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Argentina.
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Abstract

In this work we introduce a concept of complexity for undirected graphs in terms of the spectral analysis
of the Laplacian operator defined by the incidence matrix of the graph. Precisely, we compute the norm
of the vector of eigenvalues of both the graph and its complement and take their product. Doing so, we
obtain a quantity that satisfies two basic properties that are the expected for a measure of complexity. First,
complexity of fully connected and fully disconnected graphs vanish. Second, complexity of complementary
graphs coincide. This notion of complexity allows us to distinguish different kinds of graphs by placing them in
a “croissant-shaped” region of the plane link density - complexity, highlighting some features like connectivity,
concentration, uniformity or regularity and existence of clique-like clusters. Indeed, considering graphs with
a fixed number of nodes, by plotting the link density versus the complexity we find that graphs generated by
different methods take place at different regions of the plane. We consider some of the paradigmatic randomly
generated graphs, in particular the Erdös-Rényi, the Watts-Strogatz and the Barabási-Albert models. Also, we
place some particular, let us say deterministic, well known hand-crafted graphs, to wit, lattices, stars, hyper-
concentrated and cliques-containing graphs. It is worthy noticing that these deterministic classical models
of graphs depict the boundary of the croissant-shaped region. Finally, as an application to graphs generated
by real measurements, we consider the brain connectivity graphs from two epileptic patients obtained from
magnetoencephalography (MEG) recording, both in a baseline period and in ictal periods (epileptic seizures).
In this case, our definition of complexity could be used as a tool for discerning between states, by the analysis
of differences at distinct frequencies of the MEG recording.

1 Introduction

The Laplace operator in the Euclidean setting provides the Hamiltonian of the free particle in quantum mechanics.
On the other hand, the classical Laplace operator is the Euler-Lagrange equation provided, in a domain Ω of the
space, by L(ϕ) =

∫
|∇ϕ|2. For a finite set {1, 2, ..., n} = V and functions ϕ taking real or complex values defined

in V a discrete analogous of L is L(ϕ) =
∑n
i=1

∑n
j=1 |ϕi−ϕj |2. Now, the corresponding Euler-Lagrange equation

is
∑n
i=1(fi − fj) = 0 for every i ∈ V. When instead of the whole set V × V we have an undirected graph, with

vertices in V and adjacency matrix W = (wij) taking the value 1 when there is an edge joining vertices i and j
and zero otherwise, the natural Lagrange functional is LW(ϕ) =

∑n
i=1

∑n
j=1 wij |ϕi − ϕj |2. The corresponding

Euler - Lagrange equation is provided by the graph Laplace equation ∆ϕ = 0, with ∆ϕ(i) =
∑n
j=1 wij(ϕj − ϕi),

wii = 0 and wij = wji. The above considerations suggest that the spectral theory of this discrete Laplace operator
will provide the fundamental states and the corresponding energy levels for a “free particle” in the graph defined
by W and V. The energy levels are the eigenvalues of ∆. In the classical setting a well known measure of
information is given by the Von Neumann entropy that takes into account the eigenvalues of the Laplacian. Here,
we aim to use the spectral analysis of the discrete Laplacian in order to introduce a notion of complexity for
graphs. We shall precisely define it in the next section. Actually we shall determine a region in the plane of the
variables link density-complexity which contains the most well known random graphs such as the Erdös-Rényi,
the Watts-Strogatz and the Barabási-Albert, but also the deterministic (non-random) classical graphs. As an
application to real data we consider the brain connectivity graphs for different states of epileptics patients through
magnetoencephalogaphy (MEG). Section 2 describe briefly the mathematical model, some proofs are contained
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in Appendix A.1. Section 3 is devoted to empirically describe the croissant-shape of the region in the plane of the
variables link density-complexity, which we conjecture contains all the graphs, random or not. Section 4 contains
the analysis and the result for the three most paradigmatic random graphs: Erdös-Rényi, Watts-Strogatz and
Barabási-Albert. In Section 5 we provide application to neurophysiological data. Section 6 contains comments
and conclusions. As we said before Appendix A.1 describes some of the mathematical proofs.

2 The mathematical model

Let G = (V, E ,W) be a simple undirected graph, where V = {1, . . . , n} is the set of vertices or nodes, E =
{e1, . . . , em} ⊂ {{i, j} : i, j ∈ V} is the set of edges and W : V × V → {0, 1} is the adjacency matrix of G with
wij = 1 whenever {i, j} ∈ E and zero otherwise. Since the graph is undirected and simple the matrix W is
symmetric with null diagonal. We will denote i ∼ j when {i, j} ∈ E .

The degree of a vertex j is defined by δ(j) =
∑
i∈V wij . The degree matrix is defined as the diagonal n × n

matrix containing the degrees of the nodes and denoted by D = diag(δ(1), . . . , δ(n)). The Laplacian of the graph
is the lineal operator acting on real or complex functions defined on the nodes, with matrix given by

∆ =W −D. (1)

This operator is symmetric and negative semi-definite. Therefore we can apply the spectral theorem to obtain
an orthonormal basis of `2(V) ∼ Rn of eigenvectors {ψ1, . . . , ψn} of ∆. It is usually called the Fourier basis of
G. The associated eigenvalues {λ1, . . . , λn} satisfies 0 = λ1 ≥ λ2 ≥ · · · ≥ λn. In the following we will refer to the
vector λ = (λ1, . . . , λn) as the spectrum of the graph G. The trace of the Laplacian is a feature of interest for our
further analysis and is given by

∑n
i=1 λi = −2m, where m is the number of edges of G. For a general reference

regarding the spectral theory of the Laplacian on graphs see [1] and references therein.
With the energy point of view described in Section 1, we may consider equivalent two graphs G and G′

that share the spectrum λ̄. Hence, for G and H two graphs with the same number n of vertices, the function
ds(G,H) =

∥∥λ̄G − λ̄H∥∥, with λ̄G and λ̄H the spectral vectors of G and H respectively and ‖·‖ any norm in Rn,

is a distance (metric) between the classes of co-spectrality of G and H. We shall take
∥∥λ̄∥∥ =

(∑n
i=1 |λi|2

)1/2
the

usual norm. We shall refer to ds as the spectral distance. Notice that since the first eigenvalue λ1 of each graph
vanishes, we actually have that ds(G,H) = |Λ̄G − Λ̄H |, where Λ̄ = (λ2, ..., λn) and | · | is the euclidean norm in
Rn−1. The spectral distance on graphs was considered before in [2], see also [3].

In order to introduce our definition of spectral complexity of a graph, let us set Z to denote the null graph,
i.e wij = 0 for every i, j = 1, ..., n and F the complete graph i.e wij = 1 for every i 6= j. Now we can define the
spectral complexity of a graph G with n-vertices

Cs(G) = ds(G,Z) · ds(G,F )

=
∥∥λ̄G − λ̄Z∥∥ ∥∥λ̄G − λ̄F∥∥

= |Λ̄G − Λ̄Z | |Λ̄G − Λ̄F |.
(2)

Two basic premises are behind this definition. The first one is that both, the null graph and the full graph are
the less complex graphs that can be defined on the vertices set V = {1, ..., n}. The second is that complementary
graphs should have the same complexity. The following properties that we prove in Appendix A.1 show that our
definition of spectral complexity Cs satisfies those two requirements.

a) If F is the complete graph, then Λ̄F = n̄ = (n, n, ..., n) ∈ Rn−1.

b) If Z is the null graph, then Λ̄Z = 0̄ = (0, 0, ..., 0) ∈ Rn−1.

If wij is the adjacency matrix of G, the complement Gc, of G is the graph defined by wcij = 1 if wij = 0, i 6= j,

and wcij = 0 if wij = 1. Let λ̄ = (λ1, ..., λn) denote the spectral vector of G and let λ̄c denote the spectral vector
of Gc. Then,

c) Λ̄c = −n̄− Λ̄.

These basic facts provide a directly computable formula for the above defined spectral complexity,

Cs(G) = |Λ̄| · |Λ̄c| = |Λ̄| · |n̄+ Λ̄|. (3)
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A second quantity associated to a graph that we shall take into account in our analysis is its link density. The
link density ρ of a simple unidirected graph is the number of actual edges divided by the number of all possible
edges. With our notation

ρ(G) =
2m

n(n− 1)
. (4)

Given a positive integer n we shall display all the possible graphs G built on V = {1, 2, ..., n} in the plane of
the variables ρ(G) and Cs(G). Since the density of a graph G and the density of its complement can be quite
different, actually ρ(G) + ρ(Gc) = 1, it is clear that the link density is not a function of the spectral complexity.
It is also simple to show that graphs with the same density may have different spectral complexity. So neither
ρ is a function of Cs nor Cs is a function of ρ. As could be expected. Nevertheless ρ and Cs are not completely
independent. In fact we empirically determine the region in the region in the plane (ρ, Cs) spanned by all possible
graphs. It is clear from its very definition that no matter how large is n, the link density is normalized 0 ≤ ρ ≤ 1.
This is not the case for Cs as defined above. Hence in order to be able to compare the values of Cs for graph with
different numbers of vertices, we shall also empirically normalize the spectral complexity. So that the region that
we are looking for will be a subset of the unit square [0, 1]× [0, 1].

3 The “croissant-shaped” domain for the pairs (ρ, Cs) for every n

The delimitation of the region in the representation plane link density-complexity where all the variety of graphs
take place is not a trivial task to perform theoretically. Here we obtain an empirical approximation of the
upper and lower boundaries, derived by placing a wide variety of graphs generated by random and deterministic
methods.

Having fixed the number of nodes, we observe that the most complex graphs of a given number of edges are
those where the connections are concentrated in few nodes (usually called ‘hubs’) and, conversely, the graphs with
node degrees uniformly distributed are the less complex ones. The former are named ‘multi-stars’ or ‘multi-hubs’
type graphs and the latter are the so called ‘lattices’. In between fall many of the paradigmatic well-known graphs,
each found in some particular point regarding its nature. As well, taking into account the second principle of
our definition of complexity, this behaviour gets reflected in the complementary graphs. In that regard, we shall
notice that the complement of a multi-stars graph is a graph with one clique and a remaining number of isolated
nodes, in correspondence with the number of hubs of the original graph. On the other hand, the complement of
a lattice type graph is another lattice. As the extreme complexity values are obtained for the most pure form of
the described type of graphs, those are the ones that give us the boundaries.

Let us first consider graphs of a fixed number of nodes n. Here the upper limit is constructed simply as the
polygonal joining the points corresponding to the multi-stars graphs of link density less or equal than 0.5, and
the points corresponding to their complements to complete the side of the graphs with link density greater than
0.5. In particular, the multi-stars graph with lower link-density is the single-star graph, which is the graph with
one node connected to every other node and no extra links. The following multi-star graph shall be the one with
two fully connected nodes and no extra attachments. And so on while the link density remains lower than a half.
In the same manner the lower limit consists on the polygonal joining the points corresponding to the regular
lattices. For instance, we shall find there the placement of the cycle graph. These upper and lower boundaries
form a rough croissant-shape contained in the unit square [0, 1]× [0, 1]. This region is similar for every n, although
slightly increasing with n, it seems to stabilize asymptotically when n tends to infinity. Then we can go further
ahead and consider the limit shape. That will be the domain for the family of all the graphs of any finite number
of nodes.

The boundary graphs can be generated with a recursive algorithm that at each step adds some particular
edges to the previous graph, starting with the null graph and ending with the complete graph. Essentially we are
generating a sequence of adjacency matrices by replacing zeroes by ones at the positions that correspond to the
edges being added. For example, if we add an edge between the vertices i and j then the new adjacency matrix
will have a one at the positions (i, j) and (j, i). In account of the symmetry, we will show how the algorithms
acts on the upper triangular part of the adjacency matrices of the sequences of graphs that are being generated.

In order to generate the upper boundary we start with the triangular array of zeros and we fill it with rows
of ones at steps, from up to down, until completion (Figure 1.A). In order to obtain the lower bound we do as
before but now moving diagonally, in such a way that a ring is added to the graph at each step. Precisely, we fill
the following sequence of pairs of diagonals in order (1, n− 1)→ (2, n− 2)→ (3, n− 3)→ . . . until the all-ones
array is reached, as shown in Figure 1.B.

Figure 2 depicts the croissant-shaped region for N = 100 and the placement of some paradigmatic graphs of
15 vertices.
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Figure 1: Generation of the croissant-shaped boundary. A) The sequence of adjacency matrices of the graphs that
configure the upper limit is generated recursively, starting with a matrix of zeros and filling its upper triangular
part with a row of ones at each step, from top to bottom until completion (the lower triangular part of each
matrix is completed by symmetry). B) For the lower boundary we do as before but the ones are placed in such
a way that a ring is added to the graph at each step.

4 Random graphs

In this section we consider and plot for several values of n, three well known stochastic models, the Erdös-Rényi
model, the Watts-Strogatz model, and the Barabási-Albert model. As we shall see, each of them draws some
characteristic pattern contained in the basic croissant shape. In particular, the Erdös-Rényi model closely depicts
the lower bound curve of the region.

4.1 Erdös-Rényi model

The Erdös-Rényi (ER) is one of the simplest models for generating random graphs ([4], [5]). We shall use the
approach introduced by Edgar Gilbert in 1959, the so called G(n, p) model. In this model a graph with n vertices
is constructed by connecting nodes randomly, including each edge in the graph with probability p independently
from every other edge. The parameter “linking probability” p is the expected value of the link density of a G(n, p)
generated graph.

For the analysis of the model we consider graphs with number of nodes n = 100, 200, 300, 400 and linking
probability p for values equispaced in [0, 1] with ∆p = 0.01. For each fixed pair of parameters (n, p) we generate
100 graphs and compute their complexity and link density. On these sets of values we calculate the mean values
and standard deviations, and plot the resulting point and deviation in the link density vs complexity plane. The
result is shown in Figure 3.

As we have said before this model closely follows the lower bound curve of the croissant shaped region.
Thereby, as could be expected, the maximum complexity occurs at p = 0.5, for every n.

4.2 Watts-Strogatz model

The Watts-Strogatz model (WS) is a graph generation method based on rewiring edges randomly. It starts with
a k-ring (or lattice) graph of n nodes, with 1 ≤ k ≤ n−1

2 , and a rewiring probability β. In a k-ring, each node is
connected with k neighbours at each side (left and right). The algorithm consist in going throughout the nodes,
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Figure 2: Schematic distribution of the different types of networks for n = 15 on the “croissant-shaped” region.

one by one, and at each node to put in consideration the rewiring of the edges connected to a right neighbour.
Each of these edges will be rewired with a probability β to form a new connection of the present node to another
randomly selected between the nodes that are not currently connected to it. This model can be though of as
an interpolation between a lattice and something close to an ER graph. When β = 0 there is not rewiring and
the initial ring lattice is preserved. On the other hand, for β = 1 the whole structure is reconfigured randomly.
To some extent this extreme case resembles the ER model, but not quite, since every node will surely remain
connected to at least k other nodes. For intermediate values of β, the model generates networks with the so called
small-world property, including short average path lengths and high clustering ([6], see also [7] and [8]).

Again, with this method we generate graphs with number of nodes n = 100, 200, 300, 400, number of rings
k ranging from 1 to n−1

2 −
1
2 (since we take n even) and the parameter β varying from 0 to 1 with ∆β = 0.1.

For each triplet (n, k, β) a hundred graphs were generated calculating their complexities and the mean value and
standard deviation of that set of values. Notice that the link density of a (n, k, β) WS–graph is given by 2k

n−1 .
Then those points were plotted in the link density vs complexity plane, as shown in Figure 4.

The experiments show that the WS–graphs with n and k fixed (having common link density) have bigger
complexities as β increases, with a minimum when β = 0 (coincident to the corresponding lattice complexity)
and where an upper bound is given by the expected value of the complexities of the ER–graphs with the same
link density. This is consistent with the previous observation that this model is a sort of interpolation between a
lattice and an ER graph.
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Figure 3: Analysis of the Erdös–Rényi model for different linkage probability (p ∈ [0, 1]) and number of nodes
n = 100, 200, 300, 400. Each point/bar represents the mean/standard deviation performed over 100 iterations.

4.3 Barabási-Albert model

The Barabási–Albert (BA) model produces graphs by a random growing mechanism ([9]). It is determined by
an integer parameter m, that has to be positive and smaller than the number of nodes n. The process begins
with a completely disconnected graph of m nodes that evolves in stages, adding a node and m edges attached
to it at each stage, until a graph of n nodes is obtained. The edges that connect every new node are decided by
preferential attachment, which is a probabilistic method of picking the nodes to be attached with a probability
proportional to the actual degree of the existing nodes. Both growth and preferential attachment exist largely in
real networks, so the graphs obtained by this method actually share some properties with them. In particular,
preferential attachment produces hubs (highly connected nodes) and peripheral communities, where nodes have
similar degree. The hubs are few but with much higher degree. Actually, the degree distribution of the nodes can
be fitted by a power–law P (i) ∼ i−γ , where γ is the degree exponent, usually 2 ≤ γ ≤ 3. That is the so called
scale–free property, commonly observed in many social networks.

For this case we generate graphs with number of nodes n = 100, 200, 300, 400 and parameter ` varying between
1 and n. For each fixed values of n and `, 100 graphs were generated and with the same process as in the previous
models we obtain Figure 5.

The pattern depicted in the plane by the BA–graphs is the most peculiar of the three models considered. It is
worthy to notice first that the shape of the curve determined when the parameter ` runs through its entire domain
remains the same regardless of the number of nodes, moreover it stabilizes for large values of n. In the following
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Figure 4: Analysis of the Watts–Strogatz model for parameters k ∈ [1, n2 − 1] and β ∈ [0, 1] with ∆β = 0.1, and
number of nodes n = 100, 200, 300, 400. Each point/bar represents the mean value/standard deviation performed
over 100 iterations.

observations we consider BA–graphs of a fixed number of nodes n. The link density of the graphs grows together
with the parameter ` until the critical value `1 = n

2 is reached, where the link density gets slightly over 0.5, and
then it decreases. However, the complexity continues to grow for a while up to another threshold at some point
`2 > `1. Furthermore, the complexity gap between the curve and the lower boundary of the croissant shaped
region keeps increasing for higher values of `. As well, when ` gets closer to n the complexity values approach to
the upper frontier of the croissant shaped region, making contact at ` = n− 1. So we have that at the same link
density the method produces two graphs of quite a different type in relation to their complexity. That could be
explained by the greater concentration (fewer and more connected hubs) present in the graphs obtained at higher
values of `.

5 Application to neurophysiological data

To test the complexity on real data, we analyse brain connectivity graphs over two epileptic patients. The former,
“patient 1” suffering primary generalized epilepsy, and the latter “patient 2” with secondary generalized epilepsy.
Details of the patients epilepsy’s, seizure types, and the recording specification have been presented in previous
studies [10]. Each patient underwent a magnetoencephalography (MEG) recording in the Baseline period and in
the ictal period (Seizure). The recording was performed using a 144 channel MEG with 625 Hz sampling rate.
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Figure 5: Analysis of the Barabási-Albert model for graphs with different number of nodes n = 100, 200, 300, 400
and parameter of preferential attachment ` ranging from 1 to n. Each point/bar represents the mean
value/standard deviation performed over 100 iterations.

In each state, we took 17 windows of 5-second recording and we calculated the functional connectivity. The
connectivity was implemented through the Phase Synchrony Index (R) method over all possible pairwise signal
combinations. The methods have been extensively described in several publications, so we refer the reader to a
few representative papers [10, 11].

The R analysis was performed for five central frequencies f = (3, 5, 10, 20, 30)± 2Hz. This generated 17× 5
connectivity matrices for the baseline and seizure state. The connectivity matrices were binarised using a threshold
defined by a surrogate analysis (see [12]). Complexity and link density was calculated for all matrices. We
computed the mean value and standard deviation of both quantities and plotted in the complexity-link density
plane.

Figure 7 shows the complexity analysis for patient 1 (left) and patient 2 (right). The circles represent the
values for the baseline state, while the triangles are seizure state. Each point is the mean value calculated over
17 matrices and the bars represent their respective error.

Patient 1 shows a higher complexity and intermediate link density for the baseline state while for the seizure
state, less complexity and greater connectivity are observed for the 5 frequencies analysed. The main difference
between states is observed for high frequencies (20 and 30 Hz). Similar behaviour shows patient 2, however the
most marked differences between states occur for the low frequencies (3 and 5 Hz).

The result shows that complexity can discern between both states for all frequencies. In the Seizure state,
the system generates a high global synchronisation of the brain. This makes the analysis results in highly
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Figure 6: Overview and comparison of the results obtained for all the network models discussed before. In this
case we use for all models n = 100.

connected connectivity matrices (high link density). Furthermore, it can be observed that these matrices have a
low complexity. Low complexities for Seizure states have been found in other studies [12, 13].

The baseline state presents a high complexity because the connectivity in the graph is more distributed among
its nodes. This graph topology allows the brain to integrate and segregate information more efficiently. These
results it are in agreements with the Information Integration Theory Hypothesis, which claims that in awake
state, the integration and segregation of information in the brain tends to be maximal [14].

6 Discussion

Our aim in this note is to introduce an energy based notion of complexity for graphs. As in classical quantum
mechanics, the energy of a “free particle” is provided by the best known Hamiltonian, to wit, the Laplacian.
Moreover the admissible quantified values of the energy are reflected in the spectra of the Laplace operator of
the setting. The Laplace operator and its spectral theory is well known on undirected graphs. Once the spectral
analysis of our graph is carried over, in particular, once the sequence of eigenvalues is obtained, based on the
naive idea that fully connected and fully disconnected graphs are not at all complex, we define our notion of
complexity. Our first experiment with Erdös-Rényi random graphs taking the link probability p of the model as
the independent variable, lead us to the expected “inverse U” shaped curve in the plane p versus complexity. Of
course such a behavior of the shape of the curve was also observed in the plane of the variables link density–
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Figure 7: Complexity analysis for two patients suffering two kinds of epilepsy (Patient 1 primary generalized
epilepsy and Patient 2 secondary generalized epilepsy). The circle represent Baseline state and the triangle the
Seizure state. Each analysis was performed for different central frequencies [3, 5, 10, 20, 30]Hz. Each point/bar
represents the mean value/standard deviation performed over 15 MEG signal epochs.

complexity. Moreover the same basic shape is observed for the Watt-Strogatz random model. As it should be
expected for the Barabási–Albert random model, a turn back of the curve in the plane link density–complexity is
clearly observed. But, more important, this return to the origin of the curve takes place with higher complexity in
the sense of our definition. With these basic observations at hand we empirically detected, through the analysis of
a variety of deterministic graphs, the plane region in the link density-complexity variables spanned by all graphs
with any number of nodes. We found that, generically, for each link density we have a diversity of complexities.
Moreover, we found that for a fixed link density the less complex are lattice-like graphs and the more complex are
star-like graphs. Since our original interest in defining such an energy based complexity for graphs is motivated by
brain-connectivity graphs related to epilepsy, we include the localization of some of these graphs in our “croissant
shaped” region in order to wit their complexity differentiation.

References

[1] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning: Going
beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[2] Jiao Gu, Bobo Hua, and Shiping Liu. Spectral distances on graphs. Discrete Applied Mathematics, 190:56–74,
2015.

[3] M.M. Deza and E. Deza. Encyclopedia of Distances. Springer-Verlag Berlin Heidelberg, 4th edition, 2016.

[4] E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30(4):1141–1144, 1959.
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A Appendix

A.1 Some mathematical results

The trace of the Laplacian is a feature of interest for the kind of analysis we are conducting.

Property 1.
∣∣∣ n∑
i=1

λi

∣∣∣ = |trace(L)| = 2 ](E) = 2m.

The operator L as defined in (1) is an unnormalized version of the Laplacian. Some of its normalizations lead
to it having trace equal to ](V) = n or to 1.

Proposition A.1. Let G be a graph on n nodes with spectrum λ. Let G{ be the complement of G, with spectrum

λ{. Let Z and F be the null and the complete graph, respectively, on n nodes.

(a). The spectrum of F is given by λF = −n 1̄ = −n, where 1̄ is the vector of ones in Rn−1.

(b). The spectrum of Z is given by λZ = 0̄.

(c). The spectrum of G{ is given by λ{ = −n− λ.

(d). C(G) =
∥∥λ∥∥∥∥λ{∥∥ =

∥∥λ∥∥∥∥n+ λ
∥∥.

Proof. We will prove only the items (c) and (d), the first two are well known and easy to verify. To see (c), notice

that the adjacency matrix of G{ is given by W { = 1 − I −W , where 1 is the n × n matrix of all ones and I is
the identity matrix. The degree matrix of G{ is given by D{ = (n− 1)I −D. So the Laplacian of G{ is given by

L{ = W {−D{ = 1− I −W − ((n− 1)I −D) = (1−nI)− (W −D) = LF −LG, where LF is the Laplacian of the
complete graph and LG = L. Observe that the eigenspace associated with the first eigenvalue λ1 = 0 is shared
by all the graphs of n nodes, and is the one generated by the eigenvector ψ1 = 1̄. The complete graph Laplacian
has n as eigenvalue with multiplicity n− 1, and its corresponding eigenspace is the orthogonal complement of ψ1,
so we can take {ψ2, . . . , ψn} as its orthonormal basis. Hence {ψ1, ψ2, . . . , ψn} constitutes an orthonormal basis
of eigenvectors for both Laplacians LF and LG, and so it does for L{. Then (c) is proved and (d) follows.
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