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KIRCHHOFF DIVERGENCE AND DIFFUSIONS ASSOCIATED TO
TRANSPORT PROBABILITY MEASURES

HUGO AIMAR AND IVANA GÓMEZ

Abstract. Taking as starting point the approach to the divergence operator on weighted
graphs, we give a notion of divergence associated to transport coupling and coupled mea-
sures on locally compact Hausdorff spaces. We consider the induced Laplacian operator
and the corresponding heat diffusion operators in some particular instances.

1. Introduction

In the classical approach in the n-dimensional Euclidean space Rn as the iteration of
the operator nabla, ∆ = div grad = ∇2, the Laplacian, can be seen as the composition
of two differential operators each of first order of differentiation. The gradient acting on
scalars and the divergence on vectors. The intrinsic definitions of these operators are both
based in the geometry of the Euclidean space. In fact, the gradient of a scalar function
u at a point P in Rn, is the vector with the direction of the maximal growth of u from P
and length equal to the rate of growth of u in that maximal direction. The divergence of
a vector field F at a point P of the space is given by the outer flow of F , from P , per unit
volume. Sometimes some problems of potential analysis are posed on sets without any a
priori geometric or algebraic structure and there is no other way to measure a gradient
of a potential u, than the mere difference u(y)− u(x) for any two different points x and
y of the domain of u. A classical instance of this situation is provided by the Kirchhoff
laws in the theory of electric circuits. A resistive circuit of n nodes, {1, 2, . . . , n} can
be schematically seen as a weighted graph. Assume that Rij is the electrical resistance
of the connection between nodes i and j of the circuit. If we admit for each Rij any
nonnegative value including +∞, and Φij is the potential difference between nodes i and
j, from Ohm’s law, the sum of all current intensities is given at each node i = 1, 2, . . . , n,
by (KΦ)i =

∑n
j=1

Φij
Rij

=
∑n

j=1wijΦij, where wij = 1
Rij

. A function Φ defined on the

edges of the graph will satisfy the first Kirchhoff law if KΦ = 0. The first Kirchhoff
law can be seen as a conservation law in the sense that at each node of the electrical
circuit all incoming electrical currents have to compensate with all out-coming electrical
currents. In this sense the operator K acting on functions Φ defined on the edges of the
graph, can be seen as a divergence operator. When Φ is ∇u, the “naive” gradient of u,
(∇u)ij = uj − ui and u is any function defined on the nodes of the graph, we have the
Laplacian operator ∆ = K∇. In particular, u is harmonic (∆u = 0) if and only if u
satisfies the mean value identity at each node, i.e. ui =

∑n
j=1wijuj, whose global or local

characters depend on the concentration of the nonvanishing terms of the matrix wij. For
a complete analysis see [DS84].
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Let us start by some basic abstract definitions. In the following sections we shall
profusely exemplify and illustrate the general framework.

Let X be a locally compact Hausdorff space. Set Cc(X) and Cc(X × X) to denote
the spaces of real valued continuous functions with compact support, defined on X and
X×X respectively. We shall use capital Greek letters Φ = Φ(x, y) to denote real functions
defined on X ×X and small Greek letters ϕ = ϕ(x) to denote real functions defined on
X. Let µ be a Borel probability measure on X and π be a Borel probability measure on
X×X. For a given Φ ∈ Cc(X×X) we say that a function ψ defined on X is a Kirchhoff
divergence of Φ with respect to µ and π if the equation∫

X

ϕ(x)ψ(x)dµ(x) =

∫∫
X×X

ϕ(x)Φ(x, y)dπ(x, y) (1.1)

holds for every ϕ in Cc(X). It is not difficult to provide examples showing that solutions
of (1.1) may not exist and may not be unique. For nonexistence take X = [0, 1], µ = δ0

the Dirac delta at the origin, dπ = dxdy the area in the unit square and Φ ≡ 1. To show
a case of non-uniqueness take again X = [0, 1], µ = δ0, Φ ≡ 1 and π = δ0 × δ0.

Given a finite measure π on X × X, as usual, we denote with πi, i = 1, 2; the two
marginal distributions of π, for B a Borel set in X, π1(B) = π(B × X) and π2(B) =
π(X ×B).

Radon-Nikodym Theorem provides a simple criteria for existence and uniqueness, up
to null sets, of a solution ψ of (1.1) which shall be enough for our further work. Given
Φ ∈ Cc(X × X) and π a probability on X × X, we write πΦ to denote the measure
dπΦ(x, y) = Φ(x, y)dπ(x, y) and π1

Φ and π2
Φ to denote the first and second marginals of

πΦ.

Proposition 1.1. Let X be a locally compact Hausdorff space. Let µ be a Borel probability
on X, π a Borel probability on X ×X and Φ ∈ Cc(X ×X). If the first marginal π1

Φ of
πΦ is absolutely continuous with respect to µ, then, the Radon-Nikodym derivative of π1

Φ

with respect to µ,
dπ1

Φ

dµ
, solves (1.1).

Proof. Notice that since π1
Φ is the first marginal of πΦ, we have that

∫
X
ϕ(x)dπ1

Φ(x) =∫∫
X×X ϕ(x)dπΦ(x, y) =

∫∫
X×X ϕ(x)Φ(x, y)dπ(x, y) for every ϕ ∈ Cc(X). On the other

hand, since we are assuming π1
Φ << µ, we have∫∫

X×X
ϕ(x)Φ(x, y)dπ(x, y) =

∫
X

ϕ(x)dπ1
Φ(x) =

∫
X

ϕ(x)
dπ1

Φ(x)

dµ
dµ(x)

for every ϕ ∈ Cc(X). Which gives (1.1) with ψ =
dπ1

Φ

dµ
, as desired. �

A probability measure π on X ×X is said to be a coupling (see [Vil09]) between the
probability measures µ and ν on X if π1 = µ and π2 = ν. If π is a given probability on
X×X, then π1

Φ is absolutely continuous with respect to π1 = µ and also π2
Φ is absolutely

continuous with respect to π2 = ν, no matter what is the particular Φ ∈ Cc(X ×X).

Proposition 1.2. Let µ and ν be two probability measures on the Borel sets of X and
let π be a coupling of µ and ν. Then for every Φ ∈ Cc(X ×X), the measures π1

Φ and π2
Φ

are absolutely continuous with respect to µ and ν respectively.

Proof. Since Φ is bounded, we have that for every Borel set B in X,∣∣π1
Φ(B)

∣∣ = |πΦ(B ×X)|

=

∣∣∣∣∫∫
B×X

Φ(x, y)dπ(x, y)

∣∣∣∣
2
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≤ ‖Φ‖∞ π
1
Φ(B)

= ‖Φ‖∞ µ(B).

Also, |π2
Φ(B)| ≤ ‖Φ‖∞ ν(B). �

The above propositions prove the following statement.

Theorem 1.3. Let X be a locally compact Hausdorff space. Let π be a Borel probability

measure on X × X. Let Φ ∈ Cc(X × X). Then the Radon-Nikodym derivative
dπ1

Φ

dµ

solves equation (1.1) with µ = π1, the first marginal of π, and π1
Φ is the first marginal of

πΦ(A) =
∫∫

A
Φdπ, A Borel set in X ×X.

We shall use the notation KirπΦ for the solution
dπ1

Φ

dµ
of (1.1) in this case. Notice that

Φ continuous and bounded suffice for the above results. In particular, if f : X → R is
continuous and bounded, so is F (x, y) = f(y)−f(x), and we can define a Laplacian type
operator based on Kirchhoff divergence by

∆πf = KirπF.

Hence, at least formally, the solution for the heat conduction problem

(P )

{
∂u
∂t

= ∆πu, t > 0, x ∈ X
u(x, 0) = g(x) x ∈ X

is given by
u(x, t) = (et∆πg)(x).

Or, when a spectral resolution of the operator ∆π, in terms of a sequence of eigenvalues
λi and eigenfunctions ψi, is available

u(x, t) =
∑
i

etλi 〈g, ψi〉ψi(x)

with 〈g, ψi〉 =
∫
X
g(x)ψi(x)dµ(x).

Along the next sections we aim to explore the above abstract setting for some particular
couplings.

2. The finite case. Weighted graphs

Let X = V = {1, 2, . . . , n} be the set of vertices of a weighted graph G = (V , E, w),
where E = {(i, j) : i ∈ V , j ∈ V} = X ×X is the set of all edges of G, and w : E → R+ ∪
{0} is the nonnegative weight of each edge, with wij = wji, wii = 0 for every i, wij > 0,
i 6= j and

∑n
i=1

∑n
j=1 wij = 1. The weight w determines the probability measure π by

π(A) =
∑

(i,j)∈Awij for a subset A of E. Hence the first marginal µ of π is given by the

weights µi =
∑n

j=1wij. In other words, µ(B) =
∑

i∈B µi =
∑

i∈B
∑n

j=1wij = π(B ×X).
So that ∫

X

ϕdµ =
n∑
i=1

µiϕi, and

∫∫
X×X

Φdπ =
n∑
j=1

n∑
i=1

wijΦij.

Equation (1.1) takes the form

n∑
i=1

µiϕiψi =

∫
X

ϕψdµ =

∫∫
X×X

ϕ(x)Φ(x, y)dπ =
n∑
j=1

n∑
i=1

wijϕiΦij =
n∑
i=1

ϕi

(
n∑
j=1

wijΦij

)
,

3
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which should hold for every ϕ. Hence µiψi =
∑n

j=1wijΦij, or, since each µi is positive

ψi = (KirΦ)i =
1

µi

n∑
j=1

wijΦij =
1∑n

i=1wij

n∑
j=1

wijΦij.

And the corresponding Laplace’s operator of a function f defined on the vertices, is given
by

(∆πf)i =
1

µi

n∑
j=1

wij(fj − fi).

The harmonic functions in this setting are those that satisfy the mean value identity

fi =
1∑n

j=1wij

n∑
j=1

wijfj.

In matrix notation, ∆π = D−1W − I, where D = diagonal(µ1, . . . , µn), and W = (wij).
The diffusion problem {

∂u
∂t

= ∆πu, t > 0
u(i, 0) = fi i = 1, . . . , n

has the solution u(t) = et∆πf , f = (f1, . . . , fn).

We have et∆π = e−tetD
−1W . The general theory of Markov chains can be applied to the

analysis of the steady state for the solution u(t) of (P ). See [Rob76]. A n× n transition
matrix B is said to correspond to a regular Markov chain, if some power of B has only
positive elements. The Fundamental Limit Theorem for regular Markov chains proves
that there exist a Markov matrix M with all rows equal to m = (m1, . . . ,mn), with
mi > 0 for every i = 1, . . . , n and

∑n
i=1mi = 1, such that

lim
k→∞

Bk = M.

The next result is a particular instance of convergence to equilibrium (see [Nor97]).

Proposition 2.1. For n ≥ 3, let W = (wij) be a nonnegative n × n matrix such that
wii = 0 for every i = 1, . . . , n, wij = wji > 0 for each i 6= j and

∑n
i=1

∑n
j=1wij = 1. Let π

be the probability measure defined on {1, . . . , n}2 by π(A) =
∑

(i,j)∈Awij. Given a function

f = (f1, . . . , fn) defined on the vertices V of the weighted graph G, set u(t) = et∆πf to
denote the solution of (P ) with t > 0. Then

lim
t→∞

u(t) =

(
n∑
j=1

mjfj

)
1,

where 1 = (1, . . . , 1) and m = (m1, . . . ,mn) is the constant row of the Markov limit matrix

(D−1W )∞ = lim
k→∞

(D−1W )k =

m...
m


Proof. Notice first that W̃ = D−1W is the matrix of a Markov chain positive entries

except for its diagonal terms. Hence W̃ is a regular Markov chain. From the Fundamental
Limit Theorem for regular Markov chains, we have that

lim
k→∞

W̃ k = M =

m...
m
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with m = (m1, . . . ,mn), mi > 0 for every i = 1, . . . , n and
∑n

i=1 mi = 1. On the other
hand,

u(t) = e−t
∑
l≥0

tl

l!
W̃ lf,

for t > 0. With the standard notation for norms in Rn, we have that for every ε > 0

there exists an integer L such that for l > L we have
∥∥∥W̃ lf −Mf

∥∥∥ < ε
2
. Hence∥∥∥∥∥u(t)−

(
n∑
j=1

mjfj

)
1

∥∥∥∥∥ =
∥∥u(t)−Mf

∥∥
=

∥∥∥∥∥e−t∑
l≥0

tl

l!
(W̃ lf −Mf)

∥∥∥∥∥
≤ e−t

L∑
l=0

tl

l!

∥∥∥W̃ lf −Mf
∥∥∥+

ε

2
e−t

∑
l≥L+1

tl

l!

< ε

for t large enough. �

3. Markov coupling

Let X be a locally compact Hausdorff space. Let µ and ν be two probabilities on the
Borel subsets of X. Let π be a probability on the Borel sets of X ×X that is absolutely
continuous with respect to µ× ν.

Lemma 3.1. Let X, µ, ν and π be as described. Then π is a coupling for µ and ν if and
only if K = dπ

d(µ×ν)
is a Markov kernel in the sense that

(i)
∫
X
K(x, y)dµ(x) = 1 for ν almost every y ∈ X, and

(ii)
∫
X
K(x, y)dν(y) = 1 for µ almost every x ∈ X.

Proof. Assume first that π is a coupling for µ and ν. Then for every B, Borel set in X,
we have

µ(B) = π(B ×X) =

∫∫
B×X

dπ

d(µ× ν)
dµdν =

∫
B

(∫
X

K(x, y)dν(y)

)
dµ(x).

Hence
∫
X
K(x, y)dν(y) = 1 for µ almost every x ∈ X. Identity (i) follows the same

argument. Assume now that (i) and (ii) hold, then by Fubini’s theorem

π(B ×X) =

∫∫
B×X

dπ =

∫∫
B×X

K(x, y)dµ(x)dν(y) =

∫
B

(K(x, y)dν(y)) dµ(x) = µ(B).

�

The next statement provides the Kirchhoff divergence operator associated to these type
of Markov couplings.

Theorem 3.2. Let X be a locally compact Hausdorff topological space. Let µ and ν be
two given Borel probability measures on X. Let π be the coupling for µ and ν given by

π(A) =

∫∫
A

K(x, y)dµ(x)dν(y)

5
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with K satisfying (i) and (ii) in Lemma 3.1 and A any Borel set in X ×X. Then, for
Φ ∈ Cc(X ×X) we have

KirπΦ(x) =

∫
y∈X

K(x, y)Φ(x, y)dν(y).

Proof. The measure πΦ induced by Φ ∈ Cc(X×X) is now given by πΦ(A) =
∫∫

A
ΦKdµdν.

Its first marginal is

π1
Φ(B) = πΦ(B ×X) =

∫
B

(∫
y∈X

Φ(x, y)K(x, y)dν(y)

)
dµ(x).

Hence

KirπΦ(x) =
dπ1

Φ

dµ
=

∫
y∈X

Φ(x, y)K(x, y)dν(y),

as desired. �

For a function f ∈ Cc(X), the function Φ(x, y) = f(y)−f(x) is continuous and bounded
and the operator Kirπ is well defined on Φ. The Laplacian of f in this setting is, then

∆πf(x) =

∫
y∈X

(f(y)− f(x))K(x, y)dν(y) =

∫
y∈X

K(x, y)f(y)dν(y)− f(x).

Or, in terms of operators, ∆π = K − I, with Kf(x) =
∫
y∈X K(x, y)f(y)dν(y). In this

setting, the corresponding diffusion (P), is given by u(x, t) = et∆πf(x), with et∆π =∑
k≥0

tk

k!
(K − I)k = e−t

∑
m≥0

tm

m!
Km.

As before, the existence and structure of steady states for t → ∞ depends on the
particular dynamics of the sequence {Kj : j ≥ 0} of iterations of the operator K induced
by the kernel K and the measure ν on X. Next we explore the case of dyadic Markov
kernels, where the spectral analysis can be explicitly carried through Haar type systems
built on dyadic type families on abstract settings.

Let X = [0, 1) with the usual distance. Let D = ∪j≥0Dj, Dj = {Ijk = [k2−j, (k +
1)2−j) : k = 0, 1, . . . , 2j − 1} be the family of standard dyadic intervals in [0, 1). For
j ≥ 1, I = Ijk ∈ Dj the Haar function hI is given by hI(x) = 2j/2h0

0(2jx − k), with
h0

0(x) = X
[0,

1
2

)
(x) − X

[
1
2
,1)

(x). The system H ∪ {X[0,1)}, with H = {hI : I ∈ D},
provides an orthonormal basis for L2([0, 1), dx). The dyadic family D provides also a
natural metric structure on [0, 1). For x and y in [0, 1), set δ(x, y) = inf{|I| : I ∈
D with x, y ∈ I}. Then δ is an ultrametric on [0, 1) whose balls are the dyadic intervals.
In fact, Bδ(x, r) = {y ∈ [0, 1) : δ(x, y) < r} = [0, 1) for r ≥ 1 and Bδ(x, r) = I, where
x ∈ I ∈ Dj and 2−j < r ≤ 2−j+1.

Let dµ = dν = dx on the Borel subsets of [0, 1) and let us consider a special type of non
trivial couplings. We say that an absolutely continuous coupling π of dx with itself is a
dyadic coupling if K(x, y) = dπ

dxdy
= ϕ(δ(x, y)) for some nonnegative real function defined

on [0, 1]. Notice that K(x, y) = ϕ(δ(x, y)) is a symmetric kernel since δ is symmetric.
On the other hand since π is a coupling probability measure, Lemma 3.1 implies that∫

[0,1)
ϕ(δ(x, y))dy = 1 for every x ∈ [0, 1). Let us mention at this point that this type of

kernels have been considered in [AGM19] regarding some extension of the Central Limit
Theorem. Set Mδ(dx) to denote the class of the all kernels K of the form ϕ ◦ δ with∫

[0,1)
K(x, y)dy = 1.

The next statement contains some basic properties of these Markov kernel. Its proof
can be found in [AGM19].

6
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Proposition 3.3.

(1) K ∈Mδ(dx) if and only if K(x, y) =
∑

j≥0 αj2
jX(0,2−j ](δ(x, y)) with

(a)
∑

j≥0 |αj| <∞,

(b)
∑

l≤j αl2
l ≥ 0, for every j ≥ 0,

(c)
∑

j≥0 αj = 1.

(2) For K ∈ Mδ(dx) the operator Kf(x) =
∫

[0,1)
K(x, y)f(y)dy =

∫
[0,1)

ϕ(δ(x, y))dy has

the special resolution K(X[0,1)) = X[0,1)] and Kh = λhh, for h ∈ H , with λh =∑
j≥j(h) αj, where j(h) is the scale parameter of the support of h.

(3) Since each λh depends only on the scale of j of h we denote the sequence by {λj : j ≥
0}. With this notation λ0 = 1 and λj → 0 as j →∞.

From the above proposition we readily obtain the spectral analysis for the Laplacian
∆π. As a consequence we obtain the Haar-Fourier approach to the solution of diffusion
in this setting.

Proposition 3.4. Let K ∈Mδ(dx) as before. Then

(1) ∆πX[0,1) = 0 and ∆πh = (λh − 1)h, h ∈H ;

(2) for f ∈ L2([0, 1), dx), the function u(x, t) =
∫

[0,1)
f +

∑
h∈H et(λh−1) 〈f, h〉h(x)

solves the problem

(P )

{
∂u
∂t

= ∆πu, t > 0, x ∈ [0, 1)
u(x, 0) = f(x) x ∈ [0, 1).

The formula provided by (2) in Proposition 3.4 shows that the steady state of this
diffusion is the mean value of the initial condition, in agreement with the discrete case in
Proposition 2.1, when mj = 1

n
for every j.

4. Deterministic coupling

Let X be a locally compact Hausdorff topological space. Let T be a Borel measurable
mapping on X. Let µ be a Borel probability on X. Set G : X → X × X be given by
G(x) = (x, T (x)). For A a Borel set in X × X, define π(A) = µ(G−1(A)). Hence, the
first marginal π1 of π is µ and the second is ν(B) = µ(T−1(B)). See [Vil09] for details.

Theorem 4.1. Let X, T and π as above. Then for Φ ∈ Cc(X ×X) we have

KirπΦ(x) = Φ(x, T (x)).

Proof. In order to apply Theorem 1.3, we have to compute the first marginal π1
Φ of πΦ.

Notice first that since for every Borel set A in X ×X,∫∫
X×X

XA(x, y)dπ(x, y) = π(A) = µ(G−1(A)) =

∫
X

XA(x, T (x))dµ(x),

we also have the formula
∫∫

X×X σ(x, y)dπ(x, y) =
∫
X
σ(x, T (x))dµ(x) for simple functions

σ and also for bounded measurable functions. Hence

πΦ(A) =

∫∫
A

Φdπ =

∫∫
X×X

XAΦdπ =

∫
X

XA(x, T (x))Φ(x, T (x))dµ(x).

So that

π1
Φ(B) = πΦ(B ×X) =

∫
B

Φ(x, T (x))dµ(x).

Hence

KirπΦ(x) =
dπ1

Φ(x)

dµ
= Φ(x, T (x)).

7
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�

For a function f ∈ Cc(X) the corresponding Laplacian operator is then given by

∆πf(x) = f(T (x))− f(x).

Or, in operational form

∆π = τ − I,
where τf = f ◦ T and I is the identity.

Let us now consider the diffusion problem (P) in our current situation of the determi-
nistic transport of µ through T . A way to get the solution of (P) in this setting is provided

by the explicit computation of et∆π =
∑∞

k=0
tk

k!
∆k
π.

Lemma 4.2. Let X, µ, T and π be as before, then

et∆πf = e−t
∑
l≥0

tl

l!
(f ◦ T l)

for every f ∈ Cc(X).

Proof. Since f is bounded, we see that the series above is absolutely convergent and that
the L∞-norm of the right hand side is bounded by the L∞-norm of f . Since

∆k
πf =

k∑
l=0

(
k

l

)
(−1)k−lf ◦ T l,

we have

et∆πf =
∑
k≥0

tk

k!
∆k
πf

=
∑
k≥0

tk

k!

k∑
l=0

(
k

l

)
(−1)k−lf ◦ T l

=
∑
l≥0

f ◦ T l
∑
k≥l

(−1)k−l

k!

(
k

l

)
tk

=
∑
l≥0

tl

l!
f ◦ T l

∑
k≥l

(−1)k−l

(k − l)!
tk−l

= e−t
∑
l≥0

tl

l!
f ◦ T l.

�

Hence in the case of the Laplacian provided by a deterministic coupling of measures,
the solution of the initial problem for the equation with initial data f , has a really wide
diversity of steady states depending on the dynamics induced by the iterated system
{T l : l ≥ 0}. In the next examples we only aim to illustrate this fact. For the case of
ergodic mappings T , where limt→∞ u(x, t) is a mean value of the initial condition, we
mention a preliminary result due to F. J. Mart́ın-Reyes [MR]. Nevertheless, perhaps
more interesting from the point of view of the steady state as a classifier of coupling
and transports are some particular non-ergodic cases as those considered in the next
particular cases.
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Proposition 4.3. Let X = [−1
2
, 1

2
], dµ1 = dx, T (x) = −x. Hence for every continuous

function f defined on [−1
2
, 1

2
], its even part fe is the steady state of et∆f . Precisely

et∆f → fe =
f ◦ T + f

2
, t→∞,

uniformly on [−1
2
, 1

2
].

Proof. Let us apply Lemma 4.2 in the current setting. Note that f ◦ T l(x) = f((−1)lx).

Hence, with f = fe + fo and fo = f(x)−f(−x)
2

the odd part of f ,

et∆f(x) = e−t
∑
l≥0

tl

l!
f((−1)lx)

= e−t
∑
l≥0

tl

l!

(
fe(x) + fo((−1)lx)

)
= e−t

(∑
l≥0

tl

l!

)
fe(x) + e−t

(∑
l≥0

(−t)l

l!

)
fo(x)

= fe(x) + e−2tfo(x).

�

The next result deals with the Cantor function in [0, 1].

Proposition 4.4. Let X = [0, 1], T the Cantor function and µ the Hausdorff probability
measure supported in the Cantor set contained in [0, 1]. Then π = µ ◦G−1, with G(x) =
(x, Tx) is a coupling between µ and dx in [0, 1]. Then, the steady state of the solution of
(P) is given by the function g = f ◦ T .

Proof. Since T is continuous, the uniform probability µ on the Cantor set is given on
intervals by µ([a, b)) = T (b) − T (a). Let ν = µ ◦ T−1. For [c, d] in [0, 1] with c and
d that do not belong to the set of dyadic numbers {k2−j : j ≥ 0; k = 0, . . . , 2j − 1}
we have that T−1({c}) and T−1({d}) are singletons, or α = T−1(c), β = T−1(d). Then
ν([c, d]) = µ(T−1([c, d])) = µ([T−1(c), T−1(d)]) = T (T−1(d)) − T (T−1(c)) = d − c. Since
the complement of the dyadic numbers of [0, 1] is dense in [0, 1], we get that dν = dx.
On the other hand, the first and second marginals of π are µ and ν respectively. The
solution of {

∂u
∂t

= ∆πu, x ∈ [0, 1), t > 0,
u(x, 0) = f(x) x ∈ [0, 1).

with f continuous on [0, 1] is given by u(x, t) = e−t
∑

l≥0
tl

l!
f ◦ T l(x). Let us compute

T l(x) for x ∈ [0, 1]. Assume that x ∈ Ljk the k-th middle third deleted in the j-th

approximation of the Cantor set. The central point of Ljk is k2−j and T (k2−j) = k2−j.
Hence T (x) = k2−j, T 2(x) = T (k2−j) = k2−j. So that T l(x) = x for l = 0 and
T l(x) = k2−j for every l ≥ 1. Thus

u(x, t) = e−t

[
f(x) +

(∑
l≥1

tl

l!

)
f(k2−j)

]
= e−tf(x) + e−t(et − 1)f(k2−j)

= e−t[f(x)− f(k2−j)] + f(k2−j).

Which tends to f(k2−j) = f(T (x)) for t→∞. �
9

Prep
rin

t

IMAL PREPRINT # 2020-0046
ISSN 2451-7100 
Publication date: Agust 6, 2020



References
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