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Di�usive metrics induced by random a�nities on

graphs. An application to the transport systems

related to the COVID-19 setting for Buenos Aires

(AMBA)

María Florencia Acosta1, Hugo Aimar2, Ivana Gómez3 & Federico Morana4

Abstract: The aim of this paper is twofold. First we shall provide a graph metric on the

set of vertices determined by the expected value of random a�nities between them. This

is accomplished by applying the di�usive metric de�ned by the spectral analysis of the

Laplacian determined on the graph by the a�nity. As an application we provide a metric

in the set of the 41 cities belonging to the largest urban concentration in Argentina based

on public transport and neighborhood. The results can be applied to predict and control

the spread of COVID-19 and other pandemic diseases in such a setting.

Keywords: weighted graphs, di�usion, graph Laplacian, metrization, COVID-19

1. Introduction

Let V = {1, 2, . . . , n}, n ≥ 1 be the set of vertices of the graph G =
(
V, E ,~a, ¯̄A

)
,

where E = {{i, j} : i, j ∈ V} is the set of all edges, ~a = (a1, a2, . . . , an) is the se-

quence of positive weights of the vertices and ¯̄A = (Aij) is the matrix of no negative
weights of the edges. Assume also that Ajj = 0 for every j = 1, . . . , n. We say that
G is a simple undirected weighted graph based on V. Set G(V) to denote the class
of all such simple indirected weighted graphs based on V.

Let (Ω,F ,P) be a probability space. Let G : Ω → G(V) be a graph valued

random variable de�ned in Ω with V and E �xed. So that G(ω) =
(
V, E ,~a(ω), ¯̄A(ω)

)
with ~a : Ω → Rn a random vector with positive components and ¯̄A : Ω → Rn×n

1Instituto de Matemática Aplicada del Litoral, CONICET, UNL, Santa Fe, Argentina � E-mail:

mfacosta@santafe-conicet.gov.ar
2Instituto de Matemática Aplicada del Litoral, CONICET, UNL, Santa Fe, Argentina � E-mail:

haimar@santafe-conicet.gov.ar
3Instituto de Matemática Aplicada del Litoral, CONICET, UNL, Santa Fe, Argentina � E-mail:

ivanagomez@santafe-conicet.gov.ar
4Instituto de Matemática Aplicada del Litoral, CONICET, UNL, Santa Fe, Argentina � E-mail:

fmorana@santafe-conicet.gov.ar

1

Prep
rin

t

IMAL PREPRINT # 2021-0056
ISSN 2451-710 

Publication date: December 7, 2021



a random matrix with non negative entries, with Aii = 0 and Aij = Aji. So that
ai : Ω → R and Aij : Ω → R are n + n2 = n(n + 1) given random variables.
Assume that all of them belong to L1(Ω,P), i.e. they have �nite �rst moments∫

Ω

|ai| dP =

∫
Ω

ai dP < ∞ and

∫
Ω

|Aij | dP =

∫
Ω

Aij dP < ∞. We shall also

assume the normalizations

n∑
i=1

ai(w) = 1 and

n∑
i=1

n∑
j=1

Aij(w) = 1 for every ω ∈ Ω.

The expected graph is E(G) =
(
V, E ,E(~a),E( ¯̄A)

)
, with E(~a) = (Ea1,Ea2, . . . ,Ean),

and E( ¯̄A) = (EAij : i, j = 1, . . . , n). Notice that Eai ≥ 0 and EAij ≥ 0, and that

n∑
i=1

Eai = E

(
n∑
i=1

ai

)
= E(1) = 1,

n∑
i=1

n∑
j=1

EAij = E

 n∑
i=1

n∑
j=1

Aij

 = 1.

Many interesting questions arise regarding the relation between the analysis
provided by each graph G(ω) and the analysis provided by the graph E(G). In this
paper we focus on building a metric, by the di�usion method given in [1], on the
graph E(G). For a di�erent approach see [2].

This search is motivated by the application to the analysis of the transportation
of people between the 41 cities in AMBA (Buenos Aires) in the COVID-19 context,
through di�erent ways of passengers transport. The acronym AMBA is used to
name the 41 cities that concentrate one third of the total population of Argentina
and is spatially concentrated around Buenos Aires City. The total population of
AMBA is of about 16.7 millions. The Figure 1 depicts their distribution.

Aside from the geographical distance between locations i and j in the map there
is a valuable information given by the public transport system in AMBA. The system
SUBE (uni�er system of electronic ticket) keeps a great amount of information that
allows to have another geometry provided by a connectivity distance built on this big
data source. With the idea of considering at once a diversity of a�nities between two
cities i and j, such as euclidean distance, neighborhood, public transport, private
transport, etcetera, we introduce a di�usive metrization of the graph that takes into
account these diverse factors which all together contribute to the motion of people
inside AMBA.

Section 2 is devoted to introduce theoretical background of our general setting.
In Section 3 we apply the metric built in §2 to some particular cases of a�nities
for the graph AMBA. Here we draw the families of balls in these metrics in order
to have a picture of the behavior of distance measured in terms of transport. We
also give here empirical estimates of the norms of the di�erences between metric
matrices coming from di�erent combinations of ways of transport. In Section 4 we
compare the metric maps obtained above with the actual spread of COVID-19 in
AMBA during di�erent steps of the pandemic growth in Argentina.
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Figure 1: AMBA

2. Metrization of Random Graphs

Let (Ω,F ,P) be a probability space. We say that a function G de�ned in Ω
with values on the simple undirected weighted graphs on V = {1, 2, . . . , n}, is a

random graph on V with �nite �rst moments if G(ω) = (V, E ,~a(ω), ¯̄A(ω)) with

V = {1, 2, . . . , n}, E = {{i, j} : i, j ∈ V}, ~a(ω) =
(
ai(ω) : i = 1, . . . , n

)
, ¯̄A(ω) =(

Aij(ω) : i, j = 1, . . . , n
)
with each ai(ω) and each ¯̄Aij(ω) in L1(Ω,F ,P). We shall

also assume the probabilistic normalizations

n∑
i=1

ai(ω) = 1,
n∑
i=1

n∑
j=1

Aij(ω) = 1

for every ω ∈ Ω and that ai(ω) > 0 for each i ∈ V and ¯̄Aij(ω) ≥ 0 for i, j ∈ V and
ω ∈ Ω.

With the above notation, it makes sense to consider a notion of expected graph

EG =
(
V, E ,E~a,E ¯̄A

)
, with E~a = (Ea1, . . . ,Ean) and E ¯̄A = (EAij : i, j ∈ V),

Eai =

∫
Ω

ai(ω) dP(ω) and EAij =

∫
Ω

Aij(ω) dP(ω).
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Proposition 2.1. Let G(ω) and EG as before. Then

(i) Eai > 0 for every i ∈ V;

(ii) EAij ≥ 0 for every i, j ∈ V;

(iii)
∑n
i=1 Eai = 1;

(iv)
∑n
i=1

∑n
j=1 EAij = 1.

Proof. (i) Since ai(ω) is positive for every ω ∈ Ω, the sets Ωk = {ω ∈ Ω : 2−k <
ai(ω) ≤ 2−k+1} for k ∈ Z forms a disjoint partition of Ω. In other words

Ω =
⋃
k∈Z

Ωk, Ωk ∩ Ω` = ∅.

Hence 1 = P(Ω) =
∑
k∈Z P(Ωk). So that for some k0 ∈ Z we have that P(Ωk0) > 0.

Then

Eai =

∫
Ω

ai(ω) dP =
∑
k∈Z

∫
Ωk

ai(ω) dP ≥
∫

Ωk0

ai(ω) dP ≥ 2−k0P(Ωk0) > 0.

The proofs of (ii), (iii) and (iv) are clear.

Notice that under the assumptions ai(ω) > 0, Ai,j(ω) ≥ 0,
∑n
i=1 ai(ω) = 1 and∑n

i=1

∑n
j=1Aij(ω) = 1 we have that each ai and each Aij belong to L

∞(Ω,F ,P) ⊆
L1(Ω,F ,P).

Given a graph Γ = (V, E ,~a, ¯̄A) the Laplacian on Γ is given by

∆Γf(i) =
1

ai

n∑
j=1

Aij
(
f(i)− f(j)

)
when f : V → R is any function de�ned on the set of vertices. In matrix notation

∆Γ = ¯̄a−1
(

¯̄A− ¯̄D
)

with ¯̄a−1 = diag
(
a−1

1 , . . . , a−1
n

)
and ¯̄D = diag

(∑
j 6=1A1j , . . . ,

∑
j 6=nAnj

)
.

Notice now that for a given random graph on V, G(ω), as before we have at
least two ways of considering an expected Laplacian. The �rst it to apply the above
de�nition of the Laplace operator to Γ = EG. In fact

∆EGf(i) =
1

Eai

n∑
j=1

EAij
(
f(i)− f(j)

)
is well de�ned from Proposition 2.1. The second way is to ask for the existence of
an expected Laplacian for the random Laplacian de�ned by

∆ωf(i) = ∆G(ω)f(i) =
1

ai(ω)

n∑
j=1

Aij(ω)
(
f(j)− f(i)

)
,
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ω ∈ Ω, i ∈ V. It is clear that with the current hypotheses on the ai's the expected
Laplacian E∆ω not necessarily exists. On the other hand, it is also clear that
when the ai's are deterministic (constant) we have that E∆ω = ∆EG . Actually
in our application this will be the case. Nevertheless, for the sake of theoretical
completeness we give some su�cient conditions on the random graph in order to
guarantee the existence of the expected Laplacian and to produce a formula to
compute it. This is done in the next result.

Proposition 2.2. Let G(Ω) be a random graph on V = {1, . . . , n}. Assume that
ai(ω) > 0 for every i ∈ V and ω ∈ Ω,

∑n
i=1 ai(ω) = 1 and a−1

i ∈ L1(Ω,F ,P) for
every i ∈ V. Assume that Aij(ω) ≥ 0,

∑n
i=1

∑n
j=1Aij(ω) = 1 for ω ∈ Ω. If each

ai(ω) is independent of the random variables Ak`(ω) for every {k, `} ∈ E, then with

∆G(ω)f(i) =
1

ai(ω)

∑
j=1

Aij(ω) (f(j)− f(i)) , ω ∈ Ω, i ∈ V,

we have that E∆G(ω) = ∆G̃ with G̃ =
(
V, E , b̄,E ¯̄A

)
, b̄ = (b1, b2, . . . , bn) and bi =(

E 1
ai

)−1

.

Proof. Since we are assuming the �niteness of

∫
Ω

1

ai(ω)
dP(ω) and independence

of each ai(ω) with all the Ak`(ω), we have that 1
ai(ω) is a random variable which

is independent of the random variable

n∑
j=1

Aij(ω) (f(j)− f(i)) for any f : V → R.

Hence

E
(
∆G(ω)f(i)

)
= E

(
1

ai

)
E

 n∑
j=1

Aij (f(j)− f(i))


=

1(
E
(

1
ai

))−1

n∑
j=1

E (Aij) (f(j)− f(i))

=
1

bi

n∑
j=1

E (Aij) (f(j)− f(i))

= ∆G̃f(i),

as desired.

Once we have a Laplacian de�ned on (V, E) which could be ∆EG or E∆ω we can
build the di�usive metric on V (see [1]). For completeness, let us state and prove
the basic facts regarding the constructive of these metrics.

Teorema 2.1. Let Γ = (V, E , bi, Bij) be a simple undirected weighted graph. Then
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a) the operator ∆Γ is selfadjoint with respect to the inner product

〈f, g〉b̄ =
n∑
i=1

f(i)g(i)bi ;

b) the operator ∆Γ is negative de�nite, i. e.

〈∆Γf, f〉b̄ ≤ 0, for every f ;

c) the operator ∆Γ is diagonalizable, i. e. there exist a sequence λn−1 ≤ λn−2 ≤
· · · ≤ λ1 ≤ λ0 = 0 and an orthonormal sequence φ0, φ1, . . . , φn−1 with respect to
the inner product 〈 , 〉b̄, such that

∆Γφi = λiφ1, for i = 0, 1, . . . , n− 1;

d) for any t > 0, the function dt : V × V → R given by

dt(i, j) =

√√√√n−1∑
`=0

e2tλ` |φ`(i)− φ`(j)|2

is a metric on V.

Proof. a) Let f and g be two functions from V to R, then since Bij = Bji,

〈∆Γf, g〉b̄ =

n∑
i=1

(∆Γf) (i)g(i)bi

=

n∑
i=1

(
1

bi

n∑
j=1

Bij

(
f(j)− f(i)

))
g(i)bi

=

n∑
j=1

n∑
i=1

Bij

(
f(j)− f(i)

)
g(i)

=

n∑
j=1

(
n∑

i=1

Bijf(j)g(i)−
n∑

i=1

Bijf(i)g(i)

)

=

n∑
j=1

n∑
i=1

Bijf(j)g(i)−
n∑

j=1

n∑
i=1

Bijf(i)g(i)

=

n∑
i=1

n∑
j=1

Bijf(j)g(i)−
n∑

i=1

n∑
j=1

Bijf(i)g(i)

=

n∑
i=1

(
1

bi

n∑
j=1

Bij

(
g(j)− g(i)

))
f(i)bi

= 〈f,∆Γg〉b̄ .
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b) Since Bij = Bji we have

〈−∆Γf, f〉b̄ =
n∑
i=1

(−∆Γf) (i)f(i)bi

=
n∑
i=1

n∑
j=1

Bij
(
f(i)− f(j)

)
f(i)

=
n∑
i=1

n∑
j=1

Bijf
2(i)−

n∑
i=1

n∑
j=1

Bijf(i)f(j)

=
n∑
i=1

n∑
j=1

Bij
(
f2(i)− f(i)f(j)

)

=
1

2

 n∑
i=1

n∑
j=1

Bij
(
f2(i)− f(i)f(j)

)
+

n∑
i=1

n∑
j=1

Bij
(
f2(i)− f(i)f(j)

)
=

1

2

n∑
i=1

n∑
j=1

Bij
(
f2(i) + f2(j)− 2f(i)f(j)

)
=

1

2

n∑
i=1

n∑
j=1

Bij
(
f(i)− f(j)

)2
≥ 0.

c) follows from a) and b) since we are dealing with a self-adjoint and negative
de�nite matrix ∆Γ. Since the constant functions are ∆Γ-harmonic we hare that

λ0 = 0 is the eigenvalue corresponding to the eigenfunction φ0(i) =
1√∑n
j=1 bj

for

i = 1, . . . , n, which has the L2 norm given by the inner product 〈 , 〉b̄ equal to one.

d) it is clear that dt is nonnegative, symmetric, faithful and satis�es the triangle
inequality for every t > 0. Let un notice here the dt(i, j) is the L

2(V, b̄) norm of the

di�erence of the heat kernels at i and j provided by the di�usion
∂u

∂t
= ∆Γu.

As a general reference for the above see for example [3].

3. The case of AMBA (Buenos Aires)

In this section we e�ectively compute and sketch some families of balls, the metric
provided by dt in Theorem 2.1 for several natural instances of a�nity matrices Aij
and some of their means and a couple of instances for the weights ai at each node.
All the underlying computations are performed in Python. In order to show our
results in a compact way we shall �rst introduce the families of a�nities Aij that
we shall use and the weights ai that we consider.
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Our basic vertex set is V = {1, . . . , 41} one for each city in AMBA. The �rst,
and perhaps more relevant matrix concerning the spread of COVID-19 in this set-
ting, is the matrix built with the data of SUBE provided by the public transport
in AMBA. This matrix takes onto account buses, subte (metro), trains and even
�uvial public transportation. We shall denote it by A0. We exhibit in Figure 3 the
full unnormalized form of the 41 × 41 matrix A0. We shall as well consider some
neighborhood matrices. With A1 we denote the normalization of the matrix that
takes the value 1 at (i, j) if the cities i and j share some points of their boundaries,
and zero otherwise. In Figure 2 we show a small part of A1 (unnormalized). With
A2 we denote a better quanti�ed weighted approach of A1 that takes into account
the length of the shared portion of the boundary between cities i and j. See Fig-
ure 4. Since the population of di�erent cities is in several instances quite di�erent
for two neighbor cities, we consider still another matrix that we denote A3, which
takes into account the length of the shared boundaries and also the minimum of
the population of the two neighbor cities. Figure 5 depicts a part of this matrix.
For last, the matrix A4 considers only the minimum of the populations of any two
neighbor cities. The matrix A4 is partially showed in Figure 6.

Regarding the weights ai at the nodes, we shall consider only two ~a: the uniform
~a1 =

(
1
41 , . . . ,

1
41

)
and a normalization of the density of the disease in each location

(total number of active infections over population) by July 2020, given by

~a2 = (0.0023, 0.0009, 0.0004, 0.0014, 0.0015, 0.0009, 0.0012, 0.0030, 0.0007,

0.0009, 0.0011, 0.0015, 0.0008, 0.0016, 0.0049, 0.0005, 0.0006, 0.0018,

0.0015, 0.0031, 0.0013, 0.0008, 0.0012, 0.0010, 0.0019, 0.0022, 0.0014,

0.0006, 0.0019, 0.0095, 0.0011, 0.0004, 0.0015, 0.0018, 0.0018, 0.0026,

0.0013, 0.0018, 0.0029, 0.0018, 0.0034)

Figure 2: Unnormalized submatrix of A1 (20× 41)
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Figure 4: Unnormalized submatrix of A2 (20× 20)

Figure 5: Unnormalized submatrix of A3 (20× 20)

The result of Section 2 generate a diversity of metrics on V = {1, 2, . . . , 41}
provided by any choice of A ∈ {A0, A1, A2, A3, A4} and ~a ∈ {~a1,~a2}. Moreover
from Proposition 2.2 in Section 2 any convex combination of matrices A provides
a Laplacian and a corresponding family of metrics on V. Sometimes we shall use a
convex combination of A0 and Ai with i = 1, 2, 3, 4, i.e. A = θA0 + (1− θ)Ai with
0 ≤ θ ≤ 1. In this cases we write di,θ;jt to denote the metric provided by Theorem
2.1 with B = θA0 + (1 − θ)Ai and b = ~aj . We shall use the standard notation for
balls keeping the above notation, precisely

Bi,θ;jt (k, r) = {` ∈ V : di,θ;jt (k, `) < r}

for k ∈ V, r > 0, i = 0, 1, 2, 3, 4 and 0 ≤ θ ≤ 1.
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Figure 6: Unnormalized submatrix of A4 (20× 20)

A way to schematically depict the unrestricted paths of COVID-19 propagation
from the point (CABA) with higher initial concentration of diseases is to consider
for each metric the balls centered at CABA (30) and growing radii.

Using a prescribed scale of colors we can run our algorithm in Python in order to
obtain a diversity of images for propagation due to the above described notations
of neighborhood and transport and their convex combinations. With the above
introduced notation we give the following illustration of the results. In Table 1 and
Table 3 we use always t = 0.25 and j = 1, the other parameters are explicitly given.
The center is always 30 (CABA), the growing radii are colored according to the
given scale.

Table 1: Distances to CABA. Left: graph; right: map.

d0,0;1
0.25 (30, ·)

Some global comparison of the di�erent metrics are in order. In Table 2 we shall
show the comparison of the metric induced by public transport (SUBE) with the
metrics induced a convex combination of the SUBE data and some of the neigh-
borhood matrices de�ned above only for the case of ā1, the uniform distribution(
ai = 1

41

)
of the vertices of the graph. Here we compute the relative deviations with
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respect to the metric induced just by public transport. Let us precise the above.
Set

εi,θt =

∥∥∥d0,0;1
t − di,θ;1t

∥∥∥∥∥∥d0,0;1
t

∥∥∥ ,

where d0,0;1
t is the metric matrix associate to the public transport only and di,θ;1t

are the metrics de�ned above. The norm considered here is the Euclidean one, i.e.

∥∥∥d0,0;1
t − di,θ;1t

∥∥∥2

=
n∑

k,`=1

∣∣∣d0,0;1
t (k, `)− di,θ;1t (k, `)

∣∣∣2

and

∥∥∥d0,0;1
t

∥∥∥2

=
n∑

k,`=1

(
d0,0;1
t (k, `)

)2

.

Table 2: Relative di�erences
ε1,0t 0.12035607 ε1,0.5t 0.0609088

ε2,0t 0.17173178 ε2,0.5t 0.091446

ε3,0t 0.0644136 ε3,0.5t 0.0306021

ε4,0t 0.09062579 ε3,0.5t 0.04661433

In Table 2 we observe that, as it could be expected and as it re�ected by the
colored maps in Table 3, the largest relative di�erences with the metric provided
by the public transport are those given by matrices A1 and A2 which only take into
account neighboring, with no reference to the sizes of populations. On the other
hand, for matrices A3 and A4 which take into account populations, the results are
closer to that of the pure public transport matrix A0. All the interpolation cases
show, at least with θ = 0.5 a closer behavior to that of A0.
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Table 3: Distances to CABA
d1,0;1

0.25 (30, ·) d1,0.5;1
0.25 (30, ·)

d2,0;1
0.25 (30, ·) d2,0.5;1

0.25 (30, ·)

d3,0;1
0.25 (30, ·) d3,0.5;1

0.25 (30, ·)

d4,0;1
0.25 (30, ·) d4,0.5;1

0.25 (30, ·)
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4. Comparison of the metric closeness with the ac-
tual spread of COVID-10 in AMBA

As we show in Section 3 all the versions of the di�usive metric that we consider
provide in some way the paths of propagation of COVID-19 associated only with
transport of AMBA. Our model is based only in the proportional volume of people
moving daily from each city to another without taking into account the restrictions
imposed in each district. At this point it is important to mention that there are two
di�erent administrations in the system of the 41 cities of AMBA. One for the City of
Buenos Aires, CABA, node 30 in our graph, and other administration ruling in the
other 40 cities of AMBA. The restrictions imposed by both administrations during
the pandemic course, were sometimes coincident and sometimes not. The current
available data allows us to have a precise picture of the dynamics of the growth of
infections in AMBA. For each one of the 41 cities we computed the time passed
until the number of infected people surpass the threshold of x% of the population
with x = j · 1

10 , j = 1, 2, . . . , 20. The maps obtained are of the type depicted in
Figure 7.

Figure 7: Days up to 0.1% of infections over the population (from 0.1% of CABA)

We shall only concentrate our analysis in the two largest cities of AMBA, CABA
and La Matanza. Numbered 30 and 35 in our graph. Ciudad Autónoma de Buenos
Aires (30) has a population of 3.075.000. La Matanza (35) has a population of
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2.280.000 people. They share a boundary of about 10 kilometers. All the metrics
in the models of Section 3 place La Matanza as the closest city to CABA. This
fact is by no ways re�ected by the actual spread of the pandemic in AMBA based
in our percentual thresholding scheme. In fact while for CABA we have the red
distribution as a function of time in Figure 8, for La Matanza we have the blue one.
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Figure 8: Evolution of cases in CABA (red) and La Matanza (blue)

At this point, it is worthy noticing that the administration of CABA has almost
always been looser than the administration of La Matanza, regarding the quaran-
tine, isolation and restriction measures associated with the pandemics COVID-19.
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