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BLO SPACES ASSOCIATED WITH LAGUERRE POLYNOMIAL
EXPANSIONS

JORGE J. BETANCOR, ESTEFANIA DALMASSO, AND PABLO QUILJANO

ABSTRACT. In this paper we introduce spaces of BLO-type related to Laguerre
polynomial expansions. We consider the probability measure on (0, co) defined
by dya(z) = ﬁe*zz z2otldy with o > f%. For every a > 0, the space
BLO4((0,00),va) consists of all those measurable functions defined on (0, c0)
having bounded lower oscillation with respect to v, over an admissible family
B of intervals in (0,00). The space BLO4((0,00),7«) is a subspace of the
space BMOg((0,00),7a) of bounded mean oscillation functions with respect
to 7o and B,. The natural a-local centered maximal function defined by v, is
bounded from BMO,((0,00),7«) into BLO4((0,00),v«). We prove that the
maximal operator, the p-variation and the oscillation operators associated with
local truncations of the Riesz transforms in the Laguerre setting are bounded
from L°°((0,00),7va) into BLO4((0,00), 7). Also, we obtain a similar result
for the maximal operator of local truncations for spectral Laplace transform
type multipliers.

1. INTRODUCTION

We consider, for every o > —%, the probability measure defined on (0,00) by
dye(z) = ﬁe’zz 222t 1dz. This measure has not the doubling property with
respect to the usual metric defined by the absolute value | - | on (0,00). Then, the
triple ((0,00), ||, 7a) is not homogeneous in the sense of Coifman and Weiss ([16]).
Harmonic analysis in the spaces of homogeneous type can be developed following
the model of Euclidean spaces (R™, || - ||, A) where || - || denotes a norm and A is the
Lebesgue measure on R™. When the measure is not doubling the situation is very
different and it is necessary to introduce new ideas (see, for instance, [13], [20], [21],
24], [25], [10], [49], [50] and [51]).

Tolsa ([19]) defined BMO-type spaces, that he named RBMO-spaces, on (R™, u)
when p is a Radon measure on R"™, which is not necessarily doubling, satisfy-
ing that u(B(z,7)) < Cr*, z € R*¥ and r > 0, for some k € {1,...,n} and
C > 0. He also proved that RBMO(R", 1) has many of the properties of the clas-
sical space BMO(R"™) of John and Nirenberg. In particular, the integral operators
defined by standard Calderén-Zygmund kernels are bounded from L (R™, 1) into
RBMO(R™, p).

It is clear that, for every 0 < r < z, yo((x — r,z + 1)) < Cr. Then, following
Tolsa’s ideas we can define the space RBMO((0, 00),v4) by replacing R™ by (0, c0).
However, RBMO((0, 00),7.) is not suitable to study harmonic analysis operators
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associated with Laguerre polynomial expansions because these operators are not
defined by standard Calderén-Zygmund kernels ([19], [45] and [16]). Motivated by
the results in [37] in the Gaussian setting, the authors and R. Scotto ([5]) defined
a local BMO-type space related to the measure v, as follows.

We consider the function m(z) = min{1,1/z}, x € (0,00). Given a > 0, we say
that an interval (z — 7,z +7), with 0 < r < z, is a-admissible, or is in the class B,,
when r < am(z). The measure 7, has the doubling property on B, that is, there
exists C' > 0 such that, for every 0 < r < z being r < am(z), we have that

Yo (I(x,21)) < Cyo((x —ryz + 1)),

where I(z,r) := (x —r,x +7) N (0,00) for z,r > 0.
A function f € L'((0,00),7,) is said to be in BMO,((0,0),74) when

Hf”*,oz,a = Sup ———< /If fI|dfyoz(y) < o,

1eB, Yall

where f1 = f, f(y)dva(y), for every I € B,. For every f € BMOg4((0,00), %), we
define

1 1BMO. ((0,00),70) 7= 1f 121 ((0,00)70) + N llsaa-
The space BMO,((0,00),7,) actually does not depend on a > 0. Then, in the
sequel we will write BMO((0, 00), Vo) and || - ||+, instead of BMO,((0, 00),v,) and
I Il4,c,a> respectively. This space can be identified with the dual space of the Hardy
space H'((0,00),74) studied in [5] (see [5, Theorem 1.1]).

The space BLO(R™) of functions of bounded lower oscillation on R™ was in-
troduced by Coifman and Rochberg ([15]). Later, Bennett ([1]) obtained a char-
acterization of the functions in BLO(R™) by using the natural Hardy-Littlewood
maximal operators, and Leckband ([29]) proved that certain maximal operators as-
sociated with singular integrals are bounded from LP(R™)N L*>°(R™) into BLO(R™)
for certain 1 < p < oo.

Based on Tolsa’s ideas, Jiang ([26]) introduced BLO-type spaces in (R™, )
where p is a positive non-doubling Radon measure with polynomial growth. BLO-
spaces in the Gaussian setting were defined by Liu and Yang ([32]). In [27],
Littlewood-Paley functions in non-doubling settings on RBLO spaces were stud-
ied. Other results concerning RBLO spaces can be encountered in [30] and [31]. As
in happens with RBMO-spaces, RBLO-spaces for 7, do not work in a correct way
in connection with harmonic analysis operators associated to Laguerre polynomial
expansions.

In this paper we introduce BLO-spaces associated with the measure 7, on (0, 00)
by using admissible intervals.

Let a > 0. We say that a function f € L*((0,00),74) is in BLO,((0,00),7a)
when )

S /1 (f(y) — ess inf f(2)> da(y) < oo
For every f € BLO,((0,00),7,) we define

1
11 BLOG ((0,00),70) = Il L1 ((0,00),70) + bup N / (f(y) - eSZSGiIHff(Z)> dva(y)-

It is not hard to see that

L*°((0,00),Ya) C BLO4((0,00),va) C BMO,((0,00), Ya)-

The main properties of the space BLO,((0, 00),~,) will be established in Section 2.

Our objective is to prove that maximal, variation and oscillation operators de-
fined by singular integrals in the Laguerre settings are bounded from L ((0, 00), V)
to BLO,((0,00), Ya)-
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‘We now define the operators we are going to consider. Let a > —%. The Laguerre
polynomial LY of order a and degree k € N (see [28]) is

Cla+1) , ,d |
_ T+l TpmO—— (e Tz TRz € (0,00).

Lo(x) =
FO) =\ Tarrrom® ™ @

The Laguerre differential operator &; is given by
~ 1 d? 2041 d
A, = (22t )& 1 C2(0,0).
2d9:2+( 2z x)das+a+ » FeC(0,00)
We define, for every k € N, L3 (x) := L (2?), z € (0,00). Then, the sequence
{L%}ren is an orthonormal basis on L?((0,00),74). For every k € N, £ is an

eigenfunction for &, associated with the eigenvalue A\j} = 2k + o + 1.
For every f € L'((0,00),74), we define

/f )L3 (2)dva(z), k€N,

We consider the operator A, given by

Aof = Z)\kck @ feD(AL),
being
D(Aq) = {f € L*((0,00),7a): > (AR (N < oo}-

k=0
The space C°(0,00) of all the smooth functions with compact support in (0, c0)
is contained in D(A,) and A,f = E;f, for any f € C%°(0,00). The operator
A, is self-adjoint and positive in L2((0,00), v4). Furthermore, the operator —A,,
generates a Cp-semigroup of operators {W}i~o, where, for every ¢ > 0,

Ze AR (LS, f e L2((0,00),7a)-

According to [28, (4.17.6)] we have that, for every z,y,t € (0, 00),

ge-k%z‘@)ﬁz(y)
— M(e_t/zxy)_ala <26‘t/§xty> exp <—6_t(x2+y2)> (L1

1—et 1— 1—et
being I, the modified Bessel function of the first kind and order «.
By using (1.1) we can write, for every f € L%((0,0),7,) and t > 0,

0= [ W W), Te 0.0, (1.2)
0

where
I'(a+1)etot) 2e "ty e (22 + 92
Wi(z,y) = ( 17)€,2t (e txy) I, 1 o2t exp —% )

for z,y,t € (0,00).

The integral in (1.2) is absolutely convergent for every f € LP((0,00),74),
1<p< oo, and for every t,x € (0,00). By defining W(f) by (1.2), for ev-
ery f € LP((0,00),7,) and ¢ > 0, the family {W}iso is a Cp-semigroup in
LP((0,00),Ya), for every 1 < p < oco. Thus {W2};>0 is a symmetric diffusion
semigroup in the sense of Stein ([18]).
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The study of harmonic analysis in Laguerre settings was begun by Muckenhoupt
([39]) who proved that the maximal operator W defined by

W(f) = sup [WE(f)]
t>0

is bounded from L' ((0, 00),74) into L>°((0, 00,74). This property was generalized
by Dinger ([18]) to higher dimensions.
We define the Riesz transform R® associated with the Laguerre operator A, by

d
Zvﬁ L7, f € LA((0,00),%):

Thus R® defines a bounded operator on L?((0,00),74) (see [12]). Furthermore,
R® can be extended from L?((0,00),7a) N LP((0,00),7,) as a bounded operator on
LP((0,00),794), for every 1 < p < oo, and from L'((0,0), 7, ) into L122((0, 00), va)
([47]). The authors and R. Scotto ([0]) extended the above results by consid-
ering variable exponents LP()-spaces. Also, in [5], endpoint estimates for Riesz
transform R were established proving that R* defines a bounded operator from
H1((0,00),74) into L1 ((0,00),7,) and from L>((0, 00),¥a) into BMO((0, 00), Va)-

We can see that R® is a principal value integral operator. By proceeding as in the
proof of [8, Theorem 1.1] we can see that, for every f € L?((0,00),7a), 1 < p < o0,

R*(f)(z) = lim R*(z,y9) f(y)dvaly), ae. x € (0,00),

e=0% Jjz—y|>e, ye(0,00)

where ) - b
R¥(x,y) = — 0WH(x,y)—, x,y € x
@)= o= [ oWt T syeo).

For every € > 0, we define the e-truncation of the Riesz transform R® by

R (D) = [ B @) f()daly). = € (0,50).

lz—y[>e, y€(0,00)
The maximal Riesz transform RY is defined by
RE(f) = sup |RE(f)]-
e>0

From the results given by E. Sasso in [17] we can deduced that the maximal opera-
tor R is bounded on LP((0,00), v, ), for every 1 < p < oo, and from L((0,00),74)
into L*°((0,00), 7Va)-

We are going to consider the following local maximal Riesz transform operators.
For every a > 0, we define the maximal operator R{ , by

RZ(f)(@)= sup |RZ(f)(x)], x€(0,00).
0<e<am(zx)
Let p > 0. If {¢;}4>0 is a subset of complex numbers, we define the p-variation
Vo({etbeso) of {ci}eso by
1/p

0<tn<tn—1<---<t1, neN

n—1
Vo({et}iso0) = sup Z |ce; = ctypal”
j=1

If {T}}+>0 is a family of bounded operators in LP((0,00), Vo), with 1 < p < oo, we
define the p-variation operator V,({T;}+>0) of {T}}i>0 by

Vo({Ti}i>0)(£) (@) = V,({Ti(f) (@) }1>0)-

Since Bourgain ([10]) studied variational inequalities involving martingales (see
also [27]), p-variation operators has been extensively studied in ergodic theory
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and harmonic analysis. Campbell, Jones, Reinhold and Wierdl ([11]) proved LP-
boundedness properties for p-variation operators associated to the family of trunca-

tions for the Hilbert transform. In [12] those results were extended by considering
Riesz transforms in higher dimensions. In order to obtain LP-boundedness for p-
variation operators it is usual to ask for the condition p > 2 (see [14]). For the

exponent p = 2, oscillation operators are commonly considered.

Let {t;};ez be an increasing sequence of positive real numbers satisfying that
lim; o t; =0 and lim;_,4 o t; = +oo. If {¢;}+>0 is a set of complex numbers, we
define the oscillation with respect to {t;};ez by

1/2
+oo /

O({Ct}t>0v {tj}jEZ) = Z sup |C€j — Cejpn |2

j=—oo tiS€i<€i+1<tj41

If {T}}+>0 is a family of bounded operators in L?((0,00), Y. ), with 1 < p < oo, we
define the oscillation operator O({T}}+>0, {t;}jez) as follows

O{T:}>o0, {tj }jEZ)(f)(JU) = O({T:(f)(%)}t>0, {tj }jeZ)~

LP-boundedness properties of the oscillation operators defined by the family of
truncations of Hilbert transform and Euclidean Riesz transforms were established

in [11] and [12], respectively.
After [11] and [12], the study of p-variation and oscillation operators defined
by singular integrals has been an active working area (see, for instance, [3], [14],

[17], [22], [33], [34], [35], [36] and [38]). Variation and oscillation operators give
information about convergence properties for the family {7} }+>0.

Being {7} }+>0 and {t;} ez as above, we are going to consider the local p-variation
and oscillation operators defined as follows. Let a > 0. The a-local p-variation
operator V, o({T;}+>0) is given by

Vo,a({Ti}e>0)(f) ()
n—1 /e
= sup Do IT, (@) = Thyy (@)
0<ty<tn—1<--<ti<am(z), n€N =1
The a-local oscillation operator Oq ({1} }>0,{t;}jez) is defined by
Oua({Ti} >0, {t;}jez)(f)(2)
1/2

- X sup [T, (@) = T (D)

JEL, t;<am(x) tisej<ej+1<ti+i
Our first result is the following.

Theorem 1.1. Let o > —%, a >0 andp > 2. Suppose that {t;};ez is an increasing
sequence of positive real numbers such that t;1 < 0t;, j € Z, for some 0 > 1,
limj, o t; =0 and lim;j_, o t; = +00. The operators RS ., V), o ({RE }e0), and
Ou({R&}es0,{tj}jez) are bounded from L>((0,00),va) into BLO,((0,00), V).

We shall now introduce multiplier operators in the Laguerre setting. A measur-
able complex function M defined on [0, 00) is said to be of Laplace transform type
when

M(z) = x/ (t)e "tdt, = >0,
0
where ¢ € L*(0, 00).
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Suppose that M is of Laplace transform type. We denote by T}; the spec-
tral multiplier for the Laguerre operator A, defined by M — M(0). For every

f S L2((O7OO)7'704)7 Tj?l(f) iS given by
Tor(f) =D M(k)eg ()L
k=1

Since M is bounded on (0, 00), T'§; is bounded on L?((0,00),v4). Since {W}i~¢
is a symmetric diffusion semigroup, T'y; is bounded on LP((0,00),7,), for ev-
ery 1 < p < oo ([48, Corollary 3, p. 121]). The authors and R. Scotto ([0, The-
orem 1.1 (d)]) extended the last result establishing variable LP()-boundedness
properties for T%%;. On the other hand, Sasso ([15]) proved that T'y; defines a
bounded operator from L!((0,00),7,) into L1*°((0,0),74). In [5], the authors
with R. Scotto established the endpoint estimate for T'g; from L>((0,00),v,) into
BMO((0, 50), 7).

From [3, Theorem 1.1] we deduce that there exists a function A € L*°(0, co) such
that, for every f € LP((0,00),7a), 1 < p < o0,

lz—y|>e, y€(0,00)

TS (f)() = lim (A(s)f(x) + / ng,y)f(y)dva(y)) ,

for a.e. x € (0,00), where
KS(a,y) = / S(OOWE (2, y)dt, 2,y € (0,00), @ £,
0

A special case of T is the imaginary power A’ that appears when M, (z) = z™
for € (0,00) and n € R\ {0}. For these values of 7,

M, (z) = x/oo oy (t)e "dt, x € (0,00),
0
t—in

where ¢77(t) = T(1+in)’ t > 0. Note that ‘(bln(t” < O/t, te (0,00)
We define, for every € > 0, the truncations

Q%) (@) = / K$(@,9)fW)draly), € (0,00),

lz—y|>e¢, ye(0,00)
and consider, for every a > 0, the a-local maximal operator ng*ﬁa, which is given
by
Qi ra(f)@)=sup QG (f)(=)].

0<e<am(x)

Theorem 1.2. Let o > f% and a > 0. The mazimal operator Qg’*’a s bounded

from L% ((0,00),74) into BLO,((0,00),7v4) provided that |¢'(t)] < C/t for some
C >0, and each t € (0,00).

The paper is organized as follows. In Section 2 we state the main properties for
the spaces BLO,((0,00),74). In the subsequent sections we prove Theorems 1.1
and 1.2.

Throughout this paper C' and ¢ will always denote positive constants than may
change in each occurrence.

2. THE sPACES BLO,((0,0),7a)

In this section we state the main properties of the spaces BLO,((0,00),74). This
properties will be useful in the following sections and they can be proved as the
corresponding properties for the Gaussian BLO, space given in [32, Theorem 3.1,
Proposition 3.1 and Theorem 3.2] (see also [1] for the Euclidean case and [23] for
the non-doubling measure case).
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Let a > 0. The local natural maximal operator M¢ associated with the mea-
sure v, on (0,00) is defined by

ME(f)(z) = sup ——

€8y (z) Ya(I) /If(y)d’)’a(y), z € (0,00),

for every measurable function f on (0, 00) such that foé | f (W) |dya(y) < oo, 6 > 0.
Proposition 2.1. Let a > 0. There exists C > 0 such that for every I € B, and

every measurable function f on (0,00) such that || fll«a < o0,

1 « : «@
[ M08 < Il -+ st M2 o)

Furthermore, the natural maximal operator MS defines a bounded operator from
BMO((0,00),74) into BLO4((0,00),Ya)-

The space BLO,((0,00),74) can be characterized by using the local natural
maximal operator.

Proposition 2.2. Let a > 0. A measurable function f belongs to BLO,((0,00),Va)
if and only if f € L'((0,00),7a) and MZ(f) — f € L>=((0,00),7a). In addition,
we have that

a _ 1 :
||Ma(f) - f||L°°((07oo),va) = Iseugl (7(1(” /I‘ f(y)d’ya(y) L GS‘SGIIHff(.I)) .

By combining Proposition 2.1 and Proposition 2.2 we can establish the following
characterization of BLO,((0, 00), ) involving the space BMO((0, 00),v,) and the
local natural maximal operator.

Proposition 2.3. Let a > 0. A measurable function f belongs to BLO,((0,0),Va)
if and only if f = MS$(g)+ h, where g € BMO((0, 00),74) and h € L*®((0,00), V).
Furthermore,
[ £ IBLOG ((0,:00).7a) ~ IE{I|gllBMO((0,00)70) F [Pl 252 ((0,00) ) I
where the infimum is taken over all the pairs (g,h) for which f = M%(g) + h with
(g, h) € BMO((0, 50),7a) x L>=((0,00), ¥a)-
3. PROOF OF THEOREM 1.1

3.1. Local variation operators. Let f € L*((0,00),74). Since the variation
operator V,({R%}¢>0) is bounded on L%((0,00),7va) (see [9, Theorem 1.3]) it follows
that

| Vol o (D e)iate) < ( | e @) dva(:r))
0 0

<o [T ir@ran) v

< O fllzee((0,00)7a) -

1/2

According to Proposition 2.2 the proof will be finished when we see that

MG (Vp,a({RE}e>0)(f) = Voo {RE Fe>0) ()l ((0,00)70) < Cllf I 2oe ((0,00) ,70)-
Notice that

0 < MGWVoa({BE Fes0)(f))(2) = Voo ({BE Fes0)(f) (2)
1 o 3 o .
sup ’YT(I) ~/IV ,G({Re }6>0)(f)(z)d7a(z) Vp,a({Re }e>0)(f)( ),

 IEBa(x)
for almost every x € (0,00), where I € B,(x) indicates that I € B, and = € I.
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Let z, xg, ro € (0,00) such that I = I(xg,79) € Bs(x). We decompose f as
follows
[ =Ixar + X,00nar = f1 + fo
We can write

1 o .
— 7 [ Vel B 0 G () = Vya (R0 (1) 0)

L o
S5/ p.a({RE Fe>0)(f1)(2)dVa(2)

1 « (e}
+ ’YTI) /I (Vp,a({Rs be>0)(f2)(2) — Vp,a({Re }e>0)(f2)(2)) dya(2)
+Vp,a({RE e>0)(f2) (@) = Vo, ({RE tes0) (f) ()
=J1+ Jo + Js.

By using again that the variation V,({ R%}¢~0) is bounded on L%((0,00),va) we get
1 1/2
leY 2
5= (S [OuR ) B
YaI) J1

1/2
<o [HOF0ue) SOl G

Suppose there exists ig € {1,...,n — 1} such that €;,11 < am(x) < €;,. Thus,
for z € I,

1 1/p
(Z R, (f2)(2 )R?j(fz)(Z)p)
j_io_l 1/p
< (Z |Re ., (f2)(2) — R (f2)(2)I” + |RE, (f2)(2) — Rgm(m)(fz)(2)|p>

. 1/p
+ ( > IR (f2)(2) — RE(f2)(2)]” + |RE: +1(fz)(2)—R?m@g)(fz)(Z)I”) :

Jj=io+1
Then, recalling that m(z) < Cm(z) for every x,z € I, where C > 1, we obtain

Voa{ B }e0)(f2)(2) = Voo ({RE Fes0) (f2) (2)
1/p
< sup (Z|R i1 — R (f2)(2)° )

0<en<--<er1<am(x)
neN

1 1/p
+ sup (Z |RE L (f2)(2) — R?j(fz)(f?)lp)
j=1

am(z)<ep,<---<e1 <Cam(x)
neN

1/p
— sup (Z| €11 (fo)(= ?J(f2)(33)|p>

0<en<-+-<er<am(x)
neN

sup Z\ e (f2)(2) = R (f2)(2)]

am(z)<ep<---<e€r <Cam(a:)
neN

IN
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el 1/p
+ sup inf R z) — RS 2)|?
0<en<--<e1<am(z) 0<dp < <51<am(r) Zl ‘ €J+1<f2)( ) € (f?)( )‘
neN ke =
1/p

k—1
> IRS,.. (o) ) = RS, (f2) (@)

< / IR (2, )| f2 () |d7a (1)
am(z)<|z—y|<Cam/(z)

S 1/p
inf RS — R& P
+O<€n< SE£<am(;c)O<5k< 1251<am(x) Zl\ Eﬁl(fz)(z) €; (f2)(2)]
neN ke I=

o1 1/p

YIRS, (f2)(@) — RS, (f2)(w)]

j=1
= Jaa(x, 2) + Ja2(z, 2).
If we write

R(z,y) = " 2 R (zy), zye (0,00), 24,
from [43, (3.3) and Proposition 3.1] we know that
C
R (z,y) < 2,y € (0,00), z # y, (3.2)

ma(I(z |z = yl))’
where dm,,(z) = 22%*1dz. Therefore, for x,z € I, since m(x) < Cm(z) and using
[52, (3)], we obtain

=2 —y? dma(y)
Ja1(2,2) < C/ fa)le™™  ——————=
( am(z)<|z—y|<Cam(x) | My (I(zv IZ - y|))

42—yl dm, (y)
< il 0,000 | e :
(¢ )7e) am(z)<|z—y|<Cam(z) mOé(I(y7 |Z - y|))

am|\x)(z am(x dy
= C||f||Lw<(o,oo),wa>/ eCom(@)(z+Cam(@)
am(z)<|z—y|<Cam(x) |z — g

dy
< C||f||Loo((o,oo),va)/

am(z)<|z—y|<Cam(z) ‘Z - y|
< Ol fllz=((0,00),7a)-

On the other hand, for every x,z € I we have
B 1/p 1 1/p

Z c ()R =R ()N | — | Do IR, (fo)(x) — RE (f2) ()]
j=1

1/p

(Z [R2 ., (52)(2) = B2 (£2)(2) — (B2, (F2)(@) — B (f2)(@)) ||
[
+

( Lo B b

LA CURS DTN
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o\ /e
_ / e 'Ra(x,y)fz(y)dﬁ’a(yo )

n—1
= Z / (R*(z,y) — R*(x,)) f2(v)dVa(y)
j=1 |V e+1<lz—yl<¢;
n—1 00
+ ; A R(2,y) (X{e; 12 <lo—yl<e;} (V)

1/
— X{e<lmyl<e} @) fo@)dva(y)]”) "
Now, by taking supremum, we get
Rea(e) < [ R(e) - RIS 0)da(y)
(0,00)\41

n—1

+ sup Z <A |Ra($7y)l |X{6j+1<\z-y|<6j}(y)

0<en<--<er1<am(z) J=1
neN

1/
— Xeysr<lo—yl<e} )] [f20)]drva(®))”) "
= JQ’Q’l(fI;, Z) + J2’2’2<.'L'7 Z)
Since (see [4, § 4.3])

sup sup / IR (24y) — R, 9) |11 ()|dva(y) < oo,
IeB, x,z€1 (0,00)\41

it follows that
Jop1(x,2) S C|fllse(o,00)70), 2 € 1.
In order to estimate Jo 22 we adapt a procedure developed in [7]. From (3.2),
for x,z € I, we obtain

x2

n—1 0o e 21/2
Jao0(z,2) < C sup /
0<en<:-<er1<am(z) ; 0 ma(I(ya |£L’ - y|))
neN

X |X{eyar <la—yl<e;} ¥) = X{ejii<lz—yl<e;} (V)] |f2(y)|dma(y))p)1/p«
Let us observe that, if |z — y| < am(z), then
2? —y? < |z —yllz + y| < am(z)(am(z) + 22) < C.
Also, if |z — y| < am(z), then
|z —y| < 2r¢g + am(z) < 2am(zo) + am(z).

Since € I € B,, m(zg) < Cm(x) so |z —y| < Cam(z), and thus 2? — y* < C,
provided that |z — y| < am(z).
This fact together with [52, (3)] lead to

([l
2(y)]
Ja22(z,2) < sup (/ IX{esi1<lo—yl<e;} (W)
0<en<<er<am(z) \ =7 \JO |z —y
neN

1
- X{6j+1<\z—y\<ej}(y)| dy)p) /py z,z €l
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Let us take 0 < e, < --- <€ < am(z) and j € {1,...,n —1}. Then

1 f2(y)]
/0 iz —y| X1 <la—yl<e} () = Xejar<lz—yl<e;} ()| dy

< 12l
S C (/0 |x . y‘ X{ej+1<|a:fy\<ej}(y)X{ej+1<\acfy|<ej+1+2ro}(y)dy

= 1f2(y)l
+ /0 ‘.’E 7 y| X{Ej+1<|l’7y‘<€j}(y)X{Ej<|ny‘<€j+2To}(y)dy

“ 1f2(y)]
/C; ‘Z — y| X{6j+1<|zfy|<6j}(y)X{ej+1<|zfy|<6j+1+2ro}(y)dy

< 1fely
+/0 |22£ ;lX{€j+1<|z_y|<5j}(y)x{€j<x—y|<6j+2r0}(y)dy

= Znglz’Q(m,z), r,z€1.
1=1

For the above estimate, we have taken into account that, if x (¢, <je—y|<¢;} (y)—
X{6j+1<\2*y\§6]‘}<y) 7 0, then X{6j+1<\1*y|§€j}(y)x{6j+1<|2*y|§6j}(y> W 40’ with
y € (0,00) and z, z € I. Since fa(y) = 0 for y € 41, it follows that ngn =0

when [ = 1,3, z € T and 79 > €;41. Also, J5l22(:c,z) =0 when [ = 2,4, z € I and
o 2 €j.
If € I and y ¢ 41, then 2|z —y| > |z —y| > |z —y|. Holder inequality leads to

- o 1/2
J§Z§,2($7Z)SC</() X{ej1<lo—yl<e;}(¥) (M) dy) re?, zell=1,%

lz —yl
1/2
s > | f2(y)] ? 1/2
Jg,ZQ,Z(Ivz) <C (/O X{ej+1<|z—y\<ej}(y) (H dy 7"0/ , z€l,1=23,4.
We obtain
n—1 P 1/p
ZJg:éQ(gjaz)
j=1l1=1
n—1 = 2 p/2 1/p
1/2 | f2(y)]
< O’I"O/ Z (/ X{ej+1<|x7y\<e]}(y) (|ZL’ R | dy
j=1 \’0 Yy
n—1 2 p/2 1/p
> |f2(v)l
+ / X{ejs1<lz—yl<e;3 (Y ( dy
; ( | X<l W) | 77
1/2
1/2 — dy
< Ot/ (0,000 [T )
0 L°°((0,00),7a) ; (0,00)\aT {ejr1<|z—yl<e;} | _y|2
i i 1/2
+ / X{e; z— €; (y)i
; (0,00)\ 41 leati<lesl<e) |z —y[?

1/2
1/2 dy dy
<Ol | [ e[
(0,00)\41 |z —y| (0,00)\41 |z —yl

< Ol fll oo ((0,00) 70)-
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We conclude that J222(2,2) < C||f|l£((0,00),7.)- BY putting together the above
estimates we obtain

Voo (B }e>0) (f2)(2) = V.o (B Fes0) (f2)(2) < Cllfllee(0.00)70), 722 € 1.
Here, C > 0 does not depend on z, z € I, so it follows that

Jo < O fll Lo ((0,00) 7a)-

We now estimate J3. Note first that if |« — y| < rg, then |y — zo| < 27, so it is
clear that

/ RY(x,y) f2(1)dVa(y) =0, 0< e <er <ro.
61<‘I—y|<£2

Suppose that o < am(x). We have, for any = € I, that

Voo ({Be}es0) (f2)(2)
n—1 e
< su R x) — RY x)|?
S ;]]me>  (f2)(x)]
n—1 /e
n sup SRS (fo) (@) — B2 (fa) (@)
ro<en<--<e1<am(z), n€EN =1
1 1/p
= sup D IRE,, (f2)(@) — B2 (f2)(x)]”
ro<en<--<e;<am(z), n€N j=1 ’
< Vo {R}es0) (f)(@)
. 1/p
+ sup SR, (f1)(x) — R (f1)(w)]”
ro<en<--<er1<am(z), n€N J=1

Since, for every y € 41, |x — y| < 5rg < bam(x), by using again (3.2) and [52,
(3)], we deduce that
1/p

n—1
sup S IR (f)(x) — RE(f)(@)]?

ro<en<---<er<am(z), neEN

j=1
22 4y?
e = |f(y)l
< C/ dya(y)
|lz—y|>ro, ye4l ma([(y7 |.1‘ - y|))
22— y2
gc/ e Wl
|z—y|>ro, ye4l |3C - ZU|
dy

< Clfllz(ooorn |

lz—y|>ro, ye4l |1' - y‘

< oM lex(©.00)70) dy
To 41
S Clfllze=((0,00),70)>
that is, J3 < C|| f]| oo ((0,00),7a) for the case ro < am(x).
When ry > am(zx),
Voo {B}es0) (f2)(2) =0,

so J3 < 0 in this case.
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We conclude that
']3 S C”fHLOO((O,oo),’y(,)'
By combining the above estimates, since the constant C > 0 does not depend on
x € (0,00) or I € By(x), we get

MG (Vp,a({EE e>0)(f) = Vo {BE es0) ()l L (0,00) 70 < ClF Nl Lo (0,00) 7
Thus the proof is finished.

3.2. Local oscillation operators. Theorem 1.1 for oscillation operators can be
proved by using the procedure developed in the previous section for the variation
operator, so we give a sketch of the proof.

According to [9, Theorem 1.3], the oscillation operator O({R2 }eso, {t;}jez) is
bounded on L?((0,0), 7). This property implies that Oq({ R }es0,{t;j};ez)(f) €
Ll((oa Oo)afya) for every f € Loo((o’ Oo)afya)'

In order to prove our result, it is sufficient to find a positive constant C' such
that, for every f € L*((0,00),Ya),

MG (Oa({BE >0, {t5}iez) () —Oa({ B en0, {15 1iez) ()l Lo ((0,00) 7a)
< Cllfllz=((0.00) )+ (3.3)
Fix f € L*>((0,0),7,) and let z, g, rg € (0, 00) such that I = I(xzg,rg) € Ba(z).
We write f = fxar + fX(0,00)\a1 == f1 + fo.

1 o .
(D) /IOa({Re Yes0s{tj }iez) () (2)dva(2) — Oa({ RS }es0, {tj }iez) () (2)

1 (o7
a(I)/IOa({RE Yes0, {5 Yiez) (f1)(2)dva(2)

1 (6% (6%
) /1 [Oa({RE }es0, {titiez) (f2)(2) — Oa({RE Yes0, {t}jez) (f2)(2)] dya(2)
Ou({RE Yes0, {t}iez)(f2) () = Oa({RE Fes0, {t}jez) (f)(2)
=J1+ Jo + J3.

It is immediate from the L2?-boundedness of O({R%}cs0, {t;}jez) ([9, Theo-
rem 1.3]) that

<

!
+
4

S < Ol fllze= (0,000 70)-
We now estimate the integrand of Js. For certain C' > 1, we have

Oua({ R }es0{tj}jez) (f2)(2) — Ou({RE }es0, {tj}iez) (f2)(2)

1/2
2
< s [RE(£2)(2) - B (f2)(2)|
jez tj1<ej_1<€;<t;
t;<Cam(x)
1/2
2
-1 = sup RS (f2)(@) = B2 (f2)(@)]
jez ti—1<e;—1<€;<t;
tj<am(z)
We define
Jo(z) =max{j € Z:t; <am(x)} (3.4)

and also, provided that t;, ;)41 < Cam(z), we consider

Ji(z) =max{j € Z:j > jo(z),t; < Cam(x)}. (3.5)
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Thus, when ¢, ;41 > Cam(x), we can write

Oa({ R }es0,{t5}iez) (f2)(2) — Ou{RE }es0, {ts}jez) (f2) ()

1/2
2
I s R (e - R
jez lti-1S€i-1<€St;
J<jo(x)
1/2

- g sup
tj—1<€j—1<¢;<t;

ke (fo)(@) = RE (fo) ()

JEL
Jj<jo(z)
1/2
< Z sup ‘D(JE,Z”Q = jQ(x7Z)7
jez lti-1S€i-1<€st;
Jj<jo(z)

where
D(w,2) i= RE,_, (F2)(2) = B2 (f2)(2) = (B2, (f2)(@) = BE, (f2)(@))
On the other hand, if ¢ ;)41 < Cam(z), we get
Oa({ R Yes0, {t}iez) (f2)(2) — Oa({RE tes0, {tj}jcz) (f2)(@)
1/2

- 2
< Jo(z,2) + Z sup

jez t;j1<e€j_1<€;<t;
Jo(x)<j<ji(=)

< Jolw2) + / IR (229) | f2(0) | (v),

2m(x)<|2—y|<Cam(z)

R (f2)(2) = RS (f2)(2)

where in the last inequality we have used that t;,(,) < am(z) < Lio@)+1 < Pjo(a)
with p > 1. 3
Notice that we can estimate Ja(z, z) in the following form

jQ(IL‘,Z)

< Z sup

jez ti1<e;_1<€;<t;
i<do (@)

/ ey B @) - B @) L0)0)
2) 1/2

+ Z( sup /0 X{es 1 <lz—yl<e;1(¥) = X{e;a<lo—yl<e;} ()]

jez t;j1<ej_1<€;<t;
J<jo(x)

< 1B )| o) raw))?)

At this point, we can proceed as in the proof of the corresponding result for
variation operators V, ,, by using Holder’s inequality with an exponent s € (1,2)

+ / (Xtes s <t <en (8) = Xies s <loyi<ess @) RO (2 9) fo(y)dra(y)

< / IR (2,9) — R°(2,9) || f2(9) [ dva (4)
(0,00)\4T
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instead of applying it with exponent 2. In this way, we deduce that

J2 < Cllfll 2o ((0,00),70)-
In order to study J3, we first recall that

/ R (0, 9) fo(9)dva(y), 0 <1 < e < ro.
e1<|z—y|<ea

Then, if 7o > am(z), we obtain

Ou({R Y0, {t5}jez) (f2)(2) = 0. (3.6)

Suppose now that ro < am(z) and define jo(x) as in (3.4). If t; ;) < ro, we
again have (3.6). If not, we define j; = max{j € Z : t;, <r}. Then

Ou({R¢}es0,{tj}jez)(f2)(2)

o(a) i
= > sup [R2_, (fo)(2) — RE (fo)(@)|”
j:j1+1tj71SEj71<6j§tj
< Ou({R¢ }es0, {t}iez) () (@)
jo(a) 2

Y s IR (@) - R (@)
j=ji1tim1SE-1<e Sty
Since t;, <rg <tj11 < pty,, it follows that

jo(®) 1/2

3 sup [R2 (fi)(@) - RE (f)(@)]

jmji1 ti-1S€-1<€; <t

Jo(x)

< S sw o REL(A)@) - B2 (A)@)]

tj_1<ej1<€;<t;

Jj=j1+1
x24y?
e = |f(y)l
< C/ dva(y)
lz—y|>ro/p ma(-[(y7 |£C - y|))

< Ol fllzee ((0,00),70)

where we have used again the bound given in (3.2) and [52, (3)].
We conclude that
I3 < C||fll L= ((0,00),7a)-
By putting together all of the above estimates, we get (3.3) and the proof of
Theorem 1.1 for local oscillation operators is completed.

3.3. Local maximal Riesz transform. We firstly prove that R , is bounded on
LP((0,00),7a) for every 1 < p < oo. In order to do so, we need to decompose, for
every € > 0, the truncated integral RS into two parts, called local and global parts

(see [17]).

For every 7 > 0, we consider the sets
L, = {(m,y,s) € (0,00) x (0,00) x (=1,1) : v/g—(x,y,s) < M}
l1+z+y
and
G, = ((0,00) x (0,00) x (=1,1)) \ L.
Here, and in the sequel, we denote q+(x,y,s) = 2% + y? &+ 2xys, for z,y € (0,00)
and s € (—1,1).
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We choose a function ¢ € C*°((0,00) x (0,00) x (—1,1)) such that 0 < ¢ <1,

]-7 (1.73/;5) € le
p(z,y,s) =
07 (.’L‘,y,S) € GQ;

and

C
|81<P(9vaa5)\ + |ay§0(xay78)| S T xr,y € (0,00),S € (_1a 1)
q-(z,y,s)

We define, for each € > 0 and z € (0, c0)
R = [ R (2, ) f(9)dva (),
|z—y|>e, y€(0,00)
R (f)(x) = R2(f)(x) — RE°°(f)(x),

where .
R""IOC(Ly) :/ RO"IOC(x,y,:3)1_[(1(5)6157 z,y € (0,00)
and, for z,y € (0,00), s € (—1,11),
9 00 o—t(a+2) (efta: —ys) _q,i%t_réty,::)_‘_yz dt

“Vr)y T A—emperz © o s)

We also consider the maximal operators associated with the above,
RYC(f) = sup |[RZ1°(f)|,  RIEP(f) = sup | REEP(f)]
>0 e>0

which clearly verify

ROz, 5) =

RI(f) < REPS(f) + RIEC(f).
According to [9, § 3.1] (see also [17, Proposition 3.1]), we have that
REE()0) £C [T K@)t 7€ 0.00)
0

where
1
Ke)= [ K@ (oo )lla(6)ds, oy 0.00)
1
and, for z,y € (0,00) and s € (—1,1),

1, s <0,
Ka(myyv S) = (q+(w,y,s))aT+1 exp (124‘92— q9- (z,y,s)q+(x,y,s)> s> 0. (37)

q—(2,y,8) 2

It follows that R$%'°" is bounded on LP((0,0),74) for every 1 < p < oo (see [0,

§ 3.1]).
We recall that the measure m,, defined in Section 3.1 has the doubling property

on (0,00). Therefore, by [0, (18) and (19)], e=¥" R°¢(x,y), for z,y € (0,0), is an
m,-standard Calderén-Zygmund kernel, that is, for every z,y € (0,00), z # vy,
C

ma (I (2, [z —yl)’

e Ry ()| <

and
C
E |
|z —ylma (I(z, |z —yl))
If we define the operators R*!°¢ and R*#°P in the obvious way, we can see as
above that the later is bounded on L”((0,00),7,) for every 1 < p < co. Since R

is also bounded on LP((0,00),7,) for every 1 < p < oo (see [11, Theorem 13]),
we conclude that R*!°¢ is bounded on LP((0,00),7,) for every 1 < p < oo. By

3, {e‘yzRi?C(x, y)} ‘ + ‘8,1/ [e_yzRi?C(%y)}
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proceeding as in [5, § 2], we deduce that R*!°¢ is bounded on LP((0,00),m,) for
every 1 < p < oco. Moreover, since R*!°¢ is an m,-Calderén-Zygmund operator,
R is bounded on LP((0,00),mg) for every 1 < p < oo. By using again the
arguments given in [5, § 2], we get that R is bounded on LP((0,00),7a) for
every 1 < p < oo.

It follows now that R% is bounded on LP((0,00),7,) for every 1 < p < oc.
Particularly, using this property for p = 2, for any f € L*°((0,00), Va),

IR2 a2 (0.00)7) < CllFllo=((0,00) 70)-
We recall that, from (3.2),

22 4y2
e 2

ma (I(z, |z = yl))’
and also we can see (as in [4, § 4.3]) that

|R*(z,y)| < C

z,y € (0,00), = #y,

sup sup-o / 10, R* (2, )| drya () < 0.
I€eB, z€l (0,00)\21

By proceeding as in the proof of [32, Theorem 4.1], it yields
o « _ pa < I\
Isequa HMa (R*,a(f)) R*»a(f)HLm((O,oo),'ya) — C”fHL ((0,00),7a)?

meaning that R¢ , is bounded from L*°((0, 00),9) into BLO,((0,00),7a)-

4. PROOF OF THEOREM 1.2

In this section, we will study L>((0,00), Y4 )-BLO,((0,00), 7, ) estimates for the
a-local maximal operator

Q3 4a(f)(x) =  sup )IQ%,e(f)(w)l

0<e<am(z

= sup
0<e<am(x)

/ K (2, 9) f(0)dva(y)|
|lz—y|>€, ye(0,00)

for € (0,00) and a > 0.
We recall that

KS(a,y) = - /0 SOOWE (2, y)dy, 2,1,€ (0,00), @ £,

being

—t a+1 1 a_(e~ta,y,s)
o e Sl Ly
Wi (z,y) = <1—2t> / e 1-e? I, (s)ds, z,y,t€ (0,00).
—e o

Firstly, we shall see that Q , , is bounded on LP((0, 00), v ) for every 1 < p < oo.
We define, for z,y,t € (0,00),

—t

aloc e R I R S
e = () [T Y e s,

and

Wta’glob(xv y) =wy (xv y) - V[/vta’loC (1’, y)
In terms of these, we consider K ;"IOC and Kg’gbb given as K¢ but with Wy* replaced
by W'°° and WP respectively. Similarly, we define Q¢ and Qg’gk’b by

&x,a 2%,
a

putting K ¢’10C and K:;’gk’b instead of K, respectively.
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We will first deal with Qg:f}gb. Notice that, for z,y,t € (0,00) and s € (—1,1)
et q—(e"'w,y,s)
at[<1—e—%> ‘mp<_ 1—e 2 >

¢ eit ot q— (eitma Y, S)
= Pry,s (e ) 1 _ o2t s S N —7 )

where, for every z,y € (0,00) and s € (—1,1), P, , s is a polynomial whose degree
is at most four. Hence,

lob e*t at+l q_(e” xyé)+2
) <0 o ()T T s g )
1t>0 \1—e

<c / K® (2, 8)x1s (2,7, 9)a(s)ds, 2,y € (0,00),
-1

being K*(z,y,s) as in (3.7), for (z,y,s) € LS.
From [9, § 3.1], it follows that the operator whose kernel is the one on the right-
hand side is bounded on L?((0, 00), v, ) for every 1 < p < oo, and so will be Qd)’gbb
Furthermore, for every f € LP((0,00),7a), 1 < p < 00,

L S )Iﬁigkm(x,y) Y)daly (/ﬁ K§# (2,9)f (y)dva ),
rx—y|>e, ye(0,00

for a.e. x € (0,00).
We now consider the operators

Ty (f)(@) = lim (A(S)f(fv)Jr/

e—0* lz—y|>¢, y€(0,00)

Kg’l"c(x,y)f(y)d%(y)> )

and
To8ob (1 / K282, 1) £(5)da(y),

for a.e. 2 € (0,00). Since TS, and T95'°" are both bounded on L2((0,50),7a)

([45, Proposition 3]), also 7571 is bounded on L2((0, ), 7a). Moreover, for every
fe L72((0,00),7a)

T (f)(@) = / T K@) fW)dva(y). @ & supp(h)

0
Let us now consider K§(z,y) := e*yQKg’loc(x,y), for z,y € (0,00). We have

e

. 3 et a+1 Ca(etay,s)
KA%M=%@+U/‘¢®<1_m> / e =g, y, s)a(s)dsdt
0 —1
g (eTtay,s)

o 1 —2t
o e 1—e
_/0 @(t)e t( +1)/18t W @(m,y,s)ﬂa(s)dsdt

=Kg1(2,y) + KGo(z,y), =,y € (0,00).
Asin [5, § 7], we can prove that

o C
KS2(z,y)] <

ma (I(z, [z —yl)’

z,y € (0,00),  #y,
and

o C
10K 2 (2, )| + 19, KG o(7, y)| <

|z = ylma(I(z, [z —y])’

z,y € (0,00), T #y.
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On the other hand, using [15, (2.6)], i.e., ¢_(e~tz,y, 8) > q_(x,y,s)—2(1—e~2!),
for every (z,y,s) € Ny, and the estimates obtained in [2, p. 12 and Lemma 3.1],
we get

@
o0 eft atl 1 _a—(z,y,s)
N ] e I I O

00 1
< C/ |<p(t)|67t(a+1)dt/ Ha(s)
0

-1 9- (LL', Y, S)a+1
C

= a7 —9])
(b) by [4, Lemma 3.4 (E8)],

. S et atl .1 7q,(e*t:céf,s)
0Kzl <C | el | === e 1
0 —1

—t| =t
X [elewsp(xayas) + 8x<P(l’,y75)|] Ha(s)det

z,y € (0,00), = #y;

1—e 2
-t \of! l _altans
co (i) e o
1—e— —1
_(eta,y, 1
o |Vl uns) | L, (s)dsdt
1-e q_(.'IZ,y,S)
1 _a_(zy,s)
[e's) 2(1—e—2t)
< —t(a+2) -m "
,C/O lp(t)]e L @ =eyararz
_a—(=z,y,5)

é 1—e—2t

+
(1 4672t)a+1 Q—(xayvs)

1
_ I, (s)
<C t(a+2)dt/ — 7 __d
/ le 1 q*(x,yvs)aJr&/z ’

DR z,y € (0,00),  #y;

11, (s)dsdt

~ = ylma (1 (93, [z —y
(c) by [4, Lemma 3.4 (E7)] (with z and y interchanged), and proceeding like
before,

LS et atl .1 _a_(etay,s)
sl [ ol (7o) [ T

—€e IS
8 [MW v,s) + 8yso(:c,y,s)|] Il (s)dsdt

0o et atl 1 a_(e"tay,s)
so [Tl (i5m) [T
0 1—e 2t 1

(et 1
X[ q-(e :v,y,S)+

1—e? q-(z,y,s)

! 1o (s)
< C t(a+1) dt/ Ol—d
/ ‘e 1 Q—(x?y7s)a+3/2 °

FE z,y € (0,00),  #y.

11, (s)dsdt

= e —ylma (1 (fv,



ISSN 2451-7100
IMAL PREPRINT # 2023-0063 Publication date: February 6, 2023

20 J. J. BETANCOR, E. DALMASSO, AND P. QUIJANO

All of the above proves that T](\ffloc is an my-Calderén-Zygmund operator. There-
fore, Tlfjf’loc is bounded on LP((0, 00), m,,) for every 1 < p < oo, which yields Qg’}:’z is
also bounded on LP((0,00), m,,) for every 1 < p < co. The arguments in [5, § 2] al-

a,loc

low us to deduce that @,,’, is also bounded on LP((0,00),7a) for every 1 < p < o0.
Finally, we conclude that Q3 , , is bounded on LP((0, 00), 7 ) for any 1 < p < oco.

Remark 4.1. We can also prove that ()F , , is bounded from L'((0,0),74) to
L1>°((0,00),7a)- Actually, it is sufficient at this moment to know that Q% , , is
bounded on LP°((0, 00), v4) for some 1 < pg < 0.

We have proved above that
eV’

K, y)| < C ;
¢ mo (I(z, |z —y|))

r,y € (0,00), T# Y.
We also saw that
1
g™ @) <€ [ Kooy lla(o)ds, 2,5€ (0.09)
—1

where K (z,y, s) was defined in (3.7). It is easy to see that, for any (z,y,s) € LS,

1, s € (—1,0),
|K%(@,y,8)| < CQ exp (22422
qf(ag,y,:)‘“)l’ s € [0,1).
Moreover, for any fixed constant ¢ > 0, if z,y € (0,00) with |z — y| < cam(x)

and s € (—1,1),
q—(z,y,8) = (z —y)* +2xy(1 — s) < (z — y)* + dy(jz — y| + v)
<5(z —y)® +4y° + 4|z — ylz < C(1+97),
which yields

(K (2, y,8)| <

C (1+y2)o¢+1’ s € (_1v0)7
q—(x,y,s)2t! | exp (”2‘2”’2) , s€]0,1),
for any (z,y,s) € L§ with |z — y| < cam(z).

According to [2, Lemma 3.1], we obtain

224492

ma(I(x7 |$ - y|)) ’
Hence, we conclude that

K5 @, y)] < © 2,y € (0,00),0 < [z — y| < cam(z).

m2+y2
[ 2

ma(I(z, |z —yl)’
We are going to prove now that

|Kg (z,y)] < C 2,y € (0,00),0 < |z — y| < cam().

www/ 10, K8 (2, 9)|dva(y) < co.
1€By w€l J (0,00)\2T

By partial integration, we have that

mmm=£¢wmwmwx%awm
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and thus,

mwmw:A¢Mmmwwﬁ

0o ) 67t a+1
‘2A¢@(pfﬁ

1 g_(e"tey,s) | o o—t(o—ty _
x/ e ez 1Y %Ha(s)dsdt, z,y € (0,00).
—1 — €

By [/, Lemma 3.4 (E8)], |e 'z — ys| < \/q_(e~txz,y,s) for every x,y € (0,00) and

(— ,1). Then, using the hypothesis on qb ,
e—t(a+2)

10, K5 (2,y)| < C/O W“”W
1 q_(e ta,y, ~)+
y / e i Y S (et g, 5 Ta(8)dsdt

o 00 1 —t(a+2) 1 7Cq,(efta:2,y,5)+yz
< 1—e—2t
/ (1—e 2t)a+3/2 /16 Il (s)dsdt

for any z,y € (0,00).
Therefore, by [1, Lemma 3.6], there exists C' > 0 such that

sw/ 10,55 (. 9)|da(y) < C
xel (0,00)\21

for every I € By, as claimed.
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