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CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND APPLICATIONS TO

LOCAL SINGULAR INTEGRALS

F. CAMPOS, O. SALINAS AND B. VIVIANI

Abstract. In a general geometric setting, we prove different characterizations of a local version of
Muckenhoupt A∞ weights. As an application, we obtain conclusions about the relationship between

this class and the one-weight boundedness of local singular integrals from L∞ to BMO.

1. Introduction

As it is well known, a non negative and locally integrable function ω belongs to the Ap class of
Muckenhoupt ([Muc72]) if and only if

sup
B

(
1

|B|

∫
B

ω

)(
1

|B|

∫
B

ω− 1
p−1

)p−1

< ∞, in the case 1 < p < ∞,

sup
B

(
1

|B|

∫
B

ω

)
1

infB(ω)
< ∞, for p = 1,

and

ω ∈ A∞ =
⋃

1≤r<∞

Ar for p = ∞.

Seeing the myriad of articles and books that have been published during the past 20 years and whose
subject is the study of properties or applications of these weights, it is absolutely unnecessary to talk
about how important these classes are in the fields of Partial Differential Equations and Harmonic
Analysis. The present work is related to some of those articles. The first of them is [Fuj78], due to N.
Fujii. There, the author introduces some characterizations of A∞ and uses them to identify a necessary
and sufficient condition for a weight ω such that Calderón-Zygmund integrals Tf , with f

ω ∈ L∞, are of
ω-weighted bounded mean oscillation. It is important to remark that the characterizations proved in
this article were used by Hytönen, Pérez and Rela ([HPR12]) as a basis for obtaining precise estimations
of the constants related to the Reverse Hölder inequality and the boundedness of the Hardy-Littlewood
maximal function. Another paper this work is related to is [HSV19], due to E. Harboure and the
last two authors, where “local” versions of Muckenhoupt weights in a general geometric setting were
introduced (even though it should be mentioned that a one dimensional case in R was before considered
by Nowak and Stempak in [NS06]) and studied in connection with the boundedness of a local maximal
operator. In addition, the later result was applied to get interior Sobolev type estimates for solutions
of differential equations associated to the m-laplacian.

The aim of this work is to obtain a version of the results of Fujii for the local-A∞ weights and the
geometric setting considered in [HSV19]. In order to accurately state our results, we begin with a
precise description of the geometric framework.

Let X be a metric space satisfying the weak homogeneity property, that is, each ball B(x, r) cannot
contain more than a fix number N of points whose distance from each other is greater than r

2 . Also,
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2 F. CAMPOS, O. SALINAS AND B. VIVIANI

let Ω be an open proper and non empty subset of X such that all the balls included in Ω are connected
sets.

In this context, given 0 < β < 1, we consider the following family of balls

Fβ = {B = B(xB , rB) : rB ≤ βd(xB ,Ω
c)} ,

where xB and rB are, respectively, the center and the radius of B, and d(xB ,Ω
c) is the distance from

xB to the complementary set of Ω. Sometimes, we will refer to the balls in Fβ as β-local balls.

In addition, let µ a Borel measure defined on Ω such that 0 < µ(B) < ∞ and µ(B) ≤ Cβµ(
1
2B) for

each B ∈ Fβ and every β ∈ (0, 1), where θB denotes the ball with the same center and radius θ-times
that of B.

Let us note that µ(B) is finite for all B ∈ F =
⋃

0<β<1

Fβ but this fact is not necessarily true for every

ball contained in Ω.

Our first result is about the boundedness of β-local singular integrals from a weighted L∞ space to
a β-local BMO. Here, the term “β-local” makes reference to a close relation with the families Fβ , as
we will see in the definitions and notation below.

Given 0 < β < 1, we will say that T is a β-local singular integral operator if it satisfies

(1.a): T is bounded on L2(Ω, dµ).
(1.b): There is a kernel K : Ω×Ω → R such that for any f ∈ L∞(Ω, dµ) with support contained

in a finite number of balls belonging to F

Tf(x) =

∫
Ω

K(x, y)f(y) dµ(y) a.e.x ̸∈ supp(f),

and Tf(x) = 0 for x such that supp(f) ∩B(x, βd(x,ΩC)) = ∅
(1.c): The kernel satisfies

a): |K(x, y)| ≤ C
µ(B(x,d(x,y))) ,

b): |K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C
µ(B(x,d(x,y)))

(
d(x,x′)
d(x,y)

)ξ0
: for some ξ0 > 0 and whenever 2d(x, x′) ≤ d(x, y).

1.1. Remark. The second assertion in (1.b), which is the meaning of β-locality, can also be written by
asking supp(K) ⊂ {(x, y) : d(x, y) < βd(x,ΩC)}.

1.2. Definition. Given 0 < β < 1 and a non negative function ω integrable over balls belonging to F ,
we will say that a function f belongs to BMOβ

ω if the following two conditions are satisfied

(1.2.a): There exists C > 0 such that

1

ω(B)

∫
B

|f −mBf | dµ ≤ C

for every B ∈ F β
6
, where mBf = 1

µ(B)

∫
B
f dµ.

(1.2.b): There exists C > 0 such that

1

ω(B)

∫
B

|f | dµ ≤ C

for every B ∈ Fβ −F β
6
.

If f ∈ BMOβ
ω we will use [f ]BMOβ

ω
to denote the norm given by infimum of the constants satisfying

(1.2.a) and (1.2.b).
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CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND APPLICATIONS TO LOCAL SINGULAR INTEGRALS 3

1.3. Definition. Given 0 < β < 1 and 1 < p < ∞, we will say that an integrable over balls in F and
non negative a.e. function ω belongs to the β-local Muckenhoupt class Aβ

p if

sup
B∈Fβ

( 1

µ(B)

∫
B

ω dµ
)( 1

µ(B)

∫
B

ω− 1
p−1 dµ

)p−1
< ∞.

The case p = ∞ is defined as Aβ
∞ =

⋃
1<p<∞

Aβ
p .

1.4. Remark. It can be easily proved that ω ∈ Aβ
p if and only if ω ∈ Aα

p for every α, β ∈ (0, 1).

We will consider a new class of weights

1.5. Definition. Let 0 < β < 1 and p > 0. We say that a weight ω belongs to the class Bβ
p if it satisfies

sup
B(x,r)∈Fβ

µ(B(x, r))rp

ω(B(x, r))

∫
Sβ(B(x,r))−B(x,r)

ω(y)

µ(B(x, d(x, y)))d(x, y)p
dµ(y) < ∞

where Sβ(B) =
⋃

x∈B

B(x, βd(x,Ωc)).

Now, we are in position to state our first result.

1.6. Theorem. Let 0 < β < 1 and T be a β-local singular integral. If ω ∈ Aβ
∞ ∩ Bβ

ξ0
, where ξ0 is the

exponent appearing in (1.c) associated with T , there exists C > 0 such that [Tf ]BMOβ
ω
≤ C∥f/ω||∞ for

every f .

Our following result is a characterization of the class Aβ
∞(Ω) that involves the maximal operator

associated with each family Fβ defined as

(1.7) Mβf(x) = sup
x∈B∈Fβ

1

µ(B)

∫
B

|f(x)| dµ,

for f ∈ L1
loc(Ω) and x ∈ Ω.

1.8. Theorem. Given 0 < β < 1, the following conditions are equivalent

(1.8.a): ω ∈ Aβ
∞

(1.8.b): There exists C > 0 such that∫
B̃

Mβ(ωXB) dµ ≤ C

∫
1
2B

ω dµ,

for every B ∈ Fβ, where B̃ = 5B if 5B ∈ Fβ and B̃ = Nβ(B) :=
⋃

V ∈Fβ

V ∩B ̸=∅

V if 5B ̸∈ Fβ.

(1.8.c): There exists C > 0 such that∫
B

ω log+
ω

mBω
dµ ≤ C

∫
1
2B

ω dµ,

for every B ∈ Fβ.
(1.8.d): The weight ω is doubling on Fβ and, for each ε ∈ (0, 1), there exists θ ∈ (0, 1) such that

if B ∈ Fβ and E ⊂ B satisfy µ(E) ≤ θµ(B), then ω(E) ≤ εω(B).

In the particular case X = Rn with the usual euclidean metric and the Lebesgue measure, Theorem
1.6 has, in a certain sense, a converse. In order to enunce it we need the Riesz transforms and same
local versions. We recall that the j-th Riesz transform, j = 1, · · · , n, of a locally integrable function f
is given by

(1.9) Rjf(x) = p.v.

∫
Rn

xj − yj
|x− y|n+1

f(y) dy.
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4 F. CAMPOS, O. SALINAS AND B. VIVIANI

On the other hand, given 0 < β < 1 and a smooth radial cut function η defined on R such that
0 ≤ η ≤ 1, η(t) = 1, if |t| ≤ 1

2 and η(t) = 0 when |t| ≥ 1, we will say that the operator

(1.10) Rβ,η
j f(x) = p.v.

∫
Ω

xj − yj
|x− y|n+1

η

(
|x− y|

βd(x,Ωc)

)
f(y) dy

is a β-local j-th Riesz type transform.

With these operators we can add a couple of statements to Theorem 1.8.

1.11. Theorem. Given 0 < β < 1, when X is the usual euclidean space Rn equipped with the Lebesgue
measure all the statements in Theorem 1.8 remain equivalent and, in addition, equivalent to each of the
following conditions:

(1.11.a): There exists C > 0 such that∫
B̃

|Rj(ωXB)| dx ≤ C

∫
B

ω dx

for j = 1, . . . , n and every B ∈ Fβ.
(1.11.b): Given η as before, there exists C > 0 such that∫

B̃

|Rβ,η
j (ωXB)| dx ≤ C

∫
B

ω dx,

for j = 1, . . . , n and every B ∈ Fβ. In both statements B̃ is defined as in (1.8.b).

The latter Theorem allows us to get, as we said before, a certain kind of converse of Theorem 1.6

1.12. Theorem. Let 0 < β < 1 and let Rβ,η
j , j = 1, . . . , n a β-local Riesz type transforms. If there exists

C > 0 such that
[
Rβ,η

j f
]
BMOβ

ω

≤ C∥ f
ω∥∞ for every f satisfying f

ω ∈ L∞(Ω) and every j, j = 1, . . . , n,

then ω belongs to Aβ
∞(Ω) ∩Bβ

1 .

The structure of the paper is as follows: Section 2 is devoted to the proof of Theorem 1.6. Section 3
contains the proof of Theorem 1.8 and a local version of the Calderón-Zygmund decomposition inter-
esting by itself. Section 4 focuses on the proof of Theorem 1.11. Finally, Section 5 contains the proofs
of Theorem 1.12 and some properties of the classes Bβ

p .

2. Proof of Theorem 1.6

In order to prove Theorem 1.6, we need two previous results. The first one is the reverse Hölder
inequality for Muckenhoupt weights in spaces of homogeneous type. We recall that a space of homoge-
neous type is a non empty set Y equipped with a quasi distance τ and a doubling Borel measure υ. By
a quasi distance we mean a function τ : Y × Y → R+

0 verifying

(2.a): τ(x, y) = 0 ⇔ x = y.
(2.b): τ(x, y) = τ(y, x) for every x, y ∈ Y .
(2.c): τ(x, y) ≤ K (τ(x, z) + τ(z, y)) for every x, y, z ∈ Y and a certain constant K.

In addition, we say that a measure υ is doubling if υ(2B) ≤ Cυ(B) for every ball B in Y . In the

usual euclidean space Rn with the Lebesgue measure it is obvious that each ball B is, in turn, a space
of homogeneous type in itself. This is not necessarily true in any space of homogeneous type. However,
Maćıas and Segovia, in [MS81], proved that, for any space (Y, τ, υ) as before, there exists a metric δ
satisfying δ ≤ τ ≤ 3δ such that every δ-ball is a space of homogeneous type with the measure υ. This
remarkable achievement allowed them to prove that a well-known result due to Coifman and Fefferman
([CF74]) is still valid for Ap weights in spaces of homogeneous type (i.e. weights satisfying inequality
in Definition (1.3) but for every ball in the space). Their extension can be stated as follows.
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CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND APPLICATIONS TO LOCAL SINGULAR INTEGRALS 5

2.1. Theorem. ([MS81]) Let (Y, τ, υ) be a space of homogeneous type. If ω satisfies condition Ap, then
there exists ε > 0 and C > 0 such that

(2.2)
1

υ(B)

∫
B

ω1+ε dυ ≤ C

(
1

υ(B)

∫
B

ω dυ

)1+ε

holds for every ball B.

In our present geometrical setting Harboure, Viviani and the second author proved ([HSV14]) that
the construction devised by Maćıas and Segovia can still be carried out to get a metric δ equivalent to
the d given. Moreover, they proved that each δ-ball Q such that 4Q ⊂ Ω is a space of homogeneous
type with δ and the restriction to Q of the measure µ. It was also proved in [HSV19] that a weight ω in
Aβ

p (Ω) for β ∈ (0, 1) given, is a weight in the class Ap defined on the space Q for every δ-balls Q with
4Q ⊂ Ω. Then, Theorem 2.1 allows us to get inequality 2.2 with B = Q and υ = µ for every δ-balls Q
as before. A careful monitoring of the constants involved shows that they only depend on β. It is an
easy consequence of the relation between δ and d that the same result holds for every d-ball B ∈ Fβ

whenever β < 1
3 .

The second previous result is a technical one about the sets Sλ(B) for a ball B given.

2.3. Lemma. Let ε0 ∈ (0, 1 ]. Then, given λ ∈ (0, ε0) we have λ+ ε2 ∈ (0, ε0) and Sλ(B) ⊂ B(x0, (λ+

ε2)d(x0,Ω
c)) for every ball B = B(x0, r) ∈ Fε1λ, with 0 < ε1 < 1

2 min
(
1, ε0−λ

λ2+λ

)
and ε2 = ε1(λ

2 + λ).

Proof. Let B = B(x0, r) ∈ Fε1λ, with ε1 to be chosen later. Then, for x ∈ B and z ∈ B(x, λd(x,Ωc))
we have

d(x0, z) ≤ d(x0, x) + d(x, z)

< ε1λd(x0,Ω
c) + λd(x,Ωc)

< ε1λd(x0,Ω
c) + λ(1 + ε1λ)d(x0,Ω

c)

= (λ+ ε1λ+ ε1λ
2)d(x0,Ω

c).

Now, choosing ε2 = ε1(λ + λ2) with 0 < ε1 < 1
2 min

(
1, ε0−λ

λ2+λ

)
, from the last inequality we easily

obtain Sλ(B) ⊂ B(x0, (λ+ ε2)d(x0,Ω
c)). Furthermore, it is clear that 0 < λ+ ε2 < ε0. □

Now, we can proceed with the proof of the Theorem.

Proof of Theorem 1.6 The first step in proving Theorem 1.6 is to ensure that a β-local singular
integral operator T is well-defined on functions f such f

ω ∈ L∞(Ω, dµ). Towards this aim, we start by
recalling that T is a (1, 1)-unweighted locally weakly bounded operator (see Theorem 4.1 in [HSV19]).
Then, given g with support contained in a ball belonging to some family Fα and such that g

ω ∈
L∞(Ω, dµ), we have Tg finite a.e. in Ω since |g| ≤ ∥ g

ω
∥∞ωXsupp(g), and the right member of this

inequality belongs to L1(Ω, dµ). This reasoning together with Lemma 2.3 allow us to assure that, for

f such that f
ω ∈ L∞(Ω, dµ), we have T (fXSβ(B)) finite a.e. for each ball B belonging to a family Fγ

with γ small enough.

Now, given balls B1 and B2 in Fγ1
and Fγ2

respectively, with γ1 and γ2 small enough to get Sβ(B1)
and Sβ(B2) contained in balls of F , we can write

T (fXSβ(B1))(z) = T
(
f(XSβ(B1) −XSβ(B2))

)
(z) + T (fXSβ(B2))(z)

= T (fXSβ(B1)−Sβ(B2))(z)− T
(
fXSβ(B2)−Sβ(B1)

)
(z) + T (fXSβ(B2))(z),

for a.e. z ∈ B1 ∩B2. Note that B(z, βd(z,Ωc)) ⊂ Sβ(B1) ∩ Sβ(B2) for z ∈ B1 ∩B2. Then, taking into
account that supp(K) ⊂ {(x, y)/d(x, y) < βd(x,Ωc)}, the last equality lead us to
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6 F. CAMPOS, O. SALINAS AND B. VIVIANI

T (fXSβ(B1))(z) = T (fXSβ(B2))(z) a.e. z ∈ B1 ∩B2.

On the other hand, we know (see Lemma 2.3 and Remark 2.4 in [HSV14]) there exists a numerable
covering {Bi}i of Ω, having finite overlapping and contained in a family Fγ with γ as small as we want.
In particular, we choose γ small enough to have Sβ(Bi) ⊂ DβBi, for every i and some constant Dβ > 0,
with DβBi ∈ F (see Lemma 2.3 above).

With all these results in mind, we define Tf on Ω = ∪iBi as

Tf(x) = T (fXSβ(Bi))(x) x ∈ Bi,

where the inequality is to be understood in the a.e. sense.

Now, let ω ∈ Aβ
∞ ∩ Bβ

ξ0
. Then, we know that ω belongs to Aβ

p for some p > 1. Given f such that
f
ω ∈ L∞(Ω, dµ) and B0 = B(x0, r) ∈ F β

6
, we split f as g + h, where g = fX2B0

. Now we can write

1

ω(B0)

∫
B0

|Tf −mB0Tf | dµ ≤ 1

ω(B0)

∫
B0

|Tg −mB0Tg| dµ(2.4)

+
1

ω(B0)

∫
B0

|Th−mB0
Th| dµ

= I + II.

From the reasoning followed at the beginning of the section we know that g belongs to Lq(Ω, dµ) for
q = 1 + ε where ε is the exponent given by Theorem 2.1 applied in our context. Then, since T is
bounded from Lq(Ω, dµ) to Lq(Ω, dµ) (see [HSV14]), Hölder’s inequality allows us to get

I ≤ 2

ω(B0)

∫
B0

|Tg| dµ(2.5)

≤ 2µ(B0)
1− 1

q

ω(B0)

(∫
B0

|Tg|q dµ
) 1

q

≤ C
2µ(B0)

1− 1
q

ω(B0)

(∫
2B0

|f |q dµ
) 1

q

≤ C∥ f
ω
∥∞

2µ(B0)

ω(B0)

(
1

µ(B0)

∫
2B0

ωq dµ

) 1
q

≤ C∥ f
ω
∥∞

where the last inequality follows from Theorem 2.2, which, as it is clear from the discussion before this
proof, holds for 2B0, ω and µ.

In regard to II, applying (1.c), we can estimate it in the following way.
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CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND APPLICATIONS TO LOCAL SINGULAR INTEGRALS 7

II ≤ 1

ω(B0)µ(B0)

∫
B0

∫
B0

|Th(x)− Th(y)| dµ(x)dµ(y)(2.6)

≤ 1

ω(B0)µ(B0)

∫
B0

∫
B0

∫
Sβ(2B0)−2B0

|K(x, z)−K(y, z)||f(z)| dµ(z)dµ(x)dµ(y)

≤ C

ω(B0)µ(B0)

∫
B0

∫
B0

∫
Sβ(2B0)−2B0

d(x, x0)
ξ0 + d(y, x0)

ξ0

µ(B(x0, d(x0, z)))d(x0, z)ξ0
|f(z)| dµ(z)dµ(x)dµ(y)

≤ C
µ(B0)r

ξ0

ω(B0)

∫
Sβ(2B0)−2B0

|f(z)|
µ(B(x0, d(x0, z)))d(x0, z)ξ0

dµ(z)

≤ ∥ f
ω
∥∞C

µ(B0)r
ξ0

ω(B0)

∫
Sβ(2B0)−2B0

ω(z)

µ(B(x0, d(x0, z)))d(x0, z)ξ0
dµ(z)

≤ C∥ f
ω
∥∞,

where the last inequality follows from the hypothesis on ω.

So, altogether (2.4), (2.5) and (2.6) give us all the information we need about the behaviour of the
oscillations of Tf on the balls in F β

6
.

Now, let us take care of the averages on balls belonging to Fβ − F β
6
. Let B0 = B(x0, r) be one of

them. Then, reasoning as before, we obtain

1

ω(B0)

∫
B0

|Tf | dµ =
1

ω(B0)

∫
B0

|T (fXSβ(B0))| dµ

≤ µ(B0)

ω(B0)

(
1

µ(B0)

∫
B0

|T (fXSβ(B0))|
q dµ

) 1
q

,

where, once again, q = 1 + ε with ε given by Theorem 2.1. Theorem 41 in [HSV19] lead us to

1

ω(B0)

∫
B0

|Tf | dµ ≤ C
µ(B0)

ω(B0)

(
1

µ(B0)

∫
Sβ(B0)

|f |q dµ

) 1
q

≤ C∥ f
ω
∥∞

µ(B0)

ω(B0)

(
1

µ(B0)

∫
Sβ(B0)

ωq dµ

) 1
q

.

It is obvious that Sβ(B0) ⊂
⋃

B∈Fβ′

B∩B0 ̸=∅

B, for any β′ ∈ (β, 1).

Denoting the latter set by Nβ′(B0), as in [HSV19], Lemmas 2.3 and 3.1 there allow us to get
a finite number M of balls Bi = B(xi, ri) such that Nβ′(B0) ⊂

⋃
i

Bi, µ(Bi) ≃ µ(B0), ω(Bi) ≃

ω(B0),
a
2d(xi,Ω

c) ≤ ri ≤ ad(xi,Ω
c) for some fixed a < β′

80 , i = 1, · · · ,M , with M only depending
on β and β′. Consequently, if we chose β′ close enough to β, Theorem 2.1 can be applied for each Bi

to get

1

ω(B0)

∫
B0

|Tf | dµ ≤ C∥ f
ω
∥∞

µ(B0)

ω(B0)

1

µ(B0)

∫
B0

ω dµ(2.7)

= C∥ f
ω
∥∞,

which completes the proof of our Theorem.
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8 F. CAMPOS, O. SALINAS AND B. VIVIANI

3. Proof of Theorem 1.8

The proof of Theorem 1.8 requires having a local version of the Calderón-Zygmund decomposition.
Our proof of it is based on techniques developed by H. Aimar and R. Maćıas in the setting of spaces of
homogeneous type ([Aim85], [AM84]).

3.1. Lemma. Let 0 < β < 1. Given B ∈ Fβ and a non negative function f ∈ L1
loc(Ω, dµ), with

supp f ⊂ B, for each λ ≥ mBf there exists a sequence {Bj} of disjoint balls in Fβ such that

(3.1.a): mB̃j
f ≤ λ < mBj

f , for every j;

(3.1.b): mV f ≤ λ, for every V ∈ Fβ whose center belongs to Ω−
⋃
j

B̃j;

where B̃j is defined as in (1.8.b).

Proof. Let us assume E = {y ∈ Ω;Mβf(y) > λ} ̸= ∅. If E = ∅, then (3.1.b) holds for every V ∈ Fβ

with center in Ω and the Lemma follows. Clearly, if Γ = {V ∈ Fβ/mV f > λ}, we get E =
⋃

V ∈Γ

V . Now,

it is obvious that V ∩B ̸= ∅ for every V ∈ Γ, which implies B ⊂ Nβ(V ) and V ⊂ Nβ(B). So, we have

(3.2)
1

µ(Nβ(V ))

∫
Nβ(V )

f dµ =
1

µ(Nβ(V ))

∫
Nβ(V )∩B

f dµ ≤ λ

for every V ∈ Γ. Taking V = B(x, r) ∈ Γ, we define

γx = sup{t ∈ (0, βd(x,Ωc))/mB(x,t)f > λ},

which verifies r ≤ γx ≤ βd(x,Ωc). If r < γx, we take δ in (0, 4
5γx), and tx in (max(r, γx − δ), γx ] such

that mB(x,tx)f > λ. If 5tx ≤ βd(x,Ωc), since 5tx > 5(γx − δ) > γx, we have mB(x,5tx)f ≤ λ. Then,
taking this and (3.2) into account, we have

mB̃(x,tx)
f ≤ λ < mB(x,tx)f.

On the other hand, if r = γx, we get the above inequality by choosing tx = γx. Proceeding in this
way for each x ∈ A := {y/y is center of a ball in Γ} we obviously obtain a covering of E by the sets B̃x

where Bx = B(x, tx). Note that these balls are in Nβ(B). Then, from Lemma 2.3 in [HSV14], it follows
that their radii are uniformly bounded. So, Lemma (1.11.a) in that paper (local Vitali) allows us to

get a numerable disjoint subfamily of {Bx}x∈A, say {Bj} such that E ⊂
⋃
j

B̃j . This is the sequence we

were looking for. □

With this Lemma we are in position to prove Theorem 1.8.

Proof of Theorem 1.8. Suppose (1.8.a) holds, that is ω ∈ Aβ
∞. Then, by definition, we get

ω ∈ Aβ
p for some p ∈ (1,∞). Let B = B(x0, r) ∈ Fβ . If r < β

3 d(x0,Ω
c), from the discussion preceding

Lemma 2.3, we know ω satisfies a reverse Hölder’s inequality on B for some exponent q > 1. In case
β
3 d(x0,Ω

c) ≤ r < βd(x0,Ω
c), from Lemma 2.3 in [HSV19], we can cover B with the union of a fixed

number M , not depending on B, of balls belonging to F β
3
and having finite over lapping. Moreover,

the union of such balls and B have comparable measures. It follows that ω satisfy a reverse Hölder’s
inequality on B with the same exponent q. With this in mind, taking into account that Mβ is bounded
on Lq(Ω, dµ) (Theorem 1.1 in [HSV14]), Hölder’s inequality allows us to get
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CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND APPLICATIONS TO LOCAL SINGULAR INTEGRALS 9

∫
B̃

Mβ(ωXB) dµ ≤
(∫

Ω

Mβ(ωXB)
q dµ

) 1
q

µ(B̃)1−
1
q

≤ C

(∫
B

ωq dµ

) 1
q

µ(B)1−
1
q

≤ C

∫
B

ω dµ,

which, taking into account that ω is doubling on Fβ , lead us to (1.8.b).

Now assume (1.8.b) holds. Let B ∈ Fβ . If 5B ̸∈ Fβ from our hypothesis it follows∫
{Mβf>mBω}

Mβf dµ =

∫
Nβ(B)∩{Mβf>mBω}

Mβf dµ(3.3)

≤ C

∫
1
2B

ω dµ,

for f = ωXB . On the other hand, if 5B ∈ Fβ , (1.8.b) lead us to∫
{Mβf>mBω}

Mβf dµ ≤ C

∫
1
2B

ω dµ(3.4)

+

∫
(Nβ(B)−5B)∩{Mβf>mBω}

Mβf dµ.

It is not difficult to see that B ⊂ 2V for every ball V ∈ Fβ(Ω) such that V ∩B ̸= ∅ and V ∩(Nβ(B)−
5B) ̸= ∅. Then B ⊂ Ṽ and so µ(B) ≤ Cµ(V ), which, in turn, implies Mβf(y) ≤ CmBω for every
y ∈ Nβ(B)− 5B. In consequence, from (3.4), the weak type boundedness (1, 1) of Mβ (Theorem 1.1 in
[HSV14]), and the fact that ω is doubling on Fβ (it is obvious from (1.8.b)), we get

∫
{Mβf>mBω}

Mβf dµ ≤ C

(∫
1
2B

ω dµ+mBωµ({Mβf > mBω})

)
(3.5)

≤ C

∫
1
2B

ω dµ.

Besides that, taking λ > mBω, Lemma 3.1 gives us a sequence {Bj} of disjoint balls in Fβ such that⋃
j

Bj ⊂ {Mβf > λ} ⊂
⋃
j

B̃j .

Applying (3.1.a) we can obtain

µ ({Mβf > λ}) ≥
∑
j

µ(Bj)

≥ C

λ

∫
⋃

j B̃j

f dµ

≥ C

λ

∫
{Mβf>λ}

f dµ

≥ C

λ

∫
{f>λ}

f dµ.

Integrating both sides with respect to λ, Fubini’s Theorem together with (3.3) and (3.5) lead us to
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10 F. CAMPOS, O. SALINAS AND B. VIVIANI

∫ ∞

mBω

1

λ

(∫
{f>λ}

f dµ

)
dλ ≤ C

∫ ∞

mBω

µ ({Mβf > λ}) dλ(3.6)

≤ C

∫
{Mβf>mBω}

Mβf dµ

≤ C

∫
1
2B

ω dµ.

Recalling that f = ωXB , Fubini’s Theorem again allows us to get

∫ ∞

mBω

1

λ

∫
{f>λ}

f dµ dλ =

∫
{f>mBω}

f log(
f

mBω
) dµ

=

∫
B

ω log+(
ω

mBω
) dµ,

which, together with (3.6), obviously proves (1.8.c).

Let ε ∈ (0, 1). Given B ∈ Fβ and E ⊂ B such that µ(E) > 0, we define E0 = {x ∈ E/ω(x) >
ε

2µ(E)

∫
B
ω dµ}. Then, assuming (1.8.c) holds, we obtain

log+
(
εµ(B)

2µ(E)

)∫
E0

ω dµ ≤
∫
B

ω log+(
ω

mBω
) dµ(3.7)

≤ C

∫
B

ω dµ.

On the other hand, we have

∫
E−E0

ω dµ ≤ ε
µ(E − E0)

2µ(E)

∫
B

ω dµ

≤ ε

2

∫
B

ω dµ.

This inequality assures us that if ω(E) > εω(B), then ω(E0) >
ε
2ω(B), and so, from (3.7)

log+
εµ(B)

2µ(E)
≤ C

ω(B)

ω(E0)
<

2C

ε
.

Consequently, ε
2e

− 2C
ε µ(B) < µ(E). Finally, taking θ = ε

2e
− 2C

ε , which belongs to (0, 1), and noting that
(1.8.c) implies ω is doubling on Fβ , we prove (1.8.d).

In order to see that (1.8.d) implies (1.8.a), we consider again, as in the beginning of section 2,
the metric δ such that δ ≤ d ≤ 3δ and each δ-ball Bδ(x0, r), with r < (β/3)d(x0,Ω

c), is a space
of homogeneous type endowed with the restriction of µ. Given one of these balls, say Bδ, we have
Bδ ⊂ 3Bd, where Bd denotes the d-ball with same centre and radious as Bδ. Then, since Bd ∈ F β

3
, we

get

ω(3Bd) ≤ Dω(Bd) ≤ Dω(Bδ),

where D denotes the doubling constant of ω associated to Fβ .

Let us prove that (1.8.d) holds for δ-balls as well. To this aim we take a δ-ball Bδ as before and
consider E ⊂ Bδ. Then E ⊂ Bd, where Bd denotes, as before, the d-ball with same centre and radious
as Bδ. Then, choosing ε ∈ (0, 1) such that εD ∈ (0, 1), we get θ ∈ (0, 1) such that
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CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND APPLICATIONS TO LOCAL SINGULAR INTEGRALS 11

ω(E)

ω(Bδ)
≤ ω(E)D

ω(3Bd)
< Dε,

whenever µ(E) < θµ(Bδ), since µ(Bδ) ≤ µ(3Bd). This proves (1.8.d) for these δ-balls.

A careful examination of the proof of Theorem 2.1 in [MS81](Theorem (2.1) there) reveals that it
can be done by assuming (1.8.d) insted of the Ap condition. Then, there exists q > 1 such that the
inequality (

1

µ(B)

∫
B

ωq dµ

) 1
q

≤ C
1

µ(B)

∫
B

ω dµ,

holds for every ball B ∈ F β
3
. By denoting dυ = ωdµ, the above inequality can be written as follows.

1∫
B
ω−1 dυ

∫
B

ωq−1 dυ ≤
(
C

1∫
B
ω−1 dυ

∫
B

ω dµ

)q

.

It follows easily that ω−1 ∈ A
β
3

1+ 1
q−1

but with respect to the measure υ instead of µ. Then, since (1.8.d)

imply ω is doubling on Fβ , Theorem 2.1 can be applied again to ω−1 with the measure υ to obtain a

reverse Hölder inequality for ω−1 respect to υ. Reasoning in a similar way as before we get ω ∈ A
β
3
p

with respect to µ. Finally, from Remark 1.4 it follows ω ∈ Aβ
∞, as we wanted to prove. □

4. Proof of Theorem 1.11

Here we are in the particular case X = Rn, d the euclidean metric and µ the Lebesgue measure. Let
us start proving the following proposition.

4.1. Proposition. Let ω be a non negative function in L1
loc(Ω, dµ) and β ∈ (0, 1). The following

statements are equivalent.

(4.1.a): There exists C > 0 such that∫
B̃

|Rβ,η
j (ωXB)| dx ≤ C

∫
B

ω dx,

for j = 1, · · · , n and every B ∈ Fβ.
(4.1.b): There exists C > 0 such that∫

B̃

|Rj(ωXB)| dx ≤ C

∫
B

ω dx,

for j = 1, · · · , n and every B ∈ Fβ.

Proof. Given B = B(x0, r) ∈ Fβ , notice that Rβ,η
j (ωXB) and Rj(ωXB) are finite a.e. in Ω since the

operators are of weak type (1, 1) (in particular, for Rβ,η
j , this result was proved in [HSV19], Theorem

4.1). Let us see that (4.1.a) implies (4.1.b). For each j is clear that

|Rj(ωXB)(x)| ≤ |Rj(ωXB∩B(x, β2 d(x,Ωc)))(x)|

+ |Rj(ωXB∩Bc(x, β2 d(x,Ωc)))(x)| = I + II,

for almost every x ∈ Ω. We can estimate I as follows

I =

∣∣∣∣∣Rβ,η
j (ωXB)(x)−

∫
Bc(x, β2 d(x,Ωc))

xj − yj
|x− y|n+1

η

(
|x− y|

βd(x,Ωc)

)
ωXB dy

∣∣∣∣∣
≤ |Rβ,η

j (ωXB)(x)|+
(

2

βd(x,Ωc)

)n ∫
B

ω dy.
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12 F. CAMPOS, O. SALINAS AND B. VIVIANI

On the other hand, for x ∈ B̃ we have

II ≤
(

2

βd(x,Ωc)

)n ∫
B

ω dy.

Then, from the estimates of I and II, we get∫
B̃

|Rj(ωXB)| dx ≤
∫
B̃

|Rβ,η
j (ωXB)| dx(4.2)

+ 2

(
2

β

)n(∫
B̃

dx

d(x,Ωc)n

)(∫
B

ω dx

)
.

If 5r ≤ βd(x0,Ω
c), it follows that 5r( 1β − 1) ≤ d(x,Ωc) for every x ∈ 5B. Then

(4.3)

∫
B̃

dx

d(x,Ωc)n
≤ C

rn

∫
5B

dx = C.

In the case 5r > βd(x0,Ω
c), we have B̃ = Nβ(B). Following the proof of Lemma 2.3 in [HSV14] (see

p. 616), we know that there exists a constant C, independent of B, such that d(x,Ωc) ≥ Cr for every
x ∈ Nβ(B). In consequence, we can obtain (4.3) again. Finally, (4.1.a) implies (4.1.b). Taking into

account that

Rβ,η
j (ωXB)(x) = Rj(ωXB)(x)−

∫
B

xj − yj
|x− y|n+1

(1− η)

(
|x− y|

βd(x,Ωc)

)
ω dy,

for almost every x ∈ Ω, a similar reasoning as before allows us to get that (4.1.b) implies (4.1.a). □

Proof of Theorem 1.11 Proposition 4.1 proves that (4.1.a) and (4.1.b) are equivalent. Let us
see that (4.1.b) implies (1.8.b). With this aim in mind, we take a ball B = B(x0, r) ∈ Fβ and denote
f(x) = ω(x)XB(x) and g(x) = −f(x+ y0) with y0 ∈ Rn.

Claim: It is possible to choose y0 ∈ Rn such that |y0| = δr with 0 < δ < 1−β
2 , and

(4.4)

∫
Rn

|Rj(f + g)| dx ≤ C

∫
Rn

f dx,

with C a constant not depending on B.

Assuming the claim is valid and proceeding in an analogous way as in the proof of (ii)⇒(iii) in
Theorem 1 of [Fuj78], we obtain

Mf(x) ≤ C

(
|B|−1

∫
f dx+ sup

t>0
|((f + g) ∗ Pt)(x)|

)
,

for every x ∈ B̃, where M denotes the classical Hardy-Littlewood maximal and Pt is the Poisson kernel.
Then, integrating both sides over B̃, we get∫

B̃

Mβf dx ≤
∫
B̃

Mf dx

≤ C
(∫

B̃

f dx+

∫
B̃

sup
t>0

|(f + g) ∗ Pt| dx
)
.

As in [Fuj78] it can be proved that the second integral on the right side is bounded by a constant
times the first. This allows us to obtain∫

B̃

Mβ(ωXB) dx ≤ C

∫
B

ω dx.

A careful examination of the proof that (1.8.b) imply (1.8.c) (see Theorem (1.8)) leads to the conclusion
that considering the inequality above instead of the one in (1.8.b) allows us to get the inequality in
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CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND APPLICATIONS TO LOCAL SINGULAR INTEGRALS 13

(1.8.c) but with ω(B) instead of ω( 12B) on the right hand side. This, in turn, lead us to (1.8.d) but
without assuring the doubling condition. However, in the particular case of µ being the Lebesgue
measure in Rn, this is enough to prove ω is doubling on Fβ . In fact, taking ε = 1

2 its corresponding θ

in (0, 1) and t = (1− θ)−1/n, we get

µ(B − t−1B) = (1− t−n)µ(B)

= θµ(B)

for every B ∈ Fβ and, in consequence,

ω(B − t−1B) ≤ 1

2
ω(B),

which obviously imply ω(B) ≤ 2ω(t−1B). So, (1.8.b) can be obtained.

Let us see that our claim is valid. To begin with, we take y0 ∈ Rn such that |y0| = δr with 0 < δ <
1−β
2 . Note that |y0| < (1− β)βd(x0,Ω

c) < (1− β)d(x0,Ω
c). Then, B(x0 + y0, r) ⊂ B(x0, d(x0,Ω

c)).

If B = B(x0, r) ∈ F β
5
, noting that 2|y0| < 4r, we get

∫
Rn−5B

|Rj(f + g)| dx ≤
∫
B

ω(x)

∫
|x−z|>2|y0|

∣∣∣∣∣ xj − zj
|x− z|n+1

−
xj − zj + y0j

|x− z + y0|n+1

∣∣∣∣∣ dz dx
≤ C

∫
B

ω(x) dx,

where y0 = (y01 , · · · , y0n), since the kernel of Rj satisfies a Hörmander’s condition.

On the other hand,

(4.5)

∫
5B

|Rj(f + g)| dx ≤
∫
5B

|Rjf | dx+

∫
5B

|Rjg| dx.

We can estimate the last integral as follows.

∫
5B

|Rjg| dx ≤
∫
B(x0,5r+|y0|)

|Rjf | dx

≤
∫
6B−5B

|Rjf | dx+

∫
5B

|Rjf | dx

≤
∫
B

ω(y)

(∫
4r≤|x−y|≤7r

dx

|x− y|n

)
dy +

∫
5B

|Rjf | dx

≤ C

∫
B

ω dx+

∫
5B

|Rjf | dx.

Then, from (1.11.a) and (4.5), we obtain (4.4), since B̃ = 5B.

Now, if B ̸∈ F β
5
, we have B̃ = Nβ(B). Note that 2|y0| < β(1 − β)d(x0,Ω

c) ≤ βd(z,Ωc) for every

z ∈ B. So, B(z, t) ∈ Fβ for every t ∈ (2|y0|, βd(z,Ωc)), which implies that x ∈ Nβ(B) for every x such
that |x− z| ≤ 2|y0| for some z ∈ B. In consequence, from Hörmander’s condition,
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14 F. CAMPOS, O. SALINAS AND B. VIVIANI

∫
Rn−Nβ(B)

|Rj(f + g)| dx ≤
∫
B

ω(z)

∫
Rn−Nβ(B)

∣∣∣∣∣ xj − zj
|x− z|n+1

−
xj − zj + y0j

|x− z + y0|n+1

∣∣∣∣∣ dx dz(4.6)

≤
∫
B

ω(z)

∫
|x−z|>2|y0|

∣∣∣∣∣ xj − zj
|x− z|n+1

−
xj − zj + y0j

|x− z + y0|n+1

∣∣∣∣∣ dx dz
≤ C

∫
B

ω dz.

On the other hand,∫
Nβ(B)

|Rj(f + g)| dx ≤
∫
Nβ(B)

|Rjf(x)| dx+

∫
Nβ(B)

|Rjf(x+ y0)| dx(4.7)

≤ C

∫
B

ω dx+

∫
Nβ(B)+y0

|Rjf | dx

≤ C

∫
B

ω dx+

∫
(Nβ(B)+y0)−Nβ(B)

|Rjf | dx.

In order to estimate the last integral, we recall that x ∈ Nβ(B) for every x such that |x− z| < 2|y0|
for some z ∈ B. In addition, appealing to the proof of Lemma 2.3 in [HSV14] (see the proof of
Claim 3 on p. 616) once again, we get d(x0,Ω

c) ≤ cr with c not depending on B. This implies
|x+ y0 − z| ≤ |x− z|+ |y0| ≤ cr for every x ∈ Nβ(B) and z ∈ B. Then, we get

∫
(Nβ(B)+y0)−Nβ(B)

|Rjf | dx ≤
∫
B

ω(z)

(∫
2δr<|x−z|<Cr

dx

|x− z|n

)
dz

≤ C

∫
B

ω dz.

This estimate, together with (4.6) and (4.7) proves (4.4) in this case, concluding the proof of the
claim.

Taking into account that Rβ,η
j is bounded on Lp(Ω, dx), 1 < p < ∞, the reasoning applied in section

3 to prove that (1.8.a) implies (1.8.b) can be used again to prove, this time, (1.11.b). This finishes the
proof of the theorem.

5. Proof of Theorem 1.12

We are in the same geometrical setting as in section 3, that is, X = Rn, with the euclidean metric
and the Lebesgue measure. The proof of Theorem 1.12 will require some previous technical results.

5.1. Lemma. Let 0 < β < 1 and γ = 6β
7+β . Then Sγ(B) ⊂ Eβ(

1
2B) for every B ∈ F γ

10
.

Proof. Let B = B(x0, r) ∈ F γ
10
. Then, for x ∈ B and y ∈ 1

2B, we have

(5.2) |x− y| ≤ |x− x0|+ |x0 − y| < r +
1

2
r <

3

10

γ

2
d(x0,Ω

c).

On the other hand

d(x0,Ω
c) ≤ |x0 − z|+ d(z,Ωc)

<
γ

10
d(x0,Ω

c) + d(z,Ωc),

for every z ∈ B, which implies
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CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND APPLICATIONS TO LOCAL SINGULAR INTEGRALS 15

(1− γ

10
)d(x0,Ω

c) < d(z,Ωc).

Consequently

γ

2
d(x0,Ω

c) <
γ

2(1− γ
10 )

d(z,Ωc) <
5

9
γd(z,Ωc),

for every z ∈ B. Then, from this and (5.2), we get

(5.3) |x− y| < γ

6
d(x,Ωc),

for every x ∈ B and y ∈ 1
2B, and so

|z − y| ≤ |z − x|+ |x− y|

< γd(x,Ωc) +
γ

6
d(x,Ωc) =

7

6
γd(x,Ωc),(5.4)

for z ∈ B(x, γd(x,Ωc)).

From (5.3), we can also obtain (1− γ
6 )d(x,Ω

c) < d(y,Ωc) for every x ∈ B and y ∈ 1
2B. Then, from

(5.4) it follows

|z − y| < 7

6

γ

1− γ
6

d(y,Ωc)

= βd(y,Ωc)

for every x ∈ B, y ∈ 1
2B and z ∈ B(x, γd(x,Ωc)), which obviously provesB(x, γd(x,Ωc)) ⊂ B(y, βd(y,Ωc))

for every x ∈ B and y ∈ 1
2B, that is Sγ(B) ⊂ Eβ(

1
2B). □

The next lemma shows an important property of the classes Bβ
p . It is not difficult to see that it holds

in the more general geometric setting of sections 2 and 3 as well.

5.5. Lemma. Given 0 < β < 1 and p > 0, if ω ∈ Bβ
p , then ω satisfies a doubling condition on Fβ, i.e.:

there exists C > 0 such that ω(B) ≤ Cω( 12B) for every B ∈ Fβ.

Proof. Let B = B(x0, r) ∈ Fβ . Then, if ω ∈ Bβ
p , we can write

ω(B) ≤
∫

r
2<|x0−y|<r

(
r

|x0 − y|

)n+p

ω(y) dy + ω(
1

2
B)

≤ C(
r

2
)
n+p

∫
Sβ(

1
2B)− 1

2B

ω(y)

|x0 − y|n+p
dy + ω(

1

2
B)

≤ Cω(
1

2
B),

and the lemma is done. □

Now, we introduce a definition that will be useful to proof other properties of Bβ
p .

5.6. Definition. Given 0 < β < 1 and p > 0, we say that a weight ω belongs to B̃β
p whenever

ω(B) ≤ Ctn+p−εω(
1

t
B),

for every B ∈ Fβ , t > 1 and some constants C > 0 and ε > 0 independent of B and t.

The following couple of technical results will allow us to connect the classes B̃β
p and Bβ

p .
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16 F. CAMPOS, O. SALINAS AND B. VIVIANI

5.7. Lemma. Let M > 0 and φ be a non decreasing and non negative function defined on (0,M ] such
that

(5.8)

∫ M

t

φ(s)

sr+1
ds ≤ C1

φ(t)

tr
and φ(t) ≤ C2φ(

1

2
t),

for every t ∈ (0,M ] and some positive constants C1, C2 and r > 0, not depending on t. Then, the

function g(t) = φ(t)
tr is quasi-decreasing on (0,M ] (i.e.: there exists C > 0 such that g(t2) ≤ Cg(t1) for

t1 ≤ t2).

Proof. It follows easily from the conditions on φ. □

5.9. Lemma. Let φ be a function as in Lemma 5.7. Then, the condition (5.8) is equivalent to each one
of the following statements.

(5.9.a): There exists a > 1 such that φ(t) ≤ ar

2 φ( t
a ) for every t ∈ (0,M ]

(5.9.b): There exist positive constants C and ε such that φ(t) ≤ Cθr−εφ( tθ ) for every θ ≥ 1 and
t ∈ (0,M ].

Proof. The lemma can be proved following the same ideas with obvious changes of those applied in the
proof of Lemma (3.3) in [HSV97]. □

5.10. Lemma. Let α, β ∈ (0, 1) and p > 0. Then B̃α
p = B̃β

p .

Proof. Note that each weight ω in B̃α
p is doubling on Fα and, in consequence, on Fγ for every γ ∈ (0, 1).

The lemma is an immediate consequence of this fact. □

5.11. Lemma. Let p > 0 and β ∈ (0, 1). Then Bβ
p ⊂ B̃β

p .

Proof. Let ω ∈ Bβ
p . Taking into account Lemma 5.5, it is not difficult to see that there exists C > 0

such that ω(B) ≤ Cω(B − 1
2B) for every B ∈ F 2

5β
. With this in mind, we denote β0 = 2

5β and take

B = B(x0, r) ∈ F β0
2
. Then, for m ∈ N satisfying β0

2m+1 d(x0,Ω
c) ≤ r < β0

2m d(x0,Ω
c)

C
ω(B)

rn+p
≥
∫
Sβ(B)−B

ω(y)

|x0 − y|n+p
dy

≥
m−1∑
K=0

ω
(
B
(
x0,

β0d(x0,Ω
C)

2K

)
−B

(
x0,

β0d(x0,Ω
C)

2K+1

))
(

β0d(x0,ΩC)
2K

)n+p

≥ C̃
m−1∑
K=0

∫ β0d(x0,ΩC )

2K

β0d(x0,ΩC )

2K+1

ω(B(x0, u))

un+p+1
du

≥ C̃

∫ β0
2 d(x0,Ω

C)

r

ω(B(x0, u))

un+p+1
du,

with C and C̃ independent of r and x0. This inequality and Lemma 5.9 imply ω ∈ B̃
β0
2

p . Finally,
Lemma 5.10 concludes the proof. □

The following Lemma shows that the classes Bβ
p , like B̃β

p and Aβ
p , are independent of β.

5.12. Lemma. Let α, β ∈ (0, 1) and p > 0. Then Bα
p = Bβ

p .

Proof. Let ω ∈ Bα
p . If β < α, it is obvious that ω ∈ Bβ

p , since Fβ ⊂ Fα and Sβ(B) ⊂ Sα(B) for every
B ∈ Fβ . Let us assume α < β. From Lemma 2.3, with ε0 = 1 and λ = β, we get ε1

α
β and ε2 ∈ (0, 1)

such that 0 < β + ε2 < 1 and Sβ(B) ⊂ B(x0, (β + ε2)d(x0,Ω
C)) for every B = B(x0, r) ∈ Fε1β . Then,

for such balls, we have
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CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND APPLICATIONS TO LOCAL SINGULAR INTEGRALS 17

rn+p

∫
Sβ(B)−B

ω(y)

|x0 − y|n+p
dy ≤ rn+p

∫
B(x0,(β+ε2)d(x0,ΩC))−B(x0,ε1βd(x0,ΩC))

ω(y)

|x0 − y|n+p
dy

(5.13)

+ rn+p

∫
B(x0,ε1βd(x0,ΩC))−B

ω(y)

|x0 − y|n+p
dy

≤ rn+p

(ε1βd(x0,ΩC))n+p
ω(B(x0, (β + ε2)d(x0,Ω

C)))

+ rn+p

∫
Sα(B)−B

ω(y)

|x0 − y|n+p
dy,

≤ C

(
rn+p

(ε1βd(x0,ΩC))n+p

(
(β + ε2)d(x0,Ω

C)

r

)n+p−ε

+ 1

)
ω(B),

≤ Cω(B),

where we have applied Lemmas 5.10, 5.11 and the hypothesis on ω.

If B ∈ Fβ − Fε1β , since Sβ(B) ⊂ Nβ(B), it is an easy consequence of Lemma 3.1 in [HSV14] that
ω(Sβ(B)) ≤ Cω(B) with C independent of B. This implies

rn+p

∫
Sβ(B)−B

ω(y)

|x0 − y|n+p
dy ≤ Cω(B),

which, together with (5.13), proves ω ∈ Bβ
p . □

Our last result is the converse to Lemma 5.11.

5.14. Lemma. Let p > 0 and β ∈ (0, 1). Then B̃β
p ⊂ Bβ

p .

Proof. Given β ∈ (0, 1), we know from Lemma 2.3 that we can choose constants θ1 and θ2 such that
Sβ(B) ⊂ B(x0, θ1d(x0,Ω

C)) for every ball B = B(x0, r) ∈ Fθ2 and θ2 < β < θ1 < 1. Then, we can
obtain

rn+p

∫
Sθ2

(B)−B

ω(y)

|x0 − y|n+p
dy ≤ rn+p

∫
Sβ(B)−B

ω(y)

|x0 − y|n+p
dy(5.15)

≤ ω(B(x0, θ1d(x0,Ω
C)))

≤ Cω(B(x0, r)),

for every ball B = B(x0, r) ∈ Fθ2 −F θ2
5
. Note that, in addition, we can chose θ1 such that 5θ1 ∈ (5β, 1)

whenever β < 1
5 . Then, taking B = B(x0, r) ∈ F θ2

5
, for K0 ∈ N such that 5K0r ≤ θ2d(x0,Ω

C) <

5K0+1d(r,ΩC), we get Sθ2(B) ⊂ Sθ2(5
K0B) ⊂ B(x0, θ1d(x0,Ω

C)) ⊂ B(x0,
5θ1
θ2

5K0r) andB(x0,
5θ1
θ2

5K0r) ∈
F5θ1 . With this in mind, we can proceed as follows.

rn+p

∫
Sθ2

(B)−B

ω(y)

|x0 − y|n+p
dy ≤ rn+p

∫
Sθ2

(5K0B)−5K0B

ω(y)

|x0 − y|n+p
dy(5.16)

+ rn+p

∫
5K0B−B

ω(y)

|x0 − y|n+p
dy

= I + II.

Let us estimate I. Assuming 5θ1
θ2

B ⊂ 5K0B, we get
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18 F. CAMPOS, O. SALINAS AND B. VIVIANI

I ≤ rn+p

∫
5θ1
θ2

5K0B− 5θ1
θ2

B

ω(y)

|x0 − y|n+p
dy

≤ rn+p
K0−1∑
K=0

∫
5θ1
θ2

5K+1B− 5θ1
θ2

5KB

ω(y)

|x0 − y|n+p
dy

≤ Crn+p
K0−1∑
K=0

(
5θ1
θ2

5Kr

)−n−p

ω

(
5θ1
θ2

5K+1B

)

≤ C

K0−1∑
K=0

(
5θ1
θ2

5K
)−n−p(

5θ1
θ2

5K+1

)n+p−ε

ω(B)

≤ C(
θ2
5θ1

)εω(B)
∞∑

K=0

5−Kε

≤ Cω(B),

where we applied that ω ∈ B̃β
p .

On the other hand, if 5K0B ⊂ 5θ1
θ2

B, we obtain

I ≤ rn+p

∫
5θ1
θ2

5K0B− 5θ1
θ2

B

ω(y)

|x0 − y|n+p
dy

+ rn+p

∫
5θ1
θ2

B−B

ω(y)

|x0 − y|n+p
dy

The first integral on the right side can be estimated as before, while the second one is clearly lesser
than a constant times ω(B). Let us see II.

II ≤ rn+p
K0−1∑
K=0

∫
5K+1B−5KB

ω(y)

|x0 − y|n+p
dy

≤ C

K0−1∑
K=0

5−K(n+p)5K(n+p−ε)ω(B)

≤ Cω(B),

where we used once again that ω ∈ B̃β
p .

Finally, from (5.15) and (5.16), the estimates of I and II, and Lemma 5.12 we get ω ∈ Bβ
p . □

Now, we are in position to prove the main result of this section.

Proof of Theorem 1.12. LetB = B(x0, r) ∈ F β
8
. Note that 2B ⊂ E β

2
(B) =

⋂
x∈B B(x, β

2 d(x,Ω
C)).

In addition, if y ∈ B(x, β
2 d(x,Ω

C)) for some x ∈ Ω, we get η
(

|x−y|
βd(x,ΩC)

)
= 1. Then, following an anal-

ogous reasoning to that used in the proof of Theorem 2 of [Fuj78] (see p. 533) we can obtain

(5.17) rn+1

∫
E β

2

(B)−B

ω(y)

|x− y|n+1
dy ≤ Cω(B),

with C independent of B. Then, since F γ
10

⊂ F β
8
for γ = 6β

14+β , from Lemma 5.1 it follows

rn+1

∫
Sγ(B)−B

ω(y)

|x− y|n+1
dy ≤ Cω(B),
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CHARACTERIZATIONS OF LOCAL A∞ WEIGHTS AND APPLICATIONS TO LOCAL SINGULAR INTEGRALS 19

for every B ∈ F γ
10
. Consequently, ω ∈ B

γ
10
1 and, from Lemma 5.12, ω ∈ Bβ

1 .

On the other hand, if B ∈ F β
5
, by reasoning as in [Fuj78] (see the proof of Theorem 2 there) it can

be proved that ∫
5B

|Rβ,η
j (ωXB)| dx ≤ C

∫
5B

ω dx(5.18)

≤ C

∫
B

ω dx

where the last inequality follows from the fact that ω is doubling.

In the case B ∈ Fβ −F β
5
, we know, from Lemma 2.3 in [HSV14], that Nβ(B) can be covered with a

finite number of balls, say P1, · · · , Pm, belonging to F β
5
. It is clear that for each Pi we can pick a ball

Bi ∈ Fβ −F β
5
such that Pi

⋂
Bi ̸= ∅ and Bi

⋂
B ̸= ∅. If we choose balls P ∗

i ∈ Fβ −F β
2
concentric with

Pi, we get P ∗
i ⊂ Nβ(Bi) and Bi ⊂ Nβ(B) for each i. Then, we have

∫
Nβ(B)

|Rβ,η
j (ωXB)| dx ≤

m∑
i=1

∫
P∗

i

|Rβ,η
j (ωXB)| dx

≤
m∑
i=1

ω(P ∗
i )
[
Rβ,η

j (ωXB)
]
BMOβ

ω

≤ C
m∑
i=1

ω (Nβ(Bi))

≤ C
m∑
i=1

ω(Bi)

≤ C
m∑
i=1

ω (Nβ(B))

≤ Cω(B),

which, together with (5.18) and Theorem 1.11, proves ω ∈ Aβ
∞ and finishes the proof. □
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