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ENDPOINT ESTIMATES FOR HARMONIC ANALYSIS
OPERATORS ASSOCIATED WITH LAGUERRE POLYNOMIAL
EXPANSIONS

JORGE J. BETANCOR, ESTEFANIA DALMASSO, PABLO QUIJANO,
AND ROBERTO SCOTTO

ABSTRACT. In this paper we give a criterion to prove boundedness results
for several operators from H'((0,00),74) to L((0,00),7«) and also from
L*°((0,00),va) to BMO((0,00),va), with respect to the probability mea-
sure dyq(z) = ﬁx%“"le‘rzdm on (0,00) when a > f%. We shall apply
it to establish endpoint estimates for Riesz transforms, maximal operators,
Littlewood-Paley functions, multipliers of Laplace transform type, fractional
integrals and variation operators in the Laguerre setting.

1. INTRODUCTION AND MAIN RESULTS

We will consider harmonic analysis operators associated with Laguerre polyno-
mial expansions and establish some endpoint estimates for them. More precisely,
we shall prove their boundedness from H'((0,0),74) to L((0,00),7,) and from

L>((0,00),Ya) to BMO((0, ), Vs ), where dvy, (z) = F(a2+1):c2°‘+1e’z2d:c on (0, 00),

for o > —1.

We ﬁrsthecall the definitions and the main properties of Hardy and BMO spaces
in our setting. We introduce the function m(z) = min {1,2}, z € (0,00). Given
a > 0, an interval (z — r,x + r), with 0 < r < =z, is said to be in B, when
0 <r < am(x). We denote I(z,r):= (x —r,x+r)N(0,00), for every z,r € (0, 00).
Clearly, the measure 7, is not doubling but it has the doubling property on the
intervals of each family B,, that is, there exists C, > 0 for which

YalI(,2r)) < Cova(I(z,7)),

provided that I(z,r) € B,.

Let 1 < ¢ < co. We say that a measurable function b defined on (0, 00) is an
(a, ¢, a)-atom when b(z) = 1 for every x € (0, 00), or there exists 0 < ro < z¢ such
that I(xzg,ro) € B, and the following properties are satisfied:

(i) supp(db) C I(zg,r0);
.. 1_q . 1
(i) 160l 24((0,00),70) < Val(I(20,70))7 ", being ; = 0 when g = oo;
(iii) [y b(y)dvaly) = 0.
A function f € L'((0,00),7,) is said to be in H}9((0,00),,) when f = Z;io Ajbj
where, for every j € N, b; is an (a, ¢, o)-atom and \; € C being Z;io |A;] < o0. If
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f e Hb((0,00),74) we define

||f||Hi’q((0,oo),'ya) = inf Z Ajl-
Jj=0

Here the infimum is taken over all the sequences {\;};en of complex numbers such
that 3272, |Aj| < oo and f = 3772, A;bj, where b; is an (a, g, a)-atom, for every
j € N. The space H9((0,00),7,) is endowed with the topology associated with
the norm || - || 1.9((g,00) 7.y ThuUS, HL9((0,00),74) is a Banach space.

These Hardy spaces H}9((0,00),7,) were introduced and studied in [1], where
the authors gave a characterization of H14((0,00),74) by using a local maximal
function. The space H19((0,00),7,) actually does not depend on a and ¢ ([,
Theorem 1.1]). To simplify, we write H'((0,00),7,) instead of H29((0,00),7a),
a>0and 1< q<oo.

We shall now define our BMO space. Let a > 0. We say that a function
f € LY((0,00),74) is in BMO,((0, ) «) When

Hf”*,a,a = Sup ———< /If fI|d’7a(y) < 00,

IeB, 7@

where fr = — ( 7 J; f(W)dva(y), for each I € B,. We also define, for every
J € BMO,((0, 00), ’Ya)

[ 1lBMO0. ((0.00) 7a) = I llzt((0,00) 7). [[f ]+,

The space (BMOQ((O, 00), Ya)s |l - ||BMOa((0,oo),va)) is a Banach space when the func-
tions differing by a constant are identified.

As it happens with the Hardy space, the BMO,((0,0),7,) space does not
depend on the parameter a. Hence, we may write BMO((0,0),7,) instead of
BMO,((0,00),7a), and || * ||+, instead of ||« ||+,q,-

We now state the main properties of the space BMO((0,0),7,) that can be
proved as the corresponding properties for the BMO space associated with the
Gaussian measure (see [18]).

Theorem 1.1. Let o > —%.

(a) The dual space of H'((0,00),7a) can be identified with BMO((0,0),7a)-
(b) (John-Nirenberg type inequality) There exist ¢,C > 0 such that, for every
f € BMO((0,00),7a) and every I € By,

vo ({2 € 1: |f(x)— fi] > A}) < Cexp (—mf) 1),

The key result for the aforementioned endpoint estimates for the harmonic anal-
ysis operators associated with Laguerre expansions will be a boundedness criterion,
in the spirit of a similar result given in [18] on the Gaussian setting.

We shall be dealing with the following two classes of operators T', namely:

(I) T is a linear operator defined on L2((0,0),v,) into the space of mea-
surable functions on (0,00) such that, for a certain measurable function
K : ((0,00) x (0,00))\ D — C, WhereD—{(:E z):xz € (0,00)},

/ K(z,y)f(y)dva(y), =« € (0,00)\ supp(f),

with f € L2((0,50), 7).
(IT) For every t > 0, T} is a linear operator defined on L?((0,00),7,) into the
space of measurable functions such that, for a certain measurable function
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K; : (0,00) x (0,00) = C
T,(f)(x) = / Ki(.9)f @) draly), € (0,00),
0

where f € L2((0,00),74). Suppose now that (X, | - || x) is a Banach space
of measurable complex functions defined on (0, 00), that the function

((0,00) x (0,00))\ D — X,
(@,y) = Kiy(z,y),
is X-strongly measurable and that, for every f € L>°((0,00),74), the inte-
gral [J° 1K) (@,y)|lx f(y)dvaly) < oo, for every @ € (0,00) \ supp(f). The
operator T is defined by

T(f) = I1T(NHlx, e L*((0,00),7a)-

Note that (II)-type operators are special cases of the so-called almost linear oper-
ators.
The boundedness criterion can be now stated.

Theorem 1.2. Let o > f%. Suppose T is an operator as above, that is, T is of
(I)-type or (II)-type.
(a) Assume that T is bounded on L?((0,00);%4) and

sup sup / 1Ko, ) — Ko(2y9)]| xdva(y) < oo, (L.1)
IeBy z,z€l J(2I)¢

where X = C when the operator T is of (I)-type. Then, T is bounded from
17°((0,0), 7a) into BMO((0,0), 7).

(b) Assume that T is bounded on L?((0,00),7«) and it can be extended from
L?((0,0),74) to L'((0,00),7a) as a bounded operator from L*((0,00),q)
into LY*°((0,00),9a). Also, suppose that

sup sup [ Ki(o1y) ~ i) xda(o) < oc, (12)
1€By y,2e1 J21)e

where, as above, X = C when T is of (I)-type. Then, T can be extended
from H'((0,00),7a) N L2((0,00),7a) to H((0,00),7.) as a bounded oper-
ator from H'((0,00),74) into L*((0,00),Va)-

Remark 1.3. If the kernel K; has certain regularity, conditions (1.1) and (1.2) can
be deduced from

sup rysup [0,y | xdaly) < oo, (1.3)
IeB; zel J(21)¢

and
sup risup [0, Kil.)|xdbalz) < . (1.4)
IeBy  yel J(2r)e

respectively, being r; the radius of the interval I.

We now present the setting and the operators we shall be dealing with. Let
o > —%. For every k € N, the Laguerre polynomial Lj of order o and degree k is
defined as in ([17])

r 1 k
Li(x) = _Pla+l) oo @ (e‘”m““) , x € (0,00).

Tlatk+ DK dzk

We consider the Laguerre operator ﬁa given by

Bahe) =1 (s + (B -20) ) s, FeC?0.00)
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By defining, for every k € N, L (z) = L& (2?), z € (0,00), the sequence {L{ }ren is
an orthonormal basis in L?((0, oo) «). Furthermore, A, L = kLY, for any k € N.
For every f € L*((0,00),74), we set

/f VL& (2)dya(x), k€N,

We consider the operator A, given by
£ =Y ke (NLE,  feD(A),
k=0

where D(A,) = {f € L*((0,00),7a) : Yopeplkc2(f)]* < oco}. We have that
Ao(f) = Ag(f) for every f € C°(0,00), the space of smooth functions with
compact support in (0,00). The operator A, is a self-adjoint and positive opera-
tor. Moreover, the operator —A,, generates a semigroup of operators {W, };~¢ in
L?((0,00),74) where, for every t > 0,

Z L8, FEL?((0.00),7a)-

By using the Hille-Hardy formula ([17, (4.17.6)]) we can write, for every x,y,t > 0

> T(a+1 fa | (2etfpy) _etetad
S e = §U () (T e T )
k=0

1—et

where I, denotes the modified Bessel function of the first kind and order «.
We get, for every f € L?((0,00),94) and ¢ > 0,

/ W (x,y) fly)dya(y), € (0,00), (1.6)

being W (x,y) the right-hand side of (1.5), for @, y,t € (0, 00).

The integral in (1.6) is absolutely convergent for every f € LP((0,00),7,), with
1 < p < oo. Furthermore, by defining, for every t > 0, W2 on LP((0,00),V4),
1 <p <o, by (1.6) {W}io turns out to be a symmetric diffusion semigroup in
the sense of Stein ([30]).

We define the subordinated Poisson semigroup {Pf }:~¢ associated with the La-
guerre operator A, by

arm b T ey gra s AU
By (f)_ﬁ o Wu(f)mv t>0. (1.7)
Thus, {Pf }i>0 is a symmetric diffusion semigroup in the sense of Stein ([30]) as
well.
Given k € N, the maximal operator P, is given by

k(F)(z) = sup |05 P (f)(x)

According to [30, p. 73] we have that Pg, is bounded on LP((0,00),7,), for ev-
ery 1 < p < oo. The maximal operator W associated with the heat semigroup
{W}i~0 was studied by Muckenhoupt ([22]) (see also [7]). From Muckenhoupt’s
results it follows that P2, is bounded from L'((0,00),7q) into L'*((0,00),74).
The Laguerre semigroup {W2};~o can be extended to complex values of the pa-
rameter t. The corresponding maximal operator was studied in [29]. From [15,
Remark 4.3] the operator Py, is bounded on LP((0,00),7a), for every 1 < p < oo
and k € N. By using [0, Theorem 1.1] we deduce that P}, is also bounded from
LY((0,00),74) into L1>°((0,00),74), for every k € N.

, x € (0,00).



ISSN 2451-7100
IMAL PREPRINT # 2022-0058 Publication date: October 27, 2022

ENDPOINT ESTIMATES FOR OPERATORS IN THE LAGUERRE SETTING 5

The Littlewood-Paley functions associated with the semigroup {P?}+~0 can be
defined as follows. For every n,k € N with n + k > 1, we consider the square
function gy, given by

o o dt\/?
s = ([ eerotre (e’ F) L e 000)
According to [30, Chapter 4, Section 6, Corollary 1], for every 1 < p < oo and
k€N, k>1, g5, is bounded on LP((0,00),7,). Moreover, in [6, Theorem 1.2]
it was proved that gg is bounded from LY((0,00),74) into LY((0,00),7,), for
every k € N, k > 1. The authors proved in [3, Theorem 1.1, (c)] that gy, is
bounded on LP((0,00),7), for every 1 < p < oo and n,k € Nwithn+k > 1. It is
worth mentioning that Nowak ([23, Theorems 6 and 7]) established LP-boundedness
properties for Littlewood-Paley functions involving spatial derivatives (n > 0) in
other Laguerre contexts.

We now introduce the multipliers of Laplace transform type. A measurable
function M is said to be of Laplace transform type when

M(z) =z / T e mg(y)dy,  1e(0,00),

where ¢ € L*°(0,00). Note that M € L*°(0,00) provided that M is of Laplace
transform type. We define the multiplier T; by

Ti(f) = M (VE) @ (LR f € L2((0,50), 7).
k=1

Since M € L*>(0, 00), T is bounded on L?((0,00), 7). By [30, Corollary 3, p. 121]
T¢ can be extended from L?((0,00),7,) N LP((0,00),74) to LP((0,00),7,) as a
bounded operator on LP((0,00);7a), for every 1 < p < oo. When 8 > 0 and
Ply) = myﬂﬁ’, for y €(0,00), then T, = A"

Let w > 0. We define the negative power A% of A, by

A (P@) =Y kR (NLY,  f e L((0,00),7a).
k=1

Thus, A% is bounded on L?((0,0),74). Note that the function M(z) = 272,
for € (0,00), is not of Laplace transform type, so A_“ does not fall in the
scope of multipliers of Laplace transform type. The operator AJ“ can be ex-
tended from L2((0,00),74) N LP((0,00),74) to LP((0,00),7,) as a bounded opera-
tor on LP((0,00),74), for every 1 < p < oo (see [20, Lemma 2.2] for the Ornstein-
Uhlenbeck operator case). However, A% is not bounded from L'((0,00),7,) into
L1°°((0,00),74) (see [10, Proposition 6.2] for the Ornstein-Uhlenbeck operator
case).

Let n € N, n > 1. We define the n-th order Riesz transform R} associated with
A, as follows. For every f € L?((0,00),7a),

=1 d”
Ro(f) = Z kn/gcg(f)mjﬁﬁg-
k=1

BY[ ]7Rn

" is bounded on L?((0,00),74). For every f € L?((0,00),7,) we have
that

R (f)(x) = / T K0 f)daly), ace. z € (0,00) \ supp(f),
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where
1

K (z,y) =

Oot_1+"/2WO‘ z,y)dt, z,y € (0,00),x # y.
o /| F ) (0,0)

By [5, Theorem 1.1], [26, Theorem 1.1], and [23, Theorem 13] we deduce that each
R" can be extended from L2?((0,00),74) N LP((0,00),74) to LP((0,00),74) as a
bounded operator on LP((0,00),7,), for every 1 < p < oco. Furthermore, R. can
be extended from L?((0,00),7,) N L*((0,00),74) to L*((0,00),74) as a bounded
operator from L!((0,00),7,) into L1 ((0,0),74) (see [J]).

Finally, we present variation operators. Let p > 2. If F' is a complex valued and
measurable function defined on (0, c0), we define the p-variation V,({F(¢)}+>0) as

follows
N_1 1/p
Vo({F(t)}e>0) = sup S IF(t) - F(t)l?
0<tn<ty-—1<...<t1, NEN, N>1 =
According to [16, Corollary 6.1] (see also [14, Theorem 3.3]), the p-variation opera-

tor V,({t*0F P }1>0), k € N, is bounded on LP((0,00),74), 1 < p < oo. Later, in [0,
Theorem 1.1] it was proved that V,({t*0f P*},~¢) is‘bounded from L!((0,00),va)
into L*°((0,00), 7a)-

Other results for the above harmonic analysis operators in the A,-setting can
be found in [1, 3, 8, 13, 12, 27,

In the following we establish the endpoints inequalities for the operators we have
just introduced.

Theorem 1.4. Let a > f% and p> 2.

(a) The operators P2y for k € N, gy for n,k € N with n +k > 1, Ry, for
n€N, n>1, V,{thofPf}i~o) fork € N, A% for w >0, and T§; where
M is of Laplace transform type, are all bounded from L>((0,00),74) into
BMO((0,00), 7).

(b) The operators P2y, fork € N, g, fork €N, k> 1, R, V,({tkoF P }i~0)
for k e N, AZ® for w > 0; and T5; where M is of Laplace transform type,
can be extended from L*((0,0),7v4) N H((0,00),74) to H((0,00),74) as
bounded operators from H'((0,0),74) to L*((0,00),Ya)-

We remark that endpoint inequalities for Riesz transforms and some spectral
multipliers in the Ornstein-Uhlenbeck setting were proved in [18] and [19].

This paper is organized as follows. In Section 2, we prove Theorem 1.2. In
Section 3 we state several lemmas that will be useful when proving our main theorem
in Section 4.

2. PROOF OF THEOREM 1.2

In order to prove (a) we can proceed as in the proof of [18, Theorem 6.1, (i)]. We
sketch it here. Suppose that T is a (II)-type operator associated with the Banach
space X. When T is an (I)-type operator the proof is similar.

Let f € L*®((0,00),74) and I € By. We define f; = fxor and fo = f — f1. We
have that T;(f) = Tt (f1) + Ti(f2), t > 0. Thus, we can write

/ T() (@) — [T 1lx] dvale)
/ IT(F)(@) — ()i xdva(a)
/ IT(f)(@) — (T xdra(a / 1T (f2)(@) — (Tu(f2)) 1] x dva(a)
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<2 / 1T (F)(@) | xda(e / 1T (f2)(@) — (T(f2)) 1l x dva(@):

Since T is bounded on L?((0,00),74) and v, is doubling on By, we get

g [ 1@l _( 5 [1T @k )) "’

) 1/2

<’ f(@)Pdva x>
(%m [ @)

SO fll oo ((0,00),70) -

According to (1.1) and the properties of the Bochner integration we obtain for the
other term

/ IT2(f2) (@) — (Tu(f))i ]l xdva (@)

I(Tt(fz)(l’) — Ti(f2)(2))dva(2)

dWa(x)
X

. (Ki(z,y) — Ki(2,9))f(y)dValy)

1
T (D)2

da(2)da(T)
X

///mc 1K (2, y) — Kilz,9)l x| f (9)]da (y)dya(2)dva(z)

1
Va(I
1
(7a(D))?
< 000 508 [ WD) Kiley)xiba(s)
2 c
< C||f||L°°((O,oo),'ya)~
We conclude that T'(f) € BMO((0, 00), 7w and

1T (fMBMO((0,00),70) < Cll Lo ((0,00),70)-

Now, we are going to prove(b). In the proof of [18, Theorem 6.1, (ii)] Mauceri
and Meda used the duality between Hardy and BMO spaces. Here we cannot use
duality arguments when we consider (II)-type operators. Assume that T is a (II)-
type operator associated with a Banach space X. For (I)-type operators the same
proof works.

Suppose that b is a (1,2, a)-atom. If b(z) = 1 for every z € (0,00), we have that

IZO) L1 ((0,00) 1) < 1T O 22((0,00),70) < CllONL2((0,00),70) < C-
Assume now that 0 < r; < x; are such that I = (z; — ry,x; + r7) € By and the
following properties hold

(i) supp(b) C I;

(") ||b||L2((Ooo)'ya < Yall)™2;
(iii) [y~ b(x)dva(z) = 0.

We can erte

[T = [ 1)@ dae) + | IT(6) (2) v (2)
0 (2I)N(0,00) (0,00)\(21)
= A; + As.

Since T is bounded on L?((0,00),74), by using (ii) we get
A1 S TG 22(0,00)70) (V2 21)) 2 < ClIb]l £2(0,00) ) (V1)) /? < C.
According to (i) and (iii), the properties of (II)-type operators lead to

Ay :/ /b(y)(Kt(a:,y) — Ki(z,z1)dva(y)|  dya(z)
@ne /1 X

Nl
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s/wm()nmmw—mw@nw%mmmn
I 21)¢

gclwwmmmsmwmwm%m%uW”ga

We conclude that
IO L ((0,00),70) < C
where C' > 0 does not depend on b.

By proceeding as in the end of the proof of [4, Theorem 1.2] we can finish this one.
Indeed, suppose that f = E;io Ajb;, where, for every j € N, b; is a (1,2, a)-atom
and \; € Cbeing 372 |\;] < oo. The series defining f converges in L'((0, 00), Ya)-
Since T is bounded from L'((0,00),7,) into LY°((0,00),7,) we have that

T(f) = lim T ZA ;| in L1((0,00), Ya)-

k—o00

Then, there exists an increasing function ¢ : N = N such that

(k)
T(f)(x) = lim T > b | (@)s ae. a € (0,00),
j=0

and thus, for almost every z € (0, 00),

p(k) o
T(f)(@)] = Jim T an (@) < Jim STINITE)@) = D NIT0:)(@)
7=0 j=0
It follows that

1Tz (0.000me) S INHT Gz (0,000 70) < C DI

Jj=0 Jj=0

We conclude that [|T(f)[|£1(0,00)70) < CllfIl#1((0,00),7.) and the proof is now fin-
ished.

Remark 2.1. Some comments about the proof of Theorem 1.2 (b) are in order.
Under the conditions given in Theorem 1.2 (b) we prove that there exists C' > 0 such
that [|T(O)l| 21 ((0,00),7a) < C, for every (1,2, a)-atom b. We need the operator T
to be bounded from L'((0, 00),7,) into L1>°((0,0), 7,) because the results in [21]
and [31] cannot be applied. Note that our underlying space is not of homogeneous

type.

3. SOME TECHNICAL LEMMAS

In this section we list and prove auxiliary results which are the key ingredients
for the proof of Theorem 1.4.

We begin by establishing some estimates involving the integral kernel of the heat
semigroup {W2};~o. The integral representation of the modified Bessel function
of the first kind I,,, v > —3 (see [17, (5.10.22)]), leads to

a 1 ! q (e "?x,y,
W (m,y):m/_lexp <_(1e)+y I, (s)ds,

for z,y,t € (0,00), where I1,(s) := %(1 — 82)271/2 for 5 € (—1,1) and

q(r,y,s) == 22 + y* — 2xys for z,y € (0,00) and s € (—1,1).
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For every n € N, we denote by H,, the Hermite polynomial of degree n given by
- n 2 d" 2

Hy(@) = (~1)"e” — (e ) z €R. (3.1)

Notice that for any n € N, z,y,t € (0,00) and s € (—1,1) we have that
dr q(e7?z,y,s) dr ety —ys 7\ e o2
—exp|l-—————F—|=—exp| - | —— e et
dz™ 1—et dx™ V1—e=t

et " e
S \WV1-et) dam o

e—t/20—ys

Vi—e—t

_(_ e—t/2 " i e—t/24 _ yYs e_q(‘" li/jjt’”)
V1—et " V1—et '

Then, given x,y,t € (0, 00),

arwe ! Py
z 'Vt (xay) - (1 _e_t)a+1 ( m)
1 —t/2,. _ q(e_t/zw,yw) %
X H,| —————— | e 1—e—t II.(s)ds,
/_1 ( V1—eTt ) (=)
and we can also see that

9e—t/2 /1 _q(e—t/%,y,s) y?

—_—_—m —{i_t
(T—enee f5f

8 s - 22 (e7t/2y :z:s)l(e*t/Z:r —ys) 1, (s)ds.
Vise (-

8yatha (.13, y) =

From all of the above and considering, as usual, the change of variables r = e /2,
t € (0,00), we deduce the following result.
Lemma 3.1. Let a > f% and n € N. There exists C > 0 such that for any

x,y € (0,00) and r € (0,1),
ez

re—ys|™\ e 1-r
> 1= yerieg Lal(s)ds,

V1—r7r2

1
|82W(—1210gr(‘r5y)| S C«,,,n/ <1 +

—1

and

1
. |5 2r|ry — wsl||re — ys|
|ayazW—210gT(x7y)| § C?"[l <m (1 - T2)3/2

_a(re,y,s) | 2
e 1—72 +y

X WHQ(S)dS

We now state two lemmas that will be useful for several estimates we will give
below. The first lemma was given in [2, Lemma 4] when o € N, o > 1. We include
here the case o = 0 since it also holds, as the reader can check. The second one
deals with the derivatives of the Poisson kernel, involved in the definition of many
of the operators considered in this article.

Lemma 3.2. Let 0 € N. Then

2 2 .
o7 (tefffu)’ < C’efgfuulT, t,u € (0, 00).
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Lemma 3.3. Let n,k € N and £ = 0,1. Then, there exists C > 0 such that for
every x,y,t € (0,00),

tn+ket2/(16 log ) dr

(—logr)ztl 1’
Proof. The proof is immediate by the subordination formula and Lemma 3.2 with
u = —2logr and o = k, which give

|t oL 0 T OF P (2, ) |

1
[+t gtk Pe ()| < c[/’|6fa£+l—‘wszkgr<m,yw
0

dr
3
2

r(—logr)

1
< C/ |00 W e, (@, y) | £ ’85 (tetz/(SIOgr)>
0

1 k t*/(16 logr
tntket”/(16logr) g
< [ 1040 W g ()| SR .
0 (—logr)a+t 7
The following lemma establishes some properties for the function ¢, which are
all straightforward from its definition.

Lemma 3.4. Let z,y € (0,00), r € (0,1) and s € (=1,1). Then, the following
estimates hold.
(E0 a( m’y a(rz,y,s) 2 _ q(wyryf) 2.

Y 1—1r T
(E1) CI(ZU»?"%S) = (z —ry)® + 22yr(l — s) and so
(E2) q(x,ry,s) > 2zyr(l — s);
(E3) q(x,ry,s) > r*(x® +y?) when s € (—1,0) and
(E4) q(z,ry,s) > r*(z? + y*)(1 — s) when s € [0,1);
(E5) q(z,ry,s) > 2%r2(1 — s);
(E6) q(z,ry,s) > y*r*(1—s);
(E7) q(z,7y,8) > (x —rys)® + y?r?(1 = s?);

(ES) q(rz,y,s) > (rz — ys)*.
Many of the estimates on the kernels of the operators considered here will require

the boundedness properties of the functions ¢, 1 and &, for n € N, defined in the
next lemma.

Lemma 3.5. Let n € N. The functions

o)= T W) = R, 6 =T

—logr’ —r2 (1—7r2)z-1 "7
with ©(0) = 1(0) = £,(0) =0, are bounded on [0,1].
In what follows, we establish several estimates that will led us to obtain condi-
tions (1.1) and (1.2) in order to prove Theorem 1.4 in Section 4.

In what follows, given I € By, we denote with ¢; and r; the center and radius
of I, respectively.

Lemma 3.6. Let o > —%. There exists C > 0 such that, for any interval I € By,
supr;y K(z,y)dya(z) < C
yel (21)¢

where

q(z,ry,s)

T 2(1-r2) +x?
Ky / / (1—1r2) T 2yats/z Hals)dsdr.

Proof. Assume that I € By and y € I. For every r € (1 —
by (E1) we get

ﬁ@) and z ¢ 21,

y
z,ry,8) >z —ryl>lr—yl-1-r)y>|lz -yl —rr——
q(z,ry,s) > | yl > |z —yl —( )y > |z —y T+
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o lr—y
Sle—yl— =>4 3.2
> |z —y| 9 = 9 (3.2)
for any s € (—1,1).

It yields
_q(z,ry,s) dT
/ / e 201-r2) Wﬂa(s)ds

2(1+y)

__lz—y|?
(z7ys) e 16(1-r2)

< C/ / Taa-r2) Wdrﬂa(s)ds

IeEan)
T I, (s)
T s
< C/ / < dsdr,
i =7 | e

for « ¢ 2I. According to [25, Lemma 2.1] and (3.2) we obtain
_alrye)

2(1—r2)
/ / 1= r7)ator2 —————drll,(s)ds

2(1+u)

lz—y|?

<C/ e 16(-n?) dr
— 2)3/2 _
o (L= AP mo (@l ry)

|z—y|?

< C/ e 16a-r7) dr
ol =P oI o = y1/2)

for z ¢ 2I. Here, m,, denotes the measure defined by dm,(z) = 22**1dz in (0, 00).
Also, we can write

o —y|?

1 = _ |z— y\
e 16(1—r2) C
/1_ y .(1_T2)3/2dr<0/ A ——du < ——

T+ 7 =]

for x ¢ 2I. Then,

q(z,ry,s)

20T (s)ds < ¢
[, q et

s = o~ ylma (. [z — y1/2))

for any x ¢ 21I.
By using [25, Lemma 2.2] and (E0),

_alerys) | o2

2(1—r2)
/21 / / (1= r2)ats/2 drlls(s)dsdya(x)

BlgEey )
2a+1
<C x sarTdr
. =y \**
@D |z — y? (x + T)
1
<C 2d
21) |z -y
>~ 1
Tr z
<<
I

Here C' > 0 does not depend on I or y € I.
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To deal with the remaining term we consider, for every z € (0, 00), the Hankel
translation defined by (see [11])

oz () (y) = /11 f <\/;p2 +y2 — 2xys> II,(s)ds, z,y € (0,00),

which is contractive in LP((0,00), m,) for every 2 € (0,00) and 1 < p < oo (|
p. 657]).
We deduce that, for every y € I,

)

_alzrys) 4 o2

T e 20-12)
/21) / / _ )a+5/2drna(5)d3d’ya(x)
1— 2(1+1/) q(z,ry,;)
1- 2(1+y) 1 _i
-5ty 1 o 2
/ — e 2(1—r2) dma(z)d'f'
0 (1 — )Oé-‘r5/2 /O

e lee=n} dr
A (1 232

<[,

(1+u)
1/2
§C<1+y> .
rr

By combining the above estimates we get

swpry | K(@,y)dva() < Csup (1+ (riy)?)
yel (21)e yel
< C(1+(ri(rr +en)?)
<C,
where C' > 0 does not depend on I. O

Lemma 3.7. Let o > —% and w > 0. Then there exists C > 0 such that, for every
Ie 81,

sup 7y KW(Ivy)drYa(‘T) S Ca
yel (21)¢

where for z,y € (0,00) and x # y.

_a(zry,s) w—1
.Z’ y / / 2(1—-72) +z % ( )de’I“

(1 — r2)at3/z
Proof. We proceed as in the proof of Lemma 3.6. Let I € By. Since

rr 1
11— >2 ye(0,0),
21+y) =2 7 (0,00)
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and using the boundedness of the function ¢ given in Lemma 3.5, it follows that

e e (<logr)et
Kyq1(z,y) / / ( m a(s)drds

2(1+y)

Latruo g2 TIa(s)
Cc< / / 2(1-r2) —(1 —Reriiiw drds
Bl

s g2 Ta(s)
/ / 2(1-r2 A= 2)arie drds

2(1+y)

oo Tla(s)
/ / ( a _r2)a+5/2d7‘ds

for z,y € (0,00) and = # y. Lemma 3.6 implies that
suprs [ Kualo)dale) < C.
yel 2I)¢

where C' > 0 does not depend on I.
On the other hand, we consider, for z,y € (0,00) and x # y,

Lopl= 2<1Tiy) _almrue) 42 (- logr)w_l
Kool y) = 2(1-r2) r e drd
,2(37 y) [1/0 (1 _r2)a+3/2 ( ) ras.
Suppose w € (0,1]. From Lemma 3.5 we have that
U e ()
2(1—r2) - 7
KW,Q(LZJ) < 0[1/0 (1— ,r2)04+5/2 drds.

for z,y € (0,00) and = # y. By using Lemma 3.6 we deduce that

Suprz/ Koo (z,y)dya () < C,
yel 2I)¢
for certain C' > 0-that does not depend on I, provided that w € (0, 1].

Assume now that w > 1. As in the proof of Lemma 3.6, and applying again
Lemma 3.5, we get, for every y € I,

| R m<><c/1ﬁ%(1%”“b
w,2(L, Y)Y ) > 1 a1/ AT
(21)e ? 0 (1—r)t/2
1 -1
(—logr)®
< %U<
70/0 =) r <C

Then, for any w > 0,

Swm/ Koo(z,y)dva(z) < C,
yel 21)°

where C' > 0 does not depend on I. O

Lemma 3.8. Let a > —%. There exists C' > 0 such that, for every I € By,

yel

Smm/ K (2, ) |dva() < C,
(2I)¢

where for x,y € (0,00)

0 _alzry,s) 4 o2 rdr
K(z,y) / / o(r) 1/2 {e 12+ }Wwﬂa(s)d&
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Proof. Integrating by parts we get, for x,y € (0, 00),

1 1/2 . r=1
() ey
Kle,y) = /4 ([(1 —2)at3z" o ] —0
1 1/2
0 QD( ) / Q(w,:*yz,s) 422
_/0 or ((1 r2)“+3/2 ' Ma(s)ds
1/2 . q(:ryb)_"_ld]:[ ()d
87" (1— 7”2)0““5/2

By virtue of Lemma 3.5, for r € (0,1), we get

3} o(r)Y/?r < C
or \ (1 —r2)e+3/2 )| = (1 — r2)a+s/2’

It follows that, for x,y € (0, c0),

q(av Ty s) 422

|K(x,y)| < C/ / = a+5/2drn0‘(8)d8'

Thus, Lemma 3.6 allows us to finish the proof. U

Lemma 3.9. Let a > f%. There exists C' > 0 such that, for every I € By,

Sumz/ |K (z,y)|dva(z) < C,
yel (21)¢

where, for x,y € (0,00)

(re —ys)(ry — xs) - alere) 4y
K(z,y) / / = r2)ari e drIl,(s)ds.

Proof. First, let us notice that, for every x,y € (0,00), r € (0,1) and s € (—1, 1),

a(z,ry,s)
g 6_ 1—12
or

(2ry? — 2z2ys)(1 = 7r?) + 2r(2? + r2y? — 2zyrs) — almrys)
A (1—r2)2 e
2r(z? +y?) — 2zys(1 4 r?) _arys
e 1-r
(1—172)2

and
(rz —ys)(ry — xs) = (r* + s¥)axy — rs(z? + ).
Thus, for every z,y € (0,00), r € (0,1) and s € (—1,1), we can write
2(rz —ys)(ry —xs) _ 0 [e_q(:%)] Ay N 2 (2% + y2)(1 — s)
(1 —1r2)2 or (1 —r2)2
2zy(1 — s)(r? — )
(1—1r2)2

Taking the above expression into account, we define, for every x,y € (0, c0),

1 - [t r 0 [ _awrys)
Kl(%y):*ex/ / 12 a+3/25~r{e e }drﬂa(s)d&

+

r3(x? +y?) (1 —s) _atrue
2(z,y) = €” /1/0 (1= r2y0r7/2 e 1= drll,(s)ds,
1 1 2
ryr(l —s)(r? —s) _atrys
(z9) =€ /1/0 (1—p2ypriz ¢ drll(s)ds,
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which clearly verify
K(m,y):Kl(x,y)JrKQ(x,y)+K3(x,y), T,y € (0,00)

As Lemma 3.8 takes care of Ki(x,y), it only remains to find estimates for Ko
and K3. We shall actually see that both of them are bounded by

_aleaus) | o2
2(1—r2)
A(z,y) // A= r7ere2 I, (s)dsdr, z,y € (0,00),

which verifies the desired inequality as proved in Lemma 3.6.
Indeed, for K2 we use (E3), (E4) and the fact that ¢ is bounded on (0, 1) (see
Lemma 3.5) to get, for every z,y € (0, oo)

(L‘ ,TY, S _a(z,ry, é)—i-z
0 < Ky(x,y) <C/ / -2 a+7/26 = drll,(s)ds < CA(z,y).
For K3, we again apply Lemma 3.5, together with inequality (E2), to have

x, Y, q(TTU%) 22
IKgxy|<C// 1_r2ya+7/26 = T el (s)ds < CA(x, y).

This finishes the proof. O
Lemma 3.10. Let a > —% and > 0. There erists C > 0 such that, for every
Ie Bl,

supry Ka(@,y)dva(y) < C,

wel  J2r)e
where, for x,y € (0,00),

. q(1 i’b)+y
(z,9) ~~ 1"2 A= r2)ari2 drIl,(s)ds.

Proof. According to (ES8), |7"x < ys|? < (q(rz,y,s))P/? for any x,y € (0,00), 7 €
(0,1) and s € (—1,1). Hence,

q(Tﬂc,y,S)er2

B2 ez
q\rr,y,s € 1—r
C/ / ( T— 12 ) 1= ryarorz rla(s)ds

_ga(rz,y,s) 5) +y
2(1—r2
= C/ / (1—12) a+5/2drﬂa(s)d5a z,y € (0,00).

Since q(rz,y, s) = q(y,rz, s), by changing the roles of z and y in Lemma 3.6, the
proof in finished. U

Lemma 3.11. Let o > —%. There exists C > 0 such that, for every I € By,

sup rr K(SC, y)d’y(x (y) S Ca
zel (2I)e

where, for x,y € (0,

)
xyr MJF
K(z,y) / / (1—12) T 2esze Y drTlaqq(s)ds.

Proof. From (E1) we know that ¢q(rz,y,s) = q(y,rz,s) > 2zyr(l — s) for x,y €
(0,00), r € (0,1) and s € (—1,1). Since y41(s) < Colly(s)2(1 — s) for each
€ (—1,1), we have

q(w Y, b)+y

K(z,y) < C/ / a=r2) a+5/2dTHa(s)d5, x,y € (0,00).
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As in the proof of the previous lemma, the desired inequality for K follows from
Lemma 3.6. O

Lemma 3.12. Let o > —%, There exists C > 0 such that, for every I € By,

— / K (2. y)|dva(e) <C, j=1,2,3,4,
yel (21)¢

where, for x,y € (0,00),

alery) g2

(x,y) / / A= 7ar52 ——————ardrll,11(s)ds,

_almrys) | g2

(z,9) / / a7 eyt ar(z —ysr)dril,11(s)ds,

_aterys) o
(z,9) / / e ——ayr®(x — ysr)(ry — £8)drTay. (s)ds,

and
_ gy g2

(x,y) / / A= 7ar52 ———————yr(ry — x8)drll,11(s)ds.

Proof. By (E5), the property for j = 1 can be deduced from Lemma 3.6.

Using (E6) and (E8), the property for j = 4 follows from Lemma 3.6.

On the other hand, by (E5) and (E7) we deduce that the property holds for
j = 2 after using Lemma 3.6.

Finally, the property for j = 3 follows from inequalities (E5), (E6), (E7), (E8)
and Lemma 3.6. O

4. PROOF OF THEOREM 1.4

In this section we prove Theorem 1.4. We will do so by considering each operator
individually and applying the auxiliary results obtained in the previous section
together with the criterion given in Theorem 1.2.

According to (1.7) we have that

Z/OOO P (z,y) f(y)dvaly), =€ (0,00),

where after the change of variables u = —2logr, we get

1 ! 2 dr
P (z,y) = ﬁ/o W 1og (2, y)te" /(810gr)W7 t,z,y € (0,00),

recalling that

q(wyb>
L S +y°

Ay Ta()ds, wy € (0,00),m € (0.1),

WEZIogr(x’y) = /

4.1. Proof of Theorem 1.4 for maximal operators. We will show that the
operators P2, verify the properties in (a) and in (b) for any k € N.

Let k¥ € N. According to [15, Remark 4.3] the operator PPy is bounded on
LP((0,00),7a), for every 1 < p < oo. By using [0, Theorem 1.1} it follows that P},
is also bounded from L((0,00),74) into L1°°((0,00), 74 )-

According to Lemmas 3.3 and 3.2, notice that
2fketz/(16logr) dr

1
|tka§a;féafpta(x’y)| < C/ |a§8;72Wf2 log7'<x’y)| 75_,'_17
0 (—logr)=*t 7
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6t2/(32 logr) dr
-
(—logr)z 7

1
<c / 1001 o (2, 9)| (—logr)~+ 9T

1
< C/O |a§6;7ZW3210gr(xay)|

for any £ = 0,1, and z,y,t € (0,00).
Set now ¢ = 0. By virtue of Lemma 3.1 and the boundedness of ¢ given in
Lemma 3.5, we get for every z,y,t € (0,00)

|tk3 oF PP (, y)|

~logr)~% [! ( TTYS |\ el g2
<C/ / 14+ | ——L ) e =2 TV 0, (s)dsdr
1 —r2)e+2 || V1—1r2 )

1 ! re—ys |\ _atzue e
= C/O (1_T2p+5/2/_1 <1+ ﬁ ) e 1= T, (s)dsdr.

By combining Lemmas 3.6 and 3.10, it follows that

sup 7y Sup/ 102%0 P (2, y) || Lo ((0,00),d6) Ve (y) < 00,
I1€B; zel J(2I)¢
meaning that P is bounded from L>((0, 00), 7a) to BMO((0,00),7,) and Theo-
rem 1.4 (a) holds.
Consider now ¢ = 1. According to (EO) and proceeding as in Lemma 3.1, for
every z,y,t € (0,00),

1
o r |ry — :c.9| Lalrays) 42
|8yW—210gr(‘T7y)| S C(l 7”2>a+ / ,——1 —7“2 1—r2 Y HQ(S)dS, (41)

and thus by using again Lemma 3.3, we get
a(r

y — R 4y
150,05 P (2, )| < c/ / Iry1 ji' — el ($)ds, @.0,1 € (0,00).

By applying Lemma 3.10 with 8 = 1, we deduce that
sup 1y Sup/ [0yt T+ 05 OF PP (2, y) | Lo ((0,00).at) AV (¥) < 00, (4.2)
IeB; yel J(2I)e
Therefore, (b) holds as claimed.

4.2. Proof of Theorem 1.4 for Littlewood-Paley functions. We recall that,
for n,k e Nwithn+k > 1,

gz,k<f><w>=(/ [tk arak PR (f) \““) La e (0,00),
0

which is bounded on LP((0,00),7,), for every 1 < p < oo and n,k € N with
n+k > 1 ([3, Theorem 1.1, (c)]) and from L!((0,00),74) into L1°°((0,0),74), for
every k € N, k > 1, when n = 0 ([6, Theorem 1.2]).

We shall first see that, for any n,k e Ny n+k>1,¢=0,1, and z,y € (0, 00),

th—i-kafan-‘rl ZakPa iI,' LY ||L2 (0 . dt)

n d
<0 [ 1 W1 o) o)1 (13)
0
By Lemma 3.3, Minkowski’s inequality, and taking v = t?/(—161logr), we get

||tn+ka€an+1 Zakpa l‘ Y HL2 (0.00), dr)
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afan+1 wey  (x, \ o0 1/2
< C/ 2logr( y) (/ t2(n+k)et2/(1610gr)dt> dr
—logr)s+ 0 t
‘323%1 we,,. (a, y)‘ 0o do\ 172
< C’/ ° (—logr)"z" (/ v”*kevv> dr
r(—logr)s+t 0 v

n+1— «@ Z dr
= CA |a£ax+1 ZW72logr(‘(L"y)‘ (_ 10g7‘)2 17

whenever n + k > 0. Thus, (4.3) holds.
In order to prove that gy, ;. is bounded from L>((0,00),74) to BMO((0, 00),¥a),
we will see that

sup g sup/ ||8$tn+kagafPta(x,y)||L2((O’OO)7g)d’ya(y) < 0. (4.4)
IeBy zel J(2I)¢ t

From (4.3) with £ = 0 we know that

1
n m Q n a dr
||8Et +kazafpt (x’y)”LQ((O’oo)’%) < CA |ax+1W—2logr(x?y)‘ ( IOgT’) = .

According to Lemma 3.1 and the boundedness of £, given in Lemma 3.5, we get

0.t TFOmOF P (, ) HLQ((O}OO)’%)

(—logr)z—t [t ro—ys | —alrzae) o2
SC/OMW; ) 1+\/ﬁ e H()de’I"

< 1 1 1 rT —YSs 4 q(w yé)+y
<C ; 7(177,2)04%/2 - 1+ »m e 1, (s)dsdr.

By combining Lemmas 3.6 and 3.10, (4.4) holds.
On the other hand, the endpoint estimate from H!((0,00),74) to L' ((0,0),74)
for g§ 1., follows by taking into account the symmetry of the Poisson kernel and (4.4).

4.3. 'Proof of Theorem 1.4 for Riesz transforms. According to [5, Theo-
rem 1.1], [26, Theorem 1.1]; and [23, Theorem 13], for every n € N,n > 1, R" can
be extended from L?((0,00),74) N LP((0,00),%4) to LP((0,00),74) as a bounded
operator.on LP((0,00),74), for every 1 < p < co. Furthermore, R} can be extended
from L2((0,00),7a) N L*((0,00),74) to L1((0,00),7«) as a bounded operator from
LI((0, 50). ). ito L1 ((0.50). o) (see [1]).

Let n € N, m > 1. The kernel of the Riesz transform of order n with respect to
the measure v, is given by

_ga(rz, Y, s) +y2

log r -1 rr —YSs 1-r2
Kn H’n dHOL d7
= [ [ (FE5) T (5% o

for 2,y € (0,00). Recall that H,, denotes the Hermite polynomial of order n given
n (3.1).
Then, from [17, p. 62], we have that

—logr 21 rT —Ys
KZ( H —_—
8 / / (1r2> nJrl( /71_7/.2)

q(nb v s) +y2

X Wdrﬂa(s)d&
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and, therefore, by using the boundedness of £, given in Lemma 3.5 we get
_alrzye) 42

2(1—r2)
|0 K5 (z,y |<C’/ / = OL_~_5/2d?"HO[(s)ds.

According to Lemma 3.6 and (EO0),
sup rrswp [ 10K )l dra) < o0
1eB:  zel J(2n)e

so RZ is bounded from L ((0,00),7,) to BMO((0,00),74) by virtue of Theo-
rem 1.2, for any n € N with n > 1.
On the other hand, for n = 1, by (E0) we obtain

1

1,1 -1
1 —logr 2
0, K = “2/ /
Y a(xay) € 1 Jo (1—T2)a+2 1—7"2

T —YS ,(I(wyryéS)
X Oy {2 <ﬁ = 7’2> e 1-r } drll,(s)ds

1/2 — a(zris)
1—r2
1 _ r2 1= 2)et2€

2r(re — ys)(ry — xs)
X (m + (- 2)3/2 ) drIly(s)ds.

Hence, by Lemma 3.5 we can estimate

q(x TYs8) +a:

|0y Kl(x )| <C/ / A=:2) a+5/2dr1'[a(s)ds

rlroeysliry Sws| _atwrgn e
+C/ / (1 = r2)atif2 e drll,(s)ds.

By combining Lemmas 3.6 and 3.9, we get

sup rr sup/ |0y K7 (2, )] dya(z) < 0o
IeB,  yel J(21)e

so (b) holds for R..

4.4. Proof of Theorem 1.4 for multipliers of Laplace transform type. Sup-
pose that M is of Laplace transform type given by

M) = [ e o)y, w000,
0
where ¢ € L*°(0,00). We consider the function
Kg(z,y) / o(t) P (x,y)dt, z,y € (0,00).

Note here that K§(z,y) = K§(y,z) for 2,y € (0,00).
We have that, for z,y € (0,00), z # ¥,

dr
,.Ka = 8log r M/ -
81 ¢(x,y) /(; \/%/ te 1 )8 210;_2,7(‘r Z/) (—10g7“)3/2dt

By using Lemma 3.3 with / =n = 0 and k = 1, and computing the inner integral,

we get
P o[ [T entira 1 P d
LKz y)| < e dt 19, (x,
o) <C [ [ e e 00 g, )
1
dr
<[ W, (2y)|—
= /{; | g —210g7(x7y)|,r(_10gr)a
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for every z,y € (0,00), © # y.
Continuing as in Section 4.1 we can find C' > 0 such that for every I € By,

SUPTI/ |5xK$(9U7l/)|d7a(y) <C.
zel (21)e

Since T}y is bounded from L?((0, 00), 7, ) into itself, we can obtain the conclusion
of Theorem 1.4, (a), for the multiplier T),.

The operator Ty is selfadjoint in L?((0,00),7,). Then, a duality argument (see
[19, Lemma 7.1]) allows us to conclude for Tj; the property in Theorem 1.4, (b).

4.5. Proof of Theorem 1.4 for variation operators. The p-variation operator
V,({t*0F P }i=0), k € N, is bounded on LP((0,00),7,), 1 < p < oo ([16, Corol-
lary 6.1] and [14, Theorem 3.3]) and from L!((0,00),7,) into L*((0,00),va) ([6,
Theorem 1.1]).

Assume g € C1(0,00). If 0 <ty < ty_3 < -+ < t; we have that

No1 Ve e N-1| Lt
S lglt) — gt | < Z gt Y / d()dt
j=1 j=1 j=1 |7ti+1

oo

lg'(t)]dt.

IN
o\

Then,
V, ({g(t)}is0) < / g’ ().

Hence, for every k € N we get

V, ({0at" 05 P (. 1) }e30) S/ 10:(0xt" 0y PY (. y)) | dt

0

o0
< k/ 510,08 PO (2, )t
0

—|—/ |t* 0,08 T PR (2, ) |d.
0

According to Lemma 3.3 and proceeding as in the previous section, we obtain

¢2

%) 00 1 2
ko ak+l pa k €lolosr o
/0 |t%00; " P (. y)|dt < C/o t /0 W|8JW—2logr(xay)|drdt

1
dr
< we _—
= C/(; |a$ —210gr(x’y)|r(_logr)’

for every z,y € (0,00), z # y.

The other term can be controlled by proceeding in a similar way.

Therefore, as in the last section, we obtain the conclusion of Theorem 1.4 for the
p-variation operator V, ({9,t"0F P (x,y)}+>0).

4.6. Proof of Theorem 1.4 for fractional integrals. Let w > 0. Recall that
the integral kernel of the operator AJ“ is given by

dr

>< —
r(—logr)i—«’
for z,y € (0,00), x # y. Notice that H¥ (x,y) = H¥ (y, x).
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We can write, for z,y € (0,00), x # v,

O, H( / / —atrmye) 2 T —ys  Ia(s)dsdr
xT % I’,

(1 —=r2)at2 (—logr)l—v

Then, according to (E8) we get

” q(m,y‘g 2 —logr)~ 1
|0, HY (2, y)| < c/ / i Ha(s)dswdr

By using Lemma 3.7 and (E0) we can find C' > 0 such that

supry / 10, H (2, )| dya(y) < C
zel (21)¢

for every I € By. Since A~ is bounded in L?((0,00),7,), the property that we
have just proved, together with the symmetry of the kernel, allow us to obtain the
desired conclusion using Theorem 1.2 and duality.
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