ISSN 2451-7100

IMAL preprints

www.imal.conicet.gov.ar/preprints-del-imal

Diffusive metrics induced by random affnities on graphs. An application to the transport systems related to the COVID-19 setting for Buenos Aires (AMBA)

Bу

María Florencia Acosta - Hugo Aimar - Ivana Gómez – Federico Morana

IMAL PREPRINT # 2021-0056

Publication date: December 7, 2021

Editorial: Instituto de Matemática Aplicada del Litoral IMAL (CCT CONICET Santa Fe – UNL) http://www.imal.santafe-conicet.gov.ar

Director de Publicaciones: Dr. Oscar Salinas E-mail: <u>salinas@santafe-conicet.gov.ar</u>

Diffusive metrics induced by random affinities on graphs. An application to the transport systems related to the COVID-19 setting for Buenos Aires (AMBA)

María Florencia Acosta¹, Hugo Aimar², Ivana Gómez³ & Federico Morana⁴

Abstract: The aim of this paper is twofold. First we shall provide a graph metric on the set of vertices determined by the expected value of random affinities between them. This is accomplished by applying the diffusive metric defined by the spectral analysis of the Laplacian determined on the graph by the affinity. As an application we provide a metric in the set of the 41 cities belonging to the largest urban concentration in Argentina based on public transport and neighborhood. The results can be applied to predict and control the spread of COVID-19 and other pandemic diseases in such a setting.

Keywords: weighted graphs, diffusion, graph Laplacian, metrization, COVID-19

1. Introduction

Let $\mathcal{V} = \{1, 2, ..., n\}, n \geq 1$ be the set of vertices of the graph $\mathcal{G} = (\mathcal{V}, \mathcal{E}, \vec{a}, \overline{A})$, where $\mathcal{E} = \{\{i, j\} : i, j \in \mathcal{V}\}$ is the set of all edges, $\vec{a} = (a_1, a_2, ..., a_n)$ is the sequence of positive weights of the vertices and $\overline{A} = (A_{ij})$ is the matrix of no negative weights of the edges. Assume also that $A_{jj} = 0$ for every j = 1, ..., n. We say that \mathcal{G} is a simple undirected weighted graph based on \mathcal{V} . Set $\mathcal{G}(\mathcal{V})$ to denote the class of all such simple indirected weighted graphs based on \mathcal{V} .

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space. Let $\mathcal{G} : \Omega \to G(\mathcal{V})$ be a graph valued random variable defined in Ω with \mathcal{V} and \mathcal{E} fixed. So that $\mathcal{G}(\omega) = \left(\mathcal{V}, \mathcal{E}, \vec{a}(\omega), \bar{A}(\omega)\right)$ with $\vec{a} : \Omega \to \mathbb{R}^n$ a random vector with positive components and $\bar{A} : \Omega \to \mathbb{R}^{n \times n}$

¹Instituto de Matemática Aplicada del Litoral, CONICET, UNL, Santa Fe, Argentina – E-mail: mfacosta@santafe-conicet.gov.ar

²Instituto de Matemática Aplicada del Litoral, CONICET, UNL, Santa Fe, Argentina – E-mail: haimar@santafe-conicet.gov.ar

³Instituto de Matemática Aplicada del Litoral, CONICET, UNL, Santa Fe, Argentina – E-mail: ivanagomez@santafe-conicet.gov.ar

⁴Instituto de Matemática Aplicada del Litoral, CONICET, UNL, Santa Fe, Argentina – E-mail: fmorana@santafe-conicet.gov.ar

a random matrix with non negative entries, with $A_{ii} = 0$ and $A_{ij} = A_{ji}$. So that $a_i : \Omega \to \mathbb{R}$ and $A_{ij} : \Omega \to \mathbb{R}$ are $n + n^2 = n(n+1)$ given random variables. Assume that all of them belong to $L^1(\Omega, \mathcal{P})$, i.e. they have finite first moments $\int_{\Omega} |a_i| d\mathcal{P} = \int_{\Omega} a_i d\mathcal{P} < \infty$ and $\int_{\Omega} |A_{ij}| d\mathcal{P} = \int_{\Omega} A_{ij} d\mathcal{P} < \infty$. We shall also assume the normalizations $\sum_{i=1}^n a_i(w) = 1$ and $\sum_{i=1}^n \sum_{j=1}^n A_{ij}(w) = 1$ for every $\omega \in \Omega$.

The expected graph is $\mathbb{E}(\mathcal{G}) = (\mathcal{V}, \mathcal{E}, \mathbb{E}(\vec{a}), \mathbb{E}(\bar{A}))$, with $\mathbb{E}(\vec{a}) = (\mathbb{E}a_1, \mathbb{E}a_2, \dots, \mathbb{E}a_n)$, and $\mathbb{E}(\bar{A}) = (\mathbb{E}A_{ij} : i, j = 1, \dots, n)$. Notice that $\mathbb{E}a_i \ge 0$ and $\mathbb{E}A_{ij} \ge 0$, and that

$$\sum_{i=1}^{n} \mathbb{E}a_{i} = \mathbb{E}\left(\sum_{i=1}^{n} a_{i}\right) = \mathbb{E}(1) = 1, \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}A_{ij} = \mathbb{E}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}\right) = 1.$$

Many interesting questions arise regarding the relation between the analysis provided by each graph $\mathcal{G}(\omega)$ and the analysis provided by the graph $\mathbb{E}(\mathcal{G})$. In this paper we focus on building a metric, by the diffusion method given in [1], on the graph $\mathbb{E}(\mathcal{G})$. For a different approach see [2].

This search is motivated by the application to the analysis of the transportation of people between the 41 cities in AMBA (Buenos Aires) in the COVID-19 context, through different ways of passengers transport. The acronym AMBA is used to name the 41 cities that concentrate one third of the total population of Argentina and is spatially concentrated around Buenos Aires City. The total population of AMBA is of about 16.7 millions. The Figure 1 depicts their distribution.

Aside from the geographical distance between locations i and j in the map there is a valuable information given by the public transport system in AMBA. The system SUBE (unifier system of electronic ticket) keeps a great amount of information that allows to have another geometry provided by a connectivity distance built on this big data source. With the idea of considering at once a diversity of affinities between two cities i and j, such as euclidean distance, neighborhood, public transport, private transport, etcetera, we introduce a diffusive metrization of the graph that takes into account these diverse factors which all together contribute to the motion of people inside AMBA.

Section 2 is devoted to introduce theoretical background of our general setting. In Section 3 we apply the metric built in §2 to some particular cases of affinities for the graph AMBA. Here we draw the families of balls in these metrics in order to have a picture of the behavior of distance measured in terms of transport. We also give here empirical estimates of the norms of the differences between metric matrices coming from different combinations of ways of transport. In Section 4 we compare the metric maps obtained above with the actual spread of COVID-19 in AMBA during different steps of the pandemic growth in Argentina.

 $\mathbf{2}$

2. Metrization of Random Graphs

Let $(\Omega, \mathcal{F}, \mathcal{P})$ be a probability space. We say that a function \mathcal{G} defined in Ω with values on the simple undirected weighted graphs on $\mathcal{V} = \{1, 2, ..., n\}$, is a random graph on \mathcal{V} with finite first moments if $\mathcal{G}(\omega) = (\mathcal{V}, \mathcal{E}, \vec{a}(\omega), \bar{A}(\omega))$ with $\mathcal{V} = \{1, 2, ..., n\}, \mathcal{E} = \{\{i, j\} : i, j \in \mathcal{V}\}, \vec{a}(\omega) = (a_i(\omega) : i = 1, ..., n), \bar{A}(\omega) =$ $(A_{ij}(\omega) : i, j = 1, ..., n)$ with each $a_i(\omega)$ and each $\bar{A}_{ij}(\omega)$ in $L^1(\Omega, \mathcal{F}, \mathcal{P})$. We shall also assume the probabilistic normalizations

$$\sum_{i=1}^{n} a_i(\omega) = 1, \qquad \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}(\omega) = 1$$

for every $\omega \in \Omega$ and that $a_i(\omega) > 0$ for each $i \in \mathcal{V}$ and $\overline{A}_{ij}(\omega) \ge 0$ for $i, j \in \mathcal{V}$ and $\omega \in \Omega$.

With the above notation, it makes sense to consider a notion of expected graph $\mathbb{E}\mathcal{G} = \left(\mathcal{V}, \mathcal{E}, \mathbb{E}\vec{a}, \mathbb{E}\bar{\vec{A}}\right)$, with $\mathbb{E}\vec{a} = (\mathbb{E}a_1, \dots, \mathbb{E}a_n)$ and $\mathbb{E}\bar{\vec{A}} = (\mathbb{E}A_{ij} : i, j \in \mathcal{V})$, $\mathbb{E}a_i = \int_{\Omega} a_i(\omega) \, d\mathcal{P}(\omega)$ and $\mathbb{E}A_{ij} = \int_{\Omega} A_{ij}(\omega) \, d\mathcal{P}(\omega)$.

Proposition 2.1. Let $\mathcal{G}(\omega)$ and $\mathbb{E}\mathcal{G}$ as before. Then

- (i) $\mathbb{E}a_i > 0$ for every $i \in \mathcal{V}$;
- (ii) $\mathbb{E}A_{ij} \geq 0$ for every $i, j \in \mathcal{V}$;
- (iii) $\sum_{i=1}^{n} \mathbb{E}a_i = 1;$
- (*iv*) $\sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}A_{ij} = 1.$

Proof. (i) Since $a_i(\omega)$ is positive for every $\omega \in \Omega$, the sets $\Omega_k = \{\omega \in \Omega : 2^{-k} < a_i(\omega) \le 2^{-k+1}\}$ for $k \in \mathbb{Z}$ forms a disjoint partition of Ω . In other words

$$\Omega = \bigcup_{k \in \mathbb{Z}} \Omega_k, \quad \Omega_k \cap \Omega_\ell = \emptyset$$

Hence $1 = \mathcal{P}(\Omega) = \sum_{k \in \mathbb{Z}} \mathcal{P}(\Omega_k)$. So that for some $k_0 \in \mathbb{Z}$ we have that $\mathcal{P}(\Omega_{k_0}) > 0$. Then

$$\mathbb{E}a_i = \int_{\Omega} a_i(\omega) \, d\mathcal{P} = \sum_{k \in \mathbb{Z}} \int_{\Omega_k} a_i(\omega) \, d\mathcal{P} \ge \int_{\Omega_{k_0}} a_i(\omega) \, d\mathcal{P} \ge 2^{-k_0} \mathcal{P}(\Omega_{k_0}) > 0.$$

The proofs of (ii), (iii) and (iv) are clear.

Notice that under the assumptions $a_i(\omega) > 0$, $A_{i,j}(\omega) \ge 0$, $\sum_{i=1}^n a_i(\omega) = 1$ and $\sum_{i=1}^n \sum_{j=1}^n A_{ij}(\omega) = 1$ we have that each a_i and each A_{ij} belong to $L^{\infty}(\Omega, \mathcal{F}, \mathcal{P}) \subseteq L^1(\Omega, \mathcal{F}, \mathcal{P})$.

Given a graph $\Gamma = (\mathcal{V}, \mathcal{E}, \vec{a}, \overline{A})$ the Laplacian on Γ is given by

$$\Delta_{\Gamma} f(i) = \frac{1}{a_i} \sum_{j=1}^n A_{ij} \left(f(i) - f(j) \right)$$

when $f: \mathcal{V} \to \mathbb{R}$ is any function defined on the set of vertices. In matrix notation

$$\Delta_{\Gamma} = \bar{\bar{a}}^{-1} \left(\bar{\bar{A}} - \bar{\bar{D}} \right)$$

with $\overline{\bar{a}}^{-1} = \operatorname{diag}\left(a_1^{-1}, \dots, a_n^{-1}\right)$ and $\overline{\bar{D}} = \operatorname{diag}\left(\sum_{j \neq 1} A_{1j}, \dots, \sum_{j \neq n} A_{nj}\right)$.

Notice now that for a given random graph on \mathcal{V} , $\mathcal{G}(\omega)$, as before we have at least two ways of considering an expected Laplacian. The first it to apply the above definition of the Laplace operator to $\Gamma = \mathbb{E}\mathcal{G}$. In fact

$$\Delta_{\mathbb{E}\mathcal{G}}f(i) = \frac{1}{\mathbb{E}a_i} \sum_{j=1}^n \mathbb{E}A_{ij} (f(i) - f(j))$$

is well defined from Proposition 2.1. The second way is to ask for the existence of an expected Laplacian for the random Laplacian defined by

$$\Delta_{\omega}f(i) = \Delta_{\mathcal{G}(\omega)}f(i) = \frac{1}{a_i(\omega)}\sum_{j=1}^n A_{ij}(\omega)\big(f(j) - f(i)\big),$$

 $\omega \in \Omega$, $i \in \mathcal{V}$. It is clear that with the current hypotheses on the a_i 's the expected Laplacian $\mathbb{E}\Delta_{\omega}$ not necessarily exists. On the other hand, it is also clear that when the a_i 's are deterministic (constant) we have that $\mathbb{E}\Delta_{\omega} = \Delta_{\mathbb{E}\mathcal{G}}$. Actually in our application this will be the case. Nevertheless, for the sake of theoretical completeness we give some sufficient conditions on the random graph in order to guarantee the existence of the expected Laplacian and to produce a formula to compute it. This is done in the next result.

Proposition 2.2. Let $\mathcal{G}(\Omega)$ be a random graph on $\mathcal{V} = \{1, \ldots, n\}$. Assume that $a_i(\omega) > 0$ for every $i \in \mathcal{V}$ and $\omega \in \Omega$, $\sum_{i=1}^n a_i(\omega) = 1$ and $a_i^{-1} \in L^1(\Omega, \mathcal{F}, \mathcal{P})$ for every $i \in \mathcal{V}$. Assume that $A_{ij}(\omega) \ge 0$, $\sum_{i=1}^n \sum_{j=1}^n A_{ij}(\omega) = 1$ for $\omega \in \Omega$. If each $a_i(\omega)$ is independent of the random variables $A_{k\ell}(\omega)$ for every $\{k, \ell\} \in \mathcal{E}$, then with

$$\Delta_{\mathcal{G}(\omega)}f(i) = \frac{1}{a_i(\omega)} \sum_{j=1} A_{ij}(\omega) \left(f(j) - f(i)\right), \quad \omega \in \Omega, \quad i \in \mathcal{V},$$

we have that $\mathbb{E}\Delta_{\mathcal{G}(\omega)} = \Delta_{\tilde{\mathcal{G}}}$ with $\tilde{\mathcal{G}} = (\mathcal{V}, \mathcal{E}, \bar{b}, \mathbb{E}\bar{A})$, $\bar{b} = (b_1, b_2, \dots, b_n)$ and $b_i = (\mathbb{E}\frac{1}{a_i})^{-1}$. *Proof.* Since we are assuming the finiteness of $\int_{\Omega} \frac{1}{a_i(\omega)} d\mathcal{P}(\omega)$ and independence of each $a_i(\omega)$ with all the $A_i(\omega)$ we have that

Proof. Since we are assuming the finiteness of $\int_{\Omega} \frac{1}{a_i(\omega)} d\mathcal{P}(\omega)$ and independence of each $a_i(\omega)$ with all the $A_{k\ell}(\omega)$, we have that $\frac{1}{a_i(\omega)}$ is a random variable which is independent of the random variable $\sum_{j=1}^n A_{ij}(\omega) \left(f(j) - f(i)\right)$ for any $f: \mathcal{V} \to \mathbb{R}$. Hence

$$\mathbb{E}\left(\Delta_{\mathcal{G}(\omega)}f(i)\right) = \mathbb{E}\left(\frac{1}{a_i}\right) \mathbb{E}\left(\sum_{j=1}^n A_{ij}\left(f(j) - f(i)\right)\right)$$
$$= \frac{1}{\left(\mathbb{E}\left(\frac{1}{a_i}\right)\right)^{-1}} \sum_{j=1}^n \mathbb{E}\left(A_{ij}\right)\left(f(j) - f(i)\right)$$
$$= \frac{1}{b_i} \sum_{j=1}^n \mathbb{E}\left(A_{ij}\right)\left(f(j) - f(i)\right)$$
$$= \Delta_{\tilde{\mathcal{G}}}f(i),$$

as desired.

Once we have a Laplacian defined on $(\mathcal{V}, \mathcal{E})$ which could be $\Delta_{\mathbb{E}\mathcal{G}}$ or $\mathbb{E}\Delta_{\omega}$ we can build the diffusive metric on \mathcal{V} (see [1]). For completeness, let us state and prove the basic facts regarding the constructive of these metrics.

Teorema 2.1. Let $\Gamma = (\mathcal{V}, \mathcal{E}, b_i, B_{ij})$ be a simple undirected weighted graph. Then

a) the operator Δ_{Γ} is selfadjoint with respect to the inner product

$$\langle f,g\rangle_{\overline{b}} = \sum_{i=1}^{n} f(i)g(i)b_i;$$

b) the operator Δ_{Γ} is negative definite, i. e.

$$\langle \Delta_{\Gamma} f, f \rangle_{\bar{h}} \leq 0, \quad for \; every \quad f;$$

c) the operator Δ_{Γ} is diagonalizable, i. e. there exist a sequence $\lambda_{n-1} \leq \lambda_{n-2} \leq \cdots \leq \lambda_1 \leq \lambda_0 = 0$ and an orthonormal sequence $\phi_0, \phi_1, \ldots, \phi_{n-1}$ with respect to the inner product $\langle , \rangle_{\overline{b}}$, such that

$$\Delta_{\Gamma}\phi_i = \lambda_i\phi_1, \quad for \quad i = 0, 1, \dots, n-1;$$

d) for any t > 0, the function $d_t : \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ given by

$$d_t(i,j) = \sqrt{\sum_{\ell=0}^{n-1} e^{2t\lambda_\ell} |\phi_\ell(i) - \phi_\ell(j)|^2}$$

is a metric on \mathcal{V} .

Proof. a) Let f and g be two functions from \mathcal{V} to \mathbb{R} , then since $B_{ij} = B_{ji}$,

$$\begin{split} \langle \Delta_{\Gamma} f, g \rangle_{\bar{b}} &= \sum_{i=1}^{n} \left(\Delta_{\Gamma} f \right) (i) g(i) b_{i} \\ &= \sum_{i=1}^{n} \left(\frac{1}{b_{i}} \sum_{j=1}^{n} B_{ij} (f(j) - f(i)) \right) g(i) b_{i} \\ &= \sum_{j=1}^{n} \sum_{i=1}^{n} B_{ij} (f(j) - f(i)) g(i) \\ &= \sum_{j=1}^{n} \left(\sum_{i=1}^{n} B_{ij} f(j) g(i) - \sum_{i=1}^{n} B_{ij} f(i) g(i) \right) \\ &= \sum_{j=1}^{n} \sum_{i=1}^{n} B_{ij} f(j) g(i) - \sum_{j=1}^{n} \sum_{i=1}^{n} B_{ij} f(i) g(i) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} f(j) g(i) - \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} f(i) g(i) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} f(j) g(i) - \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} f(i) g(i) \\ &= \sum_{i=1}^{n} \left(\frac{1}{b_{i}} \sum_{j=1}^{n} B_{ij} (g(j) - g(i)) \right) f(i) b_{i} \\ &= \langle f, \Delta_{\Gamma} g \rangle_{\bar{b}} \,. \end{split}$$

b) Since $B_{ij} = B_{ji}$ we have

$$\begin{split} \langle -\Delta_{\Gamma}f, f \rangle_{\bar{b}} &= \sum_{i=1}^{n} \left(-\Delta_{\Gamma}f \right) (i)f(i)b_{i} \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} \left(f(i) - f(j) \right) f(i) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} f^{2}(i) - \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} f(i)f(j) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} \left(f^{2}(i) - f(i)f(j) \right) \\ &= \frac{1}{2} \left[\sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} \left(f^{2}(i) - f(i)f(j) \right) + \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} \left(f^{2}(i) - f(i)f(j) \right) \right] \\ &= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} \left(f^{2}(i) + f^{2}(j) - 2f(i)f(j) \right) \\ &= \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} B_{ij} \left(f(i) - f(j) \right)^{2} \\ &\geq 0. \end{split}$$

c) follows from a) and b) since we are dealing with a self-adjoint and negative definite matrix Δ_{Γ} . Since the constant functions are Δ_{Γ} -harmonic we have that $\lambda_0 = 0$ is the eigenvalue corresponding to the eigenfunction $\phi_0(i) = \frac{1}{\sqrt{\sum_{j=1}^n b_j}}$ for

 $i = 1, \ldots, n$, which has the L^2 norm given by the inner product $\langle , \rangle_{\overline{b}}$ equal to one. d) it is clear that d_t is nonnegative, symmetric, faithful and satisfies the triangle inequality for every t > 0. Let un notice here the $d_t(i, j)$ is the $L^2(\mathcal{V}, \overline{b})$ norm of the difference of the heat kernels at i and j provided by the diffusion $\frac{\partial u}{\partial t} = \Delta_{\Gamma} u$. \Box

As a general reference for the above see for example [3].

3. The case of AMBA (Buenos Aires)

In this section we effectively compute and sketch some families of balls, the metric provided by d_t in Theorem 2.1 for several natural instances of affinity matrices A_{ij} and some of their means and a couple of instances for the weights a_i at each node. All the underlying computations are performed in Python. In order to show our results in a compact way we shall first introduce the families of affinities A_{ij} that we shall use and the weights a_i that we consider.

Our basic vertex set is $\mathcal{V} = \{1, \dots, 41\}$ one for each city in AMBA. The first, and perhaps more relevant matrix concerning the spread of COVID-19 in this setting, is the matrix built with the data of SUBE provided by the public transport in AMBA. This matrix takes onto account buses, subte (metro), trains and even fluvial public transportation. We shall denote it by A^0 . We exhibit in Figure 3 the full unnormalized form of the 41×41 matrix A^0 . We shall as well consider some neighborhood matrices. With A^1 we denote the normalization of the matrix that takes the value 1 at (i, j) if the cities i and j share some points of their boundaries, and zero otherwise. In Figure 2 we show a small part of A^1 (unnormalized). With A^2 we denote a better quantified weighted approach of A^1 that takes into account the length of the shared portion of the boundary between cities i and j. See Figure 4. Since the population of different cities is in several instances quite different for two neighbor cities, we consider still another matrix that we denote A^3 , which takes into account the length of the shared boundaries and also the minimum of the population of the two neighbor cities. Figure 5 depicts a part of this matrix. For last, the matrix A^4 considers only the minimum of the populations of any two neighbor cities. The matrix A^4 is partially showed in Figure 6.

Regarding the weights a_i at the nodes, we shall consider only two \vec{a} : the uniform $\vec{a}_1 = (\frac{1}{41}, \ldots, \frac{1}{41})$ and a normalization of the density of the disease in each location (total number of active infections over population) by July 2020, given by

 $\vec{a}_2 = (0.0023, 0.0009, 0.0004, 0.0014, 0.0015, 0.0009, 0.0012, 0.0030, 0.0007, \\ 0.0009, 0.0011, 0.0015, 0.0008, 0.0016, 0.0049, 0.0005, 0.0006, 0.0018, \\ 0.0015, 0.0031, 0.0013, 0.0008, 0.0012, 0.0010, 0.0019, 0.0022, 0.0014, \\ 0.0006, 0.0019, 0.0095, 0.0011, 0.0004, 0.0015, 0.0018, 0.0018, 0.0026, \\ 0.0013, 0.0018, 0.0029, 0.0018, 0.0034)$

																		h							r															
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	Ő	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	1	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	1	0	1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	1	0	0
0	0	0	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0
0	0	1	1	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	1	0	0	0	0
0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	1	0	1	0	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
1	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	1	0	0	1	0	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	1	0	0	0	0	0	0	0	0	0	1	1

Figure 2: Unnormalized submatrix of A^1 (20 × 41)

163	0	1	102	71	146	484	226	10	2064	430	98	18	1061	144	2	19	181	119	12210	1595	43	92	1672	35	859	441	9	3	32048	4		1604	8905	1019	414	4405	129	2408	0	
35	0	13	982	12	203	429	39	41	7601	1676	529	0	1407	45	0	0	23	26	1430	11265	21	15	311	7	1060	3068	4	2	77657	16	0	2567	473	96	7029	1696	31	•	2408	
8355	48	1	16	214	4	18	4146	9	52	32	45	104	327	10313	1	23	572	11126	103	26	2410	1	63	136	156	75	-	11521	97	-	-	14	476	5449	25	108	0	31	129	
206	1	4	72	49	267	6420	66	55	5152	247	63	7	265	106	0	13	295	87	1010	712	8	257	12490	18	531	299	7	69	C8717	4	17	5857	18829	351	291	0	108	1696	4405	
32	2	90	2631	11	99	65	40	15	1309	4031	622	-	5817	49	1	0	26	27	822	4783	46	en	308	5	3462	6661	10	17	8/47	1 1	0	237	176	123	0	291	25	7029	414	
20782	12	5	100	2685	31	78	19166	9	214	11	124	996	1071	3538	35	161	11399	1960	553	86	455	13	293	1273	506	394	9	549	40/04		0	75	3635	0	123	351	5449	96	1019	
1048	9	12	6	958	220	1482	176	8	2727	197	197	73	1738	527	2	954	3783	403	1512	284	199	646	8217	94	1017	519	S	198	17799	-	1	1090	•	3635	176	18829	476	473	8905	
30	0	3	67	6	130	885	23	53	885	227	34	4	217	31	0	H	82	23	947	685	17	41	671	0	539	310	•	80	1238	0	m	•	1090	75	237	5857	14	2567	1604	
0 1	0 0	0	0	0 0	6 2	0 1	3 0	1	5 27	3	1 0	0	.0	0 0	0 0	0	0 0	0 0	0	5	0 2	0 123	4 139	0	9	0	0	0	8 C		0	2 3	1 11	1 0	0 0	4 17	1	9	4 3	
4	352	0 12	0	5	0	0	7	0	2	1 49	1	2	5	11	0	0	1	46	1	0	337	0	0	1	=	-	0	9	727	0	0	0	4	6	1	0	46	0	0	
4539	258	433	4235	7537	2198	6070	9521	949	2871	7229	5958	2679	4844	6923	57	549	6876	1292	6014	0500	8465 4	1101	6468	5330	7645	2837	465	4064	0 00	86	47	7238	8221	5769	8749	1285	8156	3912	2648	
612 3	40	1	m	64	10	5	486 3	-	32 2	10	21	39	129 4	1994 3	9	5	218 1	6772 2	50 2	9	3040	3	32 2	39	74 1	31	2	•	4POd	2	0	00	198 8	549 4	27	69 2	1521 2	10	65 3	
2	1	1103	122	2	~	0	1	••	e	20	5	0	13	m	0	0	2	1	12	12	2	0	0	0	9	59	•	2	402	0	0	0	s	9	10	2	1	4	9	
81	0	211	5772	22	111	65	86	18	2172	2481	9170	7	4845	99	0	2	84	60	1615	3286	47	10	235	20	7521	•	59	31	1/282/	1 81	0	310	519	394	6661	299	75	3068	441	
184	0	37	2047	8	115	199	165	18	1666	1719	7362	6	10087	144	0	m	188	179	6059	1314	55	17	436	39	•	7521	9	4	C#0/T	1 12	0	539	1017	506	3462	531	156	1060	859	
5915	0	0	m	298	0	4	720	•	7	1	5	936	68	364	30	18	299	72	30	•	58	1	11	0	39	20	•	65	1 1) c	0	0	94	1273	5	18	136	2	35	
60	1	3	62	46	544	4467	142	126	7911	277	74	9	647	155	1	11	130	26	615	163	50	2196	0	11	436	235	0	32	20408		139	671	8217	293	308	12490	63	311	1672	
12	0	5	m	4	23	81	6	m	195	10	5	0	22	4	0	35	8	1	24	6	2	0	2196	1	17	10	0	"	TOTT	C	123	41	646	13	e	257	1	35	92	
2 482	7105	4	14	2	4	11	7 264	2	40	24	1 20	25	85	1 670	103	10	5 146	9 2509	50	17	0	9 2	50	58	1 55	47	2	3040	2010		2	17	1 199	455	3 46	2 88	5 2410	21	43	
2	0	30	2 143	1	3 42	10	3.	10	504	3581	42		2 184:	5.	0	0	3	19	129	0	1	*	16		131/	328			Incot t			68	28	8	2 478	71	2	1126	159	
13	1	1	1 25:	3(6	140	3 14(20	3 1578	9 43(27.	-	1 6143	5 129	2		15(6	0	129	5	1 24	615	30	605	161	1	ñ	7007			8	3 151	55	7 823	7 1010	100	1430	9 1221(
355:	3:		1	1 22	~	1.	2 1896		2	50	6	9	284	3 2515	11	10	46	0	6	1	5 2509		2(7.	17	3		6//	6717 0			2	40	1960	5 2	8	2 11120	5	11	
4183			2	7551	8	45	2292	2	9	25	36	321	313	386	0	307	0	460	158	52	146		130	295	185	22		212	0/20T			8	3783	11395	0 26	295	572	23	181	
55 53	2 0	0	0	1 1003	0	0 2	14 60	0	0	0	0	12	0 10	7 24	0	0	9 307	10	0	0	33	0 35	1 11	30 15	0	0	-	0			0	0	2 954	35 161	1	0 13	1 23	0	2 19	
3745	11	1	15	498	18	22	0406	00	115	44	48	236 36	249	0	7	24	988	2515	129	51	670 10	4	155	364	144	99	e	1994	11		0	31	527	3538	49	106	0313	45	144	
417	2	27	1635	76	123	142	321 1	16	1727	2188	2223	28	0	249	•	10	313	284	6142	1843	85	22	647	89	0087	4845	13	129	2 48844	, E	m	217	1738	1071	5817	265	327 1	1407	1061	
1843	1	0	H	178	•	3	515	•	4	4	2	•	28	236	368	12	321	65	80	2	54	0	9	936	6	2	•	39	6/07		0	4	73	966	1	7	104	0	18	
45	0	17	529	16	37	28	35	4	620	309	0	2	2223	48	0	•	36	43	271	424	20	5	74	5	7362	9170	S	17	1	• -	0	34	197	124	622	63	45	529	8	
24	1	227	5626	80	1316	64	30	266	3242	0	309	4	2188	44	0	-	25	29	430	3588	24	10	277	1	1719	2481	20	10	5771	492	0	227	197	77	4031	247	32	1676	430	
\$	2	31	618	39	4470	2938	74	609	•	3242	620	4	1727	115	0	6	63	28	1578	5041	40	195	7911	7	1666	2172	m	32	1/977	35	27	885	2727	214	1309	5152	52	7601	2064	
23 5	7 0	2 31	15 29	21 1	12 991	31 20	0 2	2	74 609	30 266	35 4	15 0	21 16	90 8	14 0	60 0	92 4	38	46 20	37 108	5	9	42 126	20	65 18	36 18	1 8	1 2	47	104	1	23 53	71 38	56 6	40 15	99 55	46 6	39 41	26 10	
16 62	0	Ŧ	53	14 10	20	0	31	8	8	2	28	3	42 3.	22 104	0	2	45 22	11 18	40	R	11 2	81	57 1	4 7.	1	53	0	9	10 355		-	52	82 9	78 191	55	20	18 41	62	84 2	
10	0	24	6	2	0	50	12	16	170 29	116	37	0	1 23	18	0	=	13	4	98	127	4	23	44 44	0	15	=	~	10	20 00	26	2	30 8	20 14	31	99	67 64:	4	03 4	46 4	
808	3	0	9	0	~	14 1	021	-1	39 44	8	16	178	76 1	498	7	003	551	222	36	12	44	4	46	298	54	22	7	8	23/ 2		0	6	958	685	11	49 2	214	12	71	
19	0	846	0	9	103	23	15 1	29	618	5626	529	1	1635	15	0	0 1	22 7	14	252	1435	14	e	62	m	2047	5772	122	m	4730	9	•	67	96	100 2	2631	72	16	982	102	
0	0	0	846	0	24	1	2	31	31	227	17	0	27	1	0	F	1	-	12	30	4	5	m	0	37	211	1103	-	433	120	0	e	12	5	60	4	=	13	H	
2	0 1	0	•	3	0	0	1 7	0	1 2	1	0	1	7 2	11	2	0	5	31	0	0	7105	0	1	0	0	•	1	90	202	0	0	0	9	12	2	1	48	0	0	
0	2	0	15	808	10	16	6223	v)	54	24	45	1843	417	3745	55	53	4185	3551	135	22	482	12	99	5915	184	81		612	3435			30	1048	20782	32	206	8355	33	163	

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	10,5	13,3	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	32	0	0	0	0	0	0	7,52	40,5	0	0	0	0	0	0	0	0
0	0	32	0	0	0	0	0	0	0	26	6,26	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	12,2	0	0	0	18,3	21,6	0	0
0	0	0	0	0	0	0	0	36,7	16,6	11,1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	4,35	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	9,8	0	0	0	0	0
0	0	0	0	0	36,7	0	0	0	0	15,4	0	0	0	0	0	0	0	0	0
0	0	0	0	0	16,6	4,35	0	0	0	9,84	0	0	0	0	0	0	0	0	0
0	0	7,52	26	0	11,1	0	0	15,4	9,84	0	0	0	0	0	0	0	0	0	0
0	0	40,5	6,26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	12,2	0	0	0	0	0	0	0	0	0	0	29,9	33,6	0	11,1	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	7,69
0	0	0	0	0	0	0	9,8	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	29,9	0	0	0	0	0	0	0
0	0	0	0	18,3	0	0	0	0	0	0	0	33,6	0	0	0	0	0	0	0
10,5	0	0	0	21,6	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
13,3	0	0	0	0	0	0	0	0	0	0	0	11,1	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	7,69	0	0	0	0	0	0

Figure 4: Unnormalized submatrix of A^2 (20 × 20)

Figure 5: Unnormalized submatrix of A^3 (20 × 20)

The result of Section 2 generate a diversity of metrics on $\mathcal{V} = \{1, 2, \ldots, 41\}$ provided by any choice of $A \in \{A^0, A^1, A^2, A^3, A^4\}$ and $\vec{a} \in \{\vec{a}_1, \vec{a}_2\}$. Moreover from Proposition 2.2 in Section 2 any convex combination of matrices A provides a Laplacian and a corresponding family of metrics on \mathcal{V} . Sometimes we shall use a convex combination of A^0 and A^i with i = 1, 2, 3, 4, i.e. $A = \theta A^0 + (1 - \theta)A^i$ with $0 \leq \theta \leq 1$. In this cases we write $d_t^{i,\theta;j}$ to denote the metric provided by Theorem 2.1 with $B = \theta A^0 + (1 - \theta)A^i$ and $b = \vec{a}_j$. We shall use the standard notation for balls keeping the above notation, precisely

$$B_t^{i,\theta;j}(k,r) = \{\ell \in \mathcal{V} : d_t^{i,\theta;j}(k,\ell) < r\}$$

for $k \in \mathcal{V}$, r > 0, i = 0, 1, 2, 3, 4 and $0 \le \theta \le 1$.

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	370900	517082	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	105552	0	0	0	0	0	0	105552	105552	0	0	0	0	0	0	0	C
0	0	105552	0	0	0	0	0	0	0	255073	174883	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	77161	0	0	0	62921	219031	0	C
0	0	0	0	0	0	0	0	109695	109695	109695	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	180914	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	356392	0	0	0	0	C
0	0	0	0	0	109695	0	0	0	0	119805	0	0	0	0	0	0	0	0	C
0	0	0	0	0	109695	180914	0	0	0	378167	0	0	0	0	0	0	0	0	C
0	0	105552	255073	0	109695	0	0	119805	378167	0	0	0	0	0	0	0	0	0	C
0	0	105552	174883	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	77161	0	0	0	0	0	0	0	0	0	0	31023	62921	0	77161	C
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	267655
0	0	0	0	0	0	0	356392	0	0	0	0	0	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	31023	0	0	0	0	0	0	C
0	0	0	0	62921	0	0	0	0	0	0	0	62921	0	0	0	0	0	0	C
370900	0	0	0	219031	0	0	0	0	0	0	0	0	0	0	0	0	0	0	C
517082	0	0	0	0	0	0	0	0	0	0	0	77161	0	0	0	0	0	0	C
0	0	0	0	0	0	0	0	0	0	0	0	0	267655	0	0	0	0	0	C

Figure 6: Unnormalized submatrix of A^4 (20 × 20)

A way to schematically depict the unrestricted paths of COVID-19 propagation from the point (CABA) with higher initial concentration of diseases is to consider for each metric the balls centered at CABA (30) and growing radii.

Using a prescribed scale of colors we can run our algorithm in Python in order to obtain a diversity of images for propagation due to the above described notations of neighborhood and transport and their convex combinations. With the above introduced notation we give the following illustration of the results. In Table 1 and Table 3 we use always t = 0.25 and j = 1, the other parameters are explicitly given. The center is always 30 (CABA), the growing radii are colored according to the given scale.

Some global comparison of the different metrics are in order. In Table 2 we shall show the comparison of the metric induced by public transport (SUBE) with the metrics induced a convex combination of the SUBE data and some of the neighborhood matrices defined above only for the case of $\bar{a_1}$, the uniform distribution $(a_i = \frac{1}{41})$ of the vertices of the graph. Here we compute the relative deviations with

respect to the metric induced just by public transport. Let us precise the above. Set

$$\epsilon_{t}^{i,\theta} = \frac{\left\|d_{t}^{0,0;1} - d_{t}^{i,\theta;1}\right\|}{\left\|d_{t}^{0,0;1}\right\|}$$

where $d_t^{0,0;1}$ is the metric matrix associate to the public transport only and $d_t^{i,\theta;1}$ are the metrics defined above. The norm considered here is the Euclidean one, i.e.

$$\left\| d_t^{0,0;1} - d_t^{i,\theta;1} \right\|^2 = \sum_{k,\ell=1}^n \left| d_t^{0,0;1}(k,\ell) - d_t^{i,\theta;1}(k,\ell) \right|$$

and

$$\left\| d_t^{0,0;1} \right\|^2 = \sum_{k,\ell=1}^n \left(d_t^{0,0;1}(k,\ell) \right)^2.$$

Table 2: Relative differences

$\epsilon_t^{1,0}$	0.12035607	$\epsilon_t^{1,0.5}$	0.0609088
$\epsilon_t^{2,0}$	0.17173178	$\epsilon_t^{2,0.5}$	0.091446
$\epsilon_t^{3,0}$	0.0644136	$\epsilon_t^{3,0.5}$	0.0306021
$\epsilon_t^{4,0}$	0.09062579	$\epsilon_t^{3,0.5}$	0.04661433

In Table 2 we observe that, as it could be expected and as it reflected by the colored maps in Table 3, the largest relative differences with the metric provided by the public transport are those given by matrices A^1 and A^2 which only take into account neighboring, with no reference to the sizes of populations. On the other hand, for matrices A^3 and A^4 which take into account populations, the results are closer to that of the pure public transport matrix A^0 . All the interpolation cases show, at least with $\theta = 0.5$ a closer behavior to that of A^0 .

4. Comparison of the metric closeness with the actual spread of COVID-10 in AMBA

As we show in Section 3 all the versions of the diffusive metric that we consider provide in some way the paths of propagation of COVID-19 associated only with transport of AMBA. Our model is based only in the proportional volume of people moving daily from each city to another without taking into account the restrictions imposed in each district. At this point it is important to mention that there are two different administrations in the system of the 41 cities of AMBA. One for the City of Buenos Aires, CABA, node 30 in our graph, and other administration ruling in the other 40 cities of AMBA. The restrictions imposed by both administrations during the pandemic course, were sometimes coincident and sometimes not. The current available data allows us to have a precise picture of the dynamics of the growth of infections in AMBA. For each one of the 41 cities we computed the time passed until the number of infected people surpass the threshold of x% of the population with $x = j \cdot \frac{1}{10}$, j = 1, 2, ..., 20. The maps obtained are of the type depicted in Figure 7.

Figure 7: Days up to 0.1% of infections over the population (from 0.1% of CABA)

We shall only concentrate our analysis in the two largest cities of AMBA, CABA and La Matanza. Numbered 30 and 35 in our graph. Ciudad Autónoma de Buenos Aires (30) has a population of 3.075.000. La Matanza (35) has a population of

2.280.000 people. They share a boundary of about 10 kilometers. All the metrics in the models of Section 3 place La Matanza as the closest city to CABA. This fact is by no ways reflected by the actual spread of the pandemic in AMBA based in our percentual thresholding scheme. In fact while for CABA we have the red distribution as a function of time in Figure 8, for La Matanza we have the blue one.

Figure 8: Evolution of cases in CABA (red) and La Matanza (blue)

At this point, it is worthy noticing that the administration of CABA has almost always been looser than the administration of La Matanza, regarding the quarantine, isolation and restriction measures associated with the pandemics COVID-19.

Declarations

Funding

This work was supported by the Ministerio de Ciencia, Tecnología e Innovación-MINCYT in Argentina: Consejo Nacional de Investigaciones Científicas y Técnicas-CONICET (grant PUE-IMAL #22920180100041CO) and Agencia Nacional de Promoción de la Investigación, el Desarrollo Tecnológico y la Innovación (grant PICT 2015-3631) and UNL (grant CAI+D 50620190100070LI).

Conflicts of interest/Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Availability of data and material

All the data used is of public access.

Code availability

We use Python, free software.

References

- R. R. Coifman and S. Lafon, "Diffusion maps," Applied and Computational Harmonic Analysis, vol. 21, no. 1, pp. 5–30, 2006.
- [2] M. F. Acosta, H. Aimar, and I. Gómez, "On Frink's type metrization of weighted graphs," Asian Research Journal of Mathematics, vol. 17, pp. 26–37, 2021.
- [3] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst, "Geometric deep learning: going beyond euclidean data," *IEEE Signal Processing Magazine*, vol. 34, no. 4, pp. 18–42, 2017.