, y ∈ Id(A), then

x ≤ y ⇐⇒ Ox ⊆ Oy ⇐⇒ yi = 1 ∀i ∈ Ox.

The first claim comes from the definition of poset product. The second claim
follows from Lemma 2.3 and the third one is evident.

Lemma 2.5. Let x ∈ Id(A).
1. x ∈ JA if and only if Ox = {i ∈ P : xi = 1} is a non-empty downset

which is totally ordered.
2. x ∈ SA if and only if x = χ↓p for some p ∈ P if and only if Ox has a

maximum.

Proof.
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8 M. BUSANICHE AND C. GOMEZ

1. Let x ∈ JA, which implies that Ox 6= ∅. Assume that j, k ∈ Ox are two
incomparable elements and define y, z ∈ Id(A) as follows:

yi =
{
xi if i and j are comparable;
0 otherwise.

zi =
{

0 if i ≥ j;
xi if i � j.

Then y < x, z < x and x = y ∨ z, so x is not ∨-irreducible in Id(A),
which is a contradiction. Thus Ox must be totally ordered. Conversely,
assume that Ox is non-empty and totally ordered (so that x > 0) and let
y, z ∈ Id(A) be such that x = y ∨ z. Hence Ox = Oy ∪ Oz is a totally
ordered set which is the join of two downsets. Then either Oy = Ox or
Oz = Ox. Thus either x = y or x = z, so x ∈ JA.

2. Let x ∈ SA and let y be the predecessor of x in Id(A). Since y = χOy <
χOx = x, Oy ( Ox. Let p ∈ Ox \ Oy. Clearly, y < χ↓p ≤ x and it may
not occur that χ↓p < x because y is the unique lower cover of x in Id(A).
Hence x = χ↓p. For the converse, let x = χ↓p. To see that it is completely
∨-irreducible in Id(A), consider y ∈ Id(A) defined as

yi =
{

1 if i < p;
0 otherwise.

and see that y is the unique subcover of x. It is obvious that x ∈ SA if
and only if Ox has a maximum. �

The following lemma says that each element x ∈ Id(A) can be written as
the supremum of all idempotent completely ∨-irreducible elements below it.

Lemma 2.6. For all x ∈ Id(A), x =
∨

i∈Ox
χ↓i.

Proof. Given x ∈ Id(A), clearly χ↓i ≤ x for all i ∈ Ox. On the other
hand, if χ↓i ≤ y for all i ∈ Ox, then Ox ⊆ Oy. Therefore x ≤ y and
x =

∨
i∈Ox

χ↓i. �

Note. Lemma 2.6 holds trivially when x = 0.

3. Representation by poset product

In this section we study under which conditions an algebra is isomorphic
to a poset product of indecomposable BL-chains. The way to achieve the
result is long as it requires a deep investigation of the set of prime filters
of poset products. We first define and analyze the Gödel subalgebras of
those BL-algebras that are going to be representable. Then we establish
sufficient conditions for a BL-algebra to be embeddable into a poset product
and provide examples of algebras that do not satisfy such conditions. Finally,
we prove an embedding theorem and, after analyzing the prime spectrum of
these BL-algebras, we prove that the embedding is also surjective.

3.1. Principal Gödel algebras. A Gödel algebra A is said to be principal
if every prime filter F ∈ Spec(A) is principal. Of course, finite Gödel algebras
are principal. The following examples will play a major role in Section 3.2.

Example 3.1. Let A =
⊕
N Ł2. From the fact that 〈A,≤〉 is a well-ordered

set, it is easily seen that if F is a (prime) filter of A, then F = 〈i〉 for some
i ∈ A. Hence A is a principal Gödel chain. Similarly, B = (

⊕
N Ł2)⊕ Ł2 ∼=
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POSET PRODUCT AND BL-ALGEBRAS 9⊕
N∪{t} Ł2 is a principal Gödel chain, where t denotes the greatest element

in the order of the index set 〈N ∪ {t},≤〉.
Example 3.2. The Gödel chain A =

⊕
P Ł2, where P = 〈{b} ∪ Z−,≤〉 is

a totally ordered set endowed with the usual order in Z− and b < z for all
z ∈ Z−, is not a principal Gödel chain because the filter {a ∈ A : a > 0} is
not principal.

As we will see in the following results, the subset of ∨-irreducible elements
of a principal Gödel algebra satisfies some interesting properties.
Lemma 3.3. Let A be a principal Gödel algebra. Then each non-empty
totally ordered subset of JA has minimum and supremum.
Proof. Let ∅ 6= C ⊆ JA be a totally ordered set, so that F = {〈i〉}i∈C is a
totally ordered family of Spec(A). Therefore

F =
⋃
F = {a ∈ A : a ≥ i for some i ∈ C} ∈ Spec(A)

by Lemma 1.1. Moreover, since A is principal, F = 〈m〉 = [m) for some
m ∈ JA and m is thus the greatest lower bound of C. If it were m /∈ C, then
it would exists i ∈ C causing the absurd m ≤ i < m. Therefore m = min C.
Analogously, there is an s ∈ JA such that the prime filter

G =
⋂
F = {a ∈ A : a ≥ i for all i ∈ C}

is generated by s, meaning that s = sup C. �

Example 3.4. Let A and B be the principal Gödel chains as defined in
Example 3.1.
1. Although 1 = sup{i ∈ SA : i ≤ 1}, 1 is not a maximum because 1 /∈ SA.
2. {i ∈ JB : i < 1} has a maximum, namely 0t, the minimun element of the

topmost summand. It is worth mentioning that 0t /∈ SB.
Corollary 3.5. Let A be a principal Gödel algebra. If i, k ∈ A are such that
i < k and k is a ∨-irreducible element, then C = {j ∈ A : i < j ≤ k} has a
minimum element m ∈ SA.
Proof. From Remark 1.7 we know that C is a non-empty totally ordered
subset of JA (because k ∈ C is a ∨-irreducible element). Then C has a
minimum by Lemma 3.3, say m, which actually is a completely ∨-irreducible
element because i �m. �

Remark 3.6.
1. Corollary 3.5 says that for every a ∈ JA there is an i ∈ SA such that
i ≤ a. As a consequence,

a =
∨
{i ∈ SA : i ≤ a} for each a ∈ JA.

This claim is trivial when a ∈ SA. In case a /∈ SA, a is the supremum of
all elements strictly below it.

2. If i = 0 in Corollary 3.5, then for each k ∈ JA there exists mk ∈ JA such
that 0 �mk. So mk is minimal in JA, and it is an atom of A.

Theorem 3.7. If A is a principal Gödel algebra, then⋂
i∈SA

〈i〉 = {1}.
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10 M. BUSANICHE AND C. GOMEZ

Proof. From Corollary 1.3 we know that the intersection of the prime filters
of A is the trivial filter {1}. Under the hypothesis that A is principal, we
also know that every prime filter is of the form 〈i〉 for some i ∈ JA. Then

{1} =
⋂

i∈JA

〈i〉 ⊆
⋂

i∈SA

〈i〉.

Assume now that a ∈
⋂

i∈SA
〈i〉, so that a ≥ i for each i in SA. By Remark

3.6, since every i ∈ JA is the supremum of all elements in SA below it, a ≥ i
for every i ∈ JA. Hence ⋂

i∈SA

〈i〉 ⊆
⋂

i∈JA

〈i〉,

as desired. �

To close this section we prove a result that will play a crucial role when
dealing with representable Gödel algebras which are principal.

Lemma 3.8. If A =
⊗

P Ł2 is a principal Gödel algebra, then P does not
have infinite antichains.

Proof. By the way of contradiction, assume the lemma is false. Let

F = {x ∈ A : |{i ∈ C : xi = 0}| <∞},

where C ⊆ P is an infinite antichain with the property of being maximal in
the sense that for all i ∈ P , C ∪ {i} is not an antichain. It is fairly easy to
see that F is a filter. Consider an infinite set C′ ( C such that C \ C′ is also
infinite and define x, y ∈ A satisfying that

xi =
{

0 if i ∈ C′;
1 if i ∈ C \ C′.

and yi =
{

1 if i ∈ C′;
0 if i ∈ C \ C′.

Although x ∨ y ∈ F , neither x nor y belong to F . Hence F is a proper filter
of A which is not prime. Let z ∈ A \ F be such that

zi =
{

0 if i ∈ C;
1 if i < j for some j ∈ C.

By Lemma 1.2, there is a G = 〈m〉 ∈ Spec(A) such that F ⊆ G and
z /∈ G. Furthermore, G properly contains F because m /∈ F , so that
|{i ∈ C : mi = 0}| =∞. However, |{i ∈ C : mi = 1}| ≥ 1, since otherwise it
would be m ≤ z (implying the absurd z ∈ G) due to the maximality of C.
Pick an i0 ∈ C such that mi0 = 1. Then the element w ∈ A with

wi =
{

0 if i = i0;
1 if i ∈ C \ {i0}.

is in F but not in G; contrary to the fact that F ⊆ G. Thus P has no infinite
antichains.

In case C were not maximal, the proof works as long as the filter F is a sub-
set of {x ∈ A : xi = 1 for each j ∈ C such that i and j are incomparable}.

�
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POSET PRODUCT AND BL-ALGEBRAS 11

3.2. Sound BL-algebras that depend on its idempotents. We will
establish some conditions under which a BL-algebra can be embedded into a
poset product of indecomposable BL-chains.

We will say that a BL-algebra A is sound if
(a) Id(A) is principal.
(b) For every F ∈ Spec(Id(A)), [F ) ∈ Spec(A).
In Section 3.1 we studied some properties of the set JA ⊆ Id(A) of a

sound BL-algebra A. Note that it is always the case that {i ∈ Id(A) :
i is ∨-irreducible in A} ⊆ JA and the opposite inclusion is obvious when A
is a chain. Then condition (b) ensures that both sets coincide if A is sound;
in other words, the attribute of being ∨-irreducible is preserved from Id(A)
to A. Finite BL-algebras and principal Gödel algebras are easy examples of
sound BL-algebras. The next ones are more interesting.

Example 3.9. Let A = (
⊕
N Ł2)⊕ (0, 1](0, 1](0, 1]Π and B = (

⊕
N Ł2)⊕ (0, 1](0, 1](0, 1]Π⊕Bt,

where Bt is an indecomposable BL-chain. By Example 3.1, Id(A) ∼=
⊕
N Ł2

and Id(B) ∼= (
⊕
N Ł2) ⊕ Ł2 are principal Gödel chains and clearly each

∨-irreducible element of Id(A) (or Id(B)) generates a prime filter in A
(respectively, in B). Therefore A and B are sound BL-chains.

The independence of conditions (a) and (b) are now illustrated.

Example 3.10. Let A =
⊗

i∈Z− Ai be the poset product of a family of
indecomposable BL-chains. It is easy to check that Id(A) ∼=

⊗
Z− Ł2 is iso-

morphic to
⊕
{b}∪Z− Ł2. Although [F ) ∈ Spec(A) for every F ∈ Spec(Id(A)),

A is not a sound BL-chain because Id(A) is a non-principal Gödel chain by
Example 3.2.

Example 3.11. Let A = Ł2 ⊕ ((0, 1](0, 1](0, 1]Π × (0, 1](0, 1](0, 1]Π) be the ordinal sum of Ł2
and the unbounded Wajsberg hoop (0, 1](0, 1](0, 1]Π×(0, 1](0, 1](0, 1]Π. Trivially, Id(A) ∼= Ł2 is
a principal Gödel algebra and {1} is its unique prime filter. But [1) /∈ Spec(A).
Thus A is not a sound BL-algebra.

For an i ∈ JA, let Fi = 〈i〉 be the corresponding prime filter of Id(A) and
[Fi) the prime filter of A induced by Fi. Observe that the order in JA is
such that

i ≤ j ⇐⇒ 〈j〉 ⊆ 〈i〉 ⇐⇒ [Fj) ⊆ [Fi).

Lemma 3.12. Let A be a sound BL-algebra. For each i ∈ SA,
A/[Fi) ∼= Bi ⊕Ai,

where Bi is a (possibly trivial) BL-chain and Ai is an indecomposable BL-
chain.

Proof. Let Fi = 〈i〉 with i ∈ SA. The soundness of A guarantees that A/[Fi)
is a BL-chain. From Corollary 1.6, A/[Fi) ∼= [0, i][0, i][0, i]A. Since i is completely
∨-irreducible in Id(A), there exists a unique idempotent element j such that
j � i. Clearly, we have

A/[Fi) ∼= [0, i][0, i][0, i]A ∼= [0, j][0, j][0, j]A ⊕ [j, i][j, i][j, i]A
and Ai = [j, i][j, i][j, i]A is an indecomposable BL-chain. Set Bi = [0, j][0, j][0, j]A. Observe
that if 0 � i, then Bi is trivial. �
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12 M. BUSANICHE AND C. GOMEZ

A sound BL-algebra A depends on its idempotents if it satisfies:
(c) Let i ∈ SA and a ∈ A. If a /∈ [Fi) but a ∈ [Fk) for all k ∈ SA such

that k < i, then a ≥ j, being j � i in JA.
(d)

⋂
i∈SA

[Fi) = {1}.
The most immediate example of a BL-algebra that is sound and depends

on its idempotents is the one of an indecomposable BL-chain. Some other
examples are presented next:

Example 3.13. Finite BL-algebras are sound BL-algebras that depend on its
idempotents. Since every of ∨-irreducible element is completely ∨-irreducible,
condition (c) is immediate, as well as (d).
Example 3.14. Principal Gödel algebras are sound and due to Theorem
3.7 they satisfy condition (d), too. Let i ∈ SA and j � i in JA. Since
{k ∈ SA : k ≤ j} = {k ∈ SA : k < i}, if a ∈ [Fk) for all k ∈ SA such
that k < i, then a ≥ j =

∨
{k ∈ SA : k ≤ j}. Then condition (c) holds

for principal Gödel algebras. Hence principal Gödel algebras depend on its
idempotents.

Example 3.15. Consider the sound BL-chains A and B from Example 3.9.
Recall that Id(A) ∼=

⊕
N Ł2 and Id(B) ∼= (

⊕
N Ł2)⊕ Ł2.

1. Let i ∈ SA and j � i in Id(A), which is also a completely ∨-irreducible
element in Id(A). If a ∈ A is not in [Fi) = [i) but a ∈ [Fk) for all k ∈ SA
such that k < i, then clearly a = j. Hence A satisfies condition (c). On
the other hand,

⋂
i∈SA

[Fi) = (0, 1], so condition (d) fails for A.
2. Since 1 ∈ SB, B verifies condition (d). Choosing a = 1/2 in B we get

that a /∈ {1} and k ≤ a < 1 for all k ∈ SB \ {1}, thus a ∈ [Fk) for all
k ∈ SB \ {1}. However, a /∈ Bt and thus (c) does not hold for B.

3. A ⊕A and A ×A are sound BL-algebras in which neither (c) nor (d)
holds.

3.3. Embedding into a poset product.

Theorem 3.16. Let A be a sound BL-algebra that depends on its idem-
potents. Then A can be embedded into

⊗
i∈SA

Ai, where each Ai is an
indecomposable BL-chain.

Proof. For each i ∈ SA, by Lemma 3.12, we have
A/[Fi) ∼= Bi ⊕Ai

with Ai an indecomposable BL-chain. The universe of Ai is the totally
ordered set Ai = [j/[Fi), i/[Fi)], where j � i in JA. For simplicity we denote
0i = j/[Fi) and 1i = i/[Fi).

Consider the function h : A→
∏

i∈SA
Ai given by

(3.1) h(a)i =
{
a/[Fi) if a/[Fi) ∈ Ai;
0i otherwise,

where a ∈ A and i ∈ SA. Observe that
h(a)i = 0i ∨ a/[Fi).

We will prove that h is an embedding. Before this, we need two technical
facts.
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POSET PRODUCT AND BL-ALGEBRAS 13

Fact 1. For a ∈ A and i ∈ SA, a/[Fi) ∈ Ai if and only if h(a)k = 1k for all
k ∈ SA such that k < i.

Proof of Fact 1. Let j � i. We will first check that
a/[Fi) ∈ Ai if and only if a ≥ j.

It is trivial that if a ≥ j then a/[Fi) ≥ j/[Fi). Now assume that a/[Fi) ∈ Ai.
This implies that j → a ∈ [Fi), which is i ≤ j → a. From residuation we get
j = j ∧ i = j · i ≤ a.

Now observe that for each k ∈ SA, if k < i, then k ≤ j. So if a/[Fi) ∈ Ai

we have k ≤ j ≤ a for each k ∈ SA such that k < i. Thus a ∈ [Fk)
and a/[Fk) = 1k ∈ Ak. Hence h(a)k = 1k. On the other hand, assume
that h(a)k = 1k for each k < i in SA. We can have either a ∈ [Fi) or
a /∈ [Fi). If the first case happens, then a/[Fi) = 1i and this implies
a/[Fi) ∈ Ai. Otherwise, since A depends of its idempotents, j ≤ a by (c).
Thus a/[Fi) ∈ Ai. �

Fact 2. Let a ∈ A and i ∈ SA. If a/[Fi) /∈ Ai, then P = {j ∈ SA : j <
i and h(a)j < 1j} has a minimum element.

Proof of Fact 2. Since i cannot be a minimal element of SA, it follows from
Fact 1 that there is a j ∈ SA such that j < i and h(a)j < 1j . Then P is a
non-empty totally ordered subset of SA. By Lemma 3.3, P has a minimum
element. �

We now continue with the proof.
h is well defined. If a ∈ A is such that h(a)i > 0i for some i ∈ SA, then
a/[Fi) ∈ Ai. Therefore, by Fact 1, h(a)k = 1k for each k < i. Then
h(a) ∈

⊗
i∈SA

Ai.
h(0)i = 0i for each i ∈ SA. It is enough to observe that 0/[Fi) ∈ Ai only
when 0/[Fi) = 0i and Bi is trivial, since the projection of A over A/[Fi) is a
morphism that preserves the bottom element.
h is a morphism. Let a, b ∈ A and i ∈ SA. Then h(a · b)i = 0i ∨ (a · b)/[Fi).
But (a · b)/[Fi) ≥ 0i if and only if a/[Fi) ≥ 0i and b/[Fi) ≥ 0i. Therefore
h(a · b)i = h(a)i · h(b)i. We will check that h preserves →. If a→ b ∈ [Fi),
then h(a→ b)i = (a→ b)/[Fi) = 1i. Moreover,
h(a→ b)k = (a→ b)/[Fk) = a/[Fk)→ b/[Fk) = 1k for all k ≤ i in SA.

Thus a/[Fk) ≤ b/[Fk) and
h(a)k = 0k ∨ a/[Fk) ≤ 0k ∨ b/[Fk) = h(b)k

for all k ≤ i in SA. By the definition of → in a poset product,
(h(a)→ h(b))i = h(a)i → h(b)i = 1i = h(a→ b)i.

Assume now that a → b /∈ [Fi) and (a → b)/[Fi) ∈ Ai. Then h(a → b)i =
(a→ b)/[Fi) < 1i since a→ b � i. Because A/[Fi) is a chain, a/[Fi) > b/[Fi)
indeed. Both a/[Fi) and b/[Fi) are in Ai, since otherwise the contradiction
(a→ b)/[Fi) ∈ Bi can be derived:
• if a/[Fi) ∈ Bi, then clearly b/[Fi) ∈ Bi and hence a/[Fi)→ b/[Fi) ∈ Bi.
• if a/[Fi) ∈ Ai and b/[Fi) ∈ Bi, then a/[Fi)→ b/[Fi) = b/[Fi) ∈ Bi.
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14 M. BUSANICHE AND C. GOMEZ

Therefore h(a)k = h(b)k = 1k for all k < i in SA by Fact 1. Then

(h(a)→ h(b))i = h(a)i → h(b)i = a/[Fi)→ b/[Fi) = h(a→ b)i.

For the case (a → b)/[Fi) /∈ Ai, h(a → b)i = 0i. Recall from Fact 2 that
there exists m = min{j ∈ SA : j < i and h(a→ b)j < 1j}. Then

h(a→ b)m < 1m and h(a→ b)j = 1j for all j < m in SA

by Fact 1. Reasoning as before, a/[Fm) > b/[Fm) ≥ 0m and

h(a)m = 0m ∨ a/[Fm) = a/[Fm) > 0m ∨ y/[Fm) = h(y)m.

Hence (h(a)→ h(b))i = 0i.

h is injective. Assume a 6= b ∈ A and a � b. Since a→ b < 1 and A depends
on its idempotents, condition (d) implies that there is an i ∈ SA such that
a→ b /∈ [Fi).
• If (a→ b)/[Fi) ∈ Ai, then (as we have already seen) a/[Fi) > b/[Fi) and
both a/[Fi) and b/[Fi) belong to Ai. Thus h(a)i > h(b)i.
• If (a → b)/[Fi) /∈ Ai, take m = min{j ∈ SA : j < i and h(a → b)j < 1j}.
Then h(a)m > h(b)m.

Hence h(x) 6= h(y).

We have proved that h is an embedding from A into
⊗

i∈SA
Ai. �

Lemma 3.17. If A is a sound BL-algebra that depends on its idempotents,
a ∈ A and h is the application of Theorem 3.16, then

Oh(a) = {i ∈ SA : i ≤ a}.

Proof. Let i ∈ SA. The definition (3.1) and Fact 1 give us the equivalences
we need.

i ∈ Oh(a) ⇐⇒ h(a)i = a/[Fi) = 1i ⇐⇒ i ≤ a. �

Remark 3.18. If a ∈ A is a ∨-irreducible element, then Oh(a) is a totally
ordered downset.

3.4. The spectrum of a principal Gödel algebra as an ordered struc-
ture. We are going to use the embedding (3.1) of Theorem 3.16 to prove that
a sound BL-algebra A depending on its idempotents satisfies that 〈JA,≤〉
is a well partial order, that is to say that 〈JA,≤〉 is a well-founded poset
without infinite antichains (see [11]).

Fix A a sound BL-algebra that depends on its idempotents. Since h is a
homomorphism, the restriction of h to the principal Gödel subalgebra Id(A)
has its image included in the subalgebra

⊗
SA

Ł2 of
⊗
SA

Ai. With an abuse
of notation we consider the embedding

h : Id(A)→
⊗
SA

Ł2.

Theorem 3.19. The restriction of h to JA is bijective map onto the poset
of ∨-irreducible elements of

⊗
SA

Ł2.
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POSET PRODUCT AND BL-ALGEBRAS 15

Proof. Based on Lemma 2.5 and Remark 3.18, the claim that h maps ∨-
irreducible elements of Id(A) to ∨-irreducible elements in the poset product
is straightforward. As a matter of fact, if a ∈ SA, then

(3.2) h(a)i =
{

1i if i ≤ a;
0i otherwise.

for each i ∈ SA. In case a ∈ JA \ SA,

(3.3) h(a)i =
{

1i if i < a;
0i otherwise.

Now let x ∈
⊗
SA

Ł2 be a ∨-irreducible element. By Lemma 2.5, Ox is a
non-empty totally ordered downset, so that

a =
∨

i∈Ox

i

is a well-defined element of Id(A) which is ∨-irreducible by Lemma 3.3. Thus
h(a) is as described in (3.2) or (3.3) above. Upon noting that Oh(a) = Ox,
we conclude that h(a) = x. �

We have the following consequence.

Theorem 3.20. If A is a sound BL-algebra that depends on its idempotents,
then the posets Spec(Id(A)) and Spec(

⊗
SA

Ł2) are isomorphic.

Lemma 3.21. If A is sound BL-algebra that depends on its idempotents,
then

⊗
SA

Ł2 is a principal Gödel algebra.

Proof. Once more, consider the embedding h : Id(A)→
⊗
SA

Ł2. Let B =⊗
SA

Ł2. It is immediate that if F ∈ Spec(B), then G = h−1(F ) = {a ∈
A : h(a) ∈ F} ∈ Spec(Id(A)). Since Id(A) is principal, there is an i ∈ JA
such that G = h−1(F ) = 〈i〉 = [i). We will check that F is a principal
filter generated by the ∨-irreducible element h(i). Since h(i) ∈ F , we have
〈h(i)〉 ⊆ F . For the opposite inclusion, take x ∈ F . The fact that h sends
∨-irreducible elements in the domain to ∨-irreducible elements in the image
implies that h(i) is ∨-irreducible. Then the result of Lemma 2.5 yields that
x ·h(i) ∈ F is also a ∨-irreducible element of B. Given that the restriction to
JA of h is surjective, there exists j ∈ JA such that h(j) = x · h(i). Observe
that i ≤ j because j ∈ G. Hence

h(i) ≤ h(j) = x · h(i) ≤ h(i),

from where it follows that x ≥ h(i). Then F ⊆ 〈h(i)〉. We have proved that⊗
SA

Ł2 is a principal Gödel algebra. �

Theorem 3.22. If A is a sound BL-algebra that depends on its idempotents,
then JA has no infinite antichains.

Proof. According to Lemma 3.21 the algebra
⊗
SA

Ł2 is also principal. This
fact and Lemma 3.8 yield that SA has no infinite antichains. Since any
x ∈ JA is the supremum of all completely ∨-irreducible elements below it by
Lemma 2.6, we get the desired result. �
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16 M. BUSANICHE AND C. GOMEZ

It is derived from Lemma 3.3 and Theorem 3.19 that every non-empty
subset of JA has a minimal element or, equivalently, 〈JA,≤〉 is well-founded.
This, together with the previous results yield that in our study 〈JA,≤〉 is a
well partial order. Since SA ⊆ JA, our index set SA inherits the properties
of JA.

Corollary 3.23. If A is a sound BL-algebra that depends on its idempotents,
then 〈SA,≤〉 is a well partial order, that is, every non-empty set of 〈SA,≤〉
has a finite set of minimal elements.

We will gain a better understanding of the structure of 〈SA,≤〉 with the
next lemma.

Lemma 3.24. Let Id(A) be a principal Gödel algebra. For each i ∈ SA,
there is a finite antichain Ni = {i1, i2, . . . , in} in SA such that
1. i ≤ ik for each k = 1, 2, . . . , n.
2. ↑ ik is totally ordered for each k = 1, 2, . . . , n.
3. If j ∈ SA and i are comparable, then j also is comparable with an element

of Ni.

Proof. Let

N = {k ∈ SA : k ≥ i and ↑ k is totally ordered}.

Then N is non-empty. Indeed, if N were empty, an infinite sequence of
incomparable elements in SA could be built contradicting Theorem 3.22.
Since 〈SA,≤〉 is a well partial order, by defining Ni to be the set of minimal
elements of N we obtain an antichain in SA with the required properties. �

With the previous notation, after fixing the sound BL-algebra that depends
on its idempotents A, we define some especial elements in

⊗
i∈SA

Ł2. Given
i ∈ SA, let ρi ∈

⊗
i∈SA

Ł2 be defined as

(3.4) ρi
j =

{
1 if j and i are comparable;
0 otherwise.

Observe that if ↑ i is totally ordered, then ρi is in JA. As an immediate
consequence of the definition of Ni and ρi we get that

ρi =
∨

j∈Ni

ρj .

Thus every element of the form ρi ∈
⊗

i∈SA
Ł2 can be expressed as a supre-

mum of a finite subset of JA.

3.5. Surjectivity.

Theorem 3.25. If A is a sound BL-algebra that depends on its idempotents,
then the embedding h of Theorem 3.16 is surjective.

Proof. Let A be a sound BL-algebra that depends on its idempotents and
let h : A →

⊗
i∈SA

Ai be the embedding of Theorem 3.16. For a given
x ∈

⊗
i∈SA

Ai, consider

Zx = {i ∈ SA : xi 6= 1}.
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POSET PRODUCT AND BL-ALGEBRAS 17

Being the complement of Ox, Zx is an upwards closed subset of SA. If
Zx = ∅, then x = h(1). Otherwise, from Corollary 3.23 since 〈SA,≤〉 a well
partial order and Zx ⊆ SA,

Zmin
x = {i ∈ Zx : i is minimal in Zx}

is a finite antichain in SA. The key of this proof is to find a finite family
{ai ∈ A : i ∈ Zmin

x } such that for each ai,

(3.5) h(ai)k =


1k if k < i;
xi if k = i;
0k otherwise.

For this purpose, assume first that Zmin
x is maximal in SA in the sense

that for all i ∈ SA, Zmin
x ∪ {i} is not an antichain. According to Theorem

3.16, since A/[Fi) ∼= Bi ⊕ Ai and xi ∈ Ai, there exists bi ∈ A such that
h(bi)i = xi. Note that if k < i, then h(bi)k = 1k by Fact 1. Hence the
element ai = bi ∧ i ∈ A verifies (3.5). Now let

a =
∨

i∈Zmin
x

ai.

Then

h(a) = h

 ∨
i∈Zmin

x

ai

 =
∨

i∈Zmin
x

h(ai) = x,

as desired.
Next, assume that Zmin

x is not maximal. Since SA has no infinite antichains,
we will assume that there is an i ∈ SA such that Zmin

x ∪ {i} is a maximal
antichain in SA (the case of any finite set {i1, . . . , il} such that Zmin

x ∪
{ii, . . . , il} is a maximal antichain is analogous). It is worth pointing out
that xj = 1 if j and i are comparable. Let y ∈

⊗
i∈SA

Ai be defined as

yj =
{

0 if j ≥ i;
xj otherwise.

and ρi as in (3.4). Then x = y ∨ ρi. Since Zmin
y = Zmin

x ∪ {i}, the argument
given in the previous case yields b ∈ A such that h(b) = y. In addition,
there exists c = h−1(ρi) because ρi is the supremum of a finite subset of JA.
Therefore a = c ∨ b is such that h(a) = h(b ∨ c) = h(b) ∨ h(c) = y ∨ ρi = x.
This completes the proof. �

The main theorem of the paper is then:

Theorem 3.26. Every sound BL-algebra that depends on its idempotents is
representable.

In particular, if A a sound BL-chain that depends on its idempotents,

then A
h∼=

⊗
i∈SA

Ai
∼=

⊕
i∈SA

Ai (see [5, Theorem 3.2]).
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4. Concluding remarks

Representation of principal Gödel algebras. As an immediate consequence of
Theorem 3.26 we get:

Corollary 4.1. Every principal Gödel algebra is representable. In particular,
every principal Gödel chain A is isomorphic to

⊕
SA

Ł2.

Remark 4.2. Let A be a principal Gödel algebra.
1. A is atomic and complete, as

⊗
SA

Ł2 has these properties.
2. Every element of A is indeed the supremum of a finite set of ∨-irreducible

elements.

Comparison with the results in [16]. Theorem 3.3. in [16] presents an embed-
ding for an integral GBL-algebra A into a poset product of totally ordered
integral GMV-algebras. The index poset of the poset product is a partially
ordered family of filters ∆ of A that satisfy the following conditions:
(a) For every F ∈ ∆, A/F decomposes as an ordinal sum BF ⊕AF , where

BF is an integral GBL-algebra and AF is a totally ordered and integral
GMV-algebra.

(b) For every F ∈ ∆, if F ( G then {a : a/F ∈ AF } ⊆ G,
(c) For every F ∈ ∆, and for every a /∈ F there exists G ∈ ∆ such that

F ⊆ G and a/G ∈ AF \ {1},
(d)

⋂
∆ = {1}.

Since every BL-algebra is an integral GBL-algebra (see [6]) one can compare
the results in our paper with the mentioned Theorem 3.3. If A is a sound
BL-algebra that depends on its idempotents, the reader can easily check
that the family of filters ∇ = {[Fi) : i ∈ SA} satisfies conditions (b), (c) and
(d) of Theorem 3.3. Condition (a) is not satisfied because, for our case, the
factors Ai, i ∈ SA are not necessarily GMV-algebras. The advantages of our
presentation are the following:
1. Instead of imposing conditions on a family of filters, we ask conditions

over the given BL-algebra to obtain the desired family of filters for index
set.

2. The factors of the representation are poset product-indecomposable,
3. The embedding is also surjective.
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