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Preface

These notes are based in a graduate level course for Doctoral students in Mathematics

at the Universidad Nacional del Litoral in Santa Fe, Argentina. The acronym LABRA

for our group translates to ALORA, Analysis of Lower Regularity and Applications. The

birth of this group in our institute IMAL goes back to the early eighties with the research

on harmonic analysis on metric measure spaces. In particular in spaces of homogeneous

type that was also a good general framework for the analysis related to general elliptic and

parabolic operators. The comparatively more recent work on learning and data analysis,

gave a rather important dynamics to the general needs for metrics and distances on

general sets.

The title Metrization is expected to reflect action. The outstanding “Encyclopedia

of Distances” by Michele Marie Deza and Elena Deza [DD16], prevents us from the

use of “Metrics” as a title. On the other hand, the classical results of general topology

prevents us from using “Metrizability”. Also, we pretend that most of the results and

examples presented here take the form of algorithms. Here the word algorithm has to

be understood in a general sense. But in some particular subjects we shall provide also

Python scripts for computation and visualization of examples of particular situations.

Since we clearly know that the complement of our subject index is much larger that

our index itself, we do not claim for completeness. Moreover we do not even try to save

the bias produced by our own construction and contributions to the subject. Even so,

we expect our results and points of view could be of some help to our students and to

the interested reader. We hope also that our constructions and results will contribute to

M. Gromov’s claim in the introduction of this book [Gro07] titled “Metrics Everywhere”.

We shall left comments and references for the end of each chapter in order to avoid

interruptions in the main text. There is no way to find a unified notation and terminology

in the subject. Nevertheless these different languages are quite inessential and irrelevant.

In particular we shall keep using the analysts names for quasi-metrics or quasi-distances

instead of near-metrics. In any case we shall be precise at defining each concept.
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CHAPTER 1

Quasi-distances and balls

1.1. Introduction and basic definitions

Let X be a set. A real function d defined on X × X is said to be a quasi-metric

or a quasi-distance on X if d is symmetric, nonnegative, vanishing on the diagonal of

X ×X and only on the diagonal, such that there exists a positive constant K such that

the inequality

d(x, z) ≤ K(d(x, y) + d(y, z))

holds for every x, y and z in X. Notice first that if X has at least two elements, then K ≥
1. In fact, d(x, z) ≤ K(d(x, z)+d(z, z)) = Kd(x, z). When K = 1 the quasi-metric space

(X, d) is a metric space in the standard sense. Given a quasi-metric space (X, d) we have

a well defined family of subsets of X, that we call the family of balls of d on X given by

B(x, r) = {y ∈ X : d(x, y) < r}

for every x ∈ X and every r > 0. A caveat is in order. Since we do not have a priori a

natural topology defined in X by d when K > 1 even when B(x, r) is defined by the strict

inequality d(x, y) < r, the expression “open balls” has no meaning. In fact, as we shall see

later, with the neighborhood or uniform topologies induced in X by d, it can happen that

some d-balls are not open sets. Nevertheless we are not considering topological properties

at this point. Instead we ask for properties of some families of subsets of X that qualify

as families of balls for some quasi-metric d in X. In this chapter we aim to characterize

these families of sets up to equivalences that we shall precisely define.

1.2. Some properties of the family of quasi-metric balls on a set X

Let (X, d) be a quasi-metric space with triangle constant K ≥ 1. Let B : X × R+ →
P(X) be the function that to each pair (x, r) in X × R+ assigns the part of X defined

by B(x, r) = {y ∈ X : d(x, y) < r}, i.e. the d-ball centered at x ∈ X with radius r > 0.

The next proposition collects the relevant properties of the function B.
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Proposition 1.1. Let (X, d) be a quasi-metric space with constant K ≥ 1. Let B as

before. Then

(a) for every x ∈ X fixed, the function B(x, ·) : R+ → P(X) is nondecreasing with

the usual order in R+ and P(X);

(b) for every x ∈ X we have that
⋃

r>0B(x, r) = X;

(c) for every x ∈ X,
⋂

r>0B(x, r) = {x};
(d) for every choice of x and y in X and r > 0 such that x ∈ B(y, r), we have

(d.i) B(y, r) ⊆ B(x, 2Kr), and

(d.ii) B(x, r) ⊆ B(y, 2Kr).

Proof. To prove (a) notice that for 0 < r1 < r2, the inequality d(x, y) < r1

implies d(x, y) < r2. Item (b) is a consequence of the fact that d is finite for ev-

ery (x, y) ∈ X × X. Property (c) follows from the fact that d(x, y) = 0 if and only

if x = y. To prove (d.i) take z ∈ B(y, r), then d(x, z) ≤ K(d(x, y) + d(y, z)) < 2Kr,

since x ∈ B(y, r) and z ∈ B(y, r). □

The above result shows that every quasi-metric on X with triangle constant K in-

duces a family of subsets of X, which we call the balls, satisfying properties (a), (b), (c)

and (d). In the next section we prove a converse; if a family of subsets of X satisfies

properties (a), (b), (c) and (d), then there exists a quasi-metric d on X such that the

d-balls are almost the given family of subsets of X.

1.3. From balls to quasi-metrics

In this section we consider the converse of the result in Section 1.2 above. Now

we start with a set X and a function B : X × R+ → P(X) and we prove that if the

family of subsets of X given by {B(x, r) : x ∈ X, r > 0} satisfies (a), (b), (c) and (d) of

Proposition 1.1, then there exists a quasi-distance d onX such that the d-balls are “almost

the same” as the sets B(x, r). In order to precise the idea of “almost the same”, let us

define equivalence of two functions B1 and B2 assigning to each x ∈ X and each r > 0 a

subset of X. Let Bi : X ×R+ → P(X), i = 1, 2. We say that B1 is equivalent to B2 and

we write B1 ∼ B2 if there exist positive constants γ and Γ such that

B1(x, γr) ⊆ B2(x, r) ⊆ B1(x,Γr),

for every x ∈ X and every r > 0. It is easy to check that ∼ is an equivalence relation

in P(X).
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We are now in position to state and prove the main result of this chapter.

Theorem 1.2. Let X be a set. Let B : X ×R+ → P(X) be a function satisfying the

following properties

(a) for each x ∈ X, B(x, ·) is a nondecreasing function of r;

(b)
⋃

r>0B(x, r) = X, for every x ∈ X;

(c)
⋂

r>0B(x, r) = {x}, for every x ∈ X;

(d) there exists a constant c > 0 such that for every x, y ∈ X and r > 0 with x ∈ B(y, r)

we have

(d.i) B(y, r) ⊆ B(x, cr), and

(d.ii) B(x, r) ⊆ B(y, cr).

Then, there exists a quasi-metric d on X such that B ∼ Bd, with Bd the family of d-balls

in X, i.e. Bd(x, r) = {y ∈ X : d(x, y) < r}.

Proof. Take x and y two points in X. From (b) applied twice, we see that there

exist r1 and r2 such that y ∈ B(x, r1) and x ∈ B(y, r2). With r = sup{r1, r2} and

property (a) of the function B, we have that x ∈ B(y, r) and y ∈ B(x, r). Hence the

set {r > 0 : x ∈ B(y, r) and y ∈ B(x, r)} is non-empty. So that

d(x, y) = inf{r > 0 : x ∈ B(y, r) and y ∈ B(x, r)}

is a well defined nonnegative valued function onX×X. From (c) we have that x ∈ B(x, r)

for every r > 0, hence d(x, x) = 0. On the other hand, if d(x, y) = 0, then there exists

a sequence rn of positive real numbers such that rn → 0 and x ∈ B(y, rn) for every n.

Notice that from (a), property (c) gives
⋂

nB(y, rn) = {y}. Hence, since x ∈
⋂

nB(y, rn),

necessarily x = y. Let us now check that d(x, z) ≤ c(d(x, y) + d(y, z)) for every choice

of x, y and z ∈ X, where c is the constant in (d). In fact, for ε > 0 take r1 > 0 and r2 > 0

such that

(1) r1 < d(x, y) + ε;

(2) x ∈ B(y, r1);

(3) y ∈ B(x, r1)

(4) r2 < d(y, z) + ε;

(5) y ∈ B(z, r2);

(6) z ∈ B(y, r2).
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Let us first show that x ∈ B(z, c(r1 + r2)). From (5) y ∈ B(z, r2) ⊆ B(z, r1 + r2).

From (d.ii), B(y, r1 + r2) ⊆ B(z, c(r1 + r2)). Now, from (2),

x ∈ B(y, r1) ⊆ B(y, r1 + r2) ⊆ B(z, c(r1 + r2)),

as desired. Applying (6) and (3) we have in a similar way that z ∈ B(x, c(r1 + r2)).

Hence, from (1) and (4), we have also

d(x, z) ≤ c(r1 + r2) ≤ c(d(x, y) + d(y, z)) + 2cε,

for every ε > 0. So that d is a quasi-metric on X.

Let us finally show that the family Bd of d-balls in X and the given B are equiv-

alent. Notice first that Bd(x, r) ⊆ B(x, r). Take y ∈ Bd(x, r), then d(x, y) < r.

So that, from the definition of d(x, y), there exists 0 < s < r such that x ∈ B(y, s)

and y ∈ B(x, s) ⊆ B(x, r) from (a), so Bd(x, r) ⊆ B(x, r). Take now y ∈ B(x, r), from (d)

we have B(x, r) ⊆ B(y, cr) and B(y, r) ⊆ B(x, cr). Then x ∈ B(y, cr) and y ∈ B(x, cr),

hence d(x, y) ≤ cr < (c+ ε)r and y ∈ Bd(x, (c+ ε)r) for every ε > 0. □

1.4. Some applications and examples

1.4.1. Dyadic metrics. Let X = R+
0 = {x ∈ R : x ≥ 0}. The dyadic intervals

in R+ are given by Ijk = [k2−j, (k + 1)2−j) for j ∈ Z and k a nonnegative integer. Since

for each j ∈ Z fixed {Ijk : k ≥ 0} is a partition of R+
0 = X, for every x ∈ R+

0 and

every j ∈ Z there exists one and only one interval Ijk in this family, that we denote Ij(x),

containing x.

Let B : R+
0 × R+ → P(R+

0 ) be given by

B(x, r) = I

[
log2

1
r

]
(x),

where [·] denotes the integer part function. Let us check that the function B satisfies

properties (a), (b), (c) and (d) in Theorem 1.2.

If 0 < r1 ≤ r2, then
[
log2

1
r1

]
≥
[
log2

1
r2

]
and I

[
log2

1
r1

]
(x) ⊆ I

[
log2

1
r2

]
(x). This

proves (a). Properties (b) and (c) are also clear.

To check (d) take x, y ∈ R+
0 and r > 0 with x ∈ B(y, r) = I

[
log2

1
r

]
(y). Set j =

[
log2

1
r

]
.

Then x and y belong to the same dyadic interval of level j, say x, y ∈ Ijk. In order

to prove (d.i), take z ∈ B(y, r) = I

[
log2

1
r

]
(y) = Ijk, then z and x belong both to Ijk.

Hence z ∈ B(x, r). Which is (d.i) with c = 1. The same argument shows (d.ii). Hence,
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from Theorem 1.2, we have a quasi-metric in R+
0 given by

δ(x, y) = inf{r > 0 : x ∈ B(y, r) and y ∈ B(x, r)}

= inf
{
r > 0 : x ∈ I

[
log2

1
r

]
(y) and y ∈ I

[
log2

1
r

]
(x)
}

= inf
{
r > 0 : x and y belong to the same dyadic interval of length 2

−
[
log2

1
r

]}
= 2 |I(x, y)| ,

where I(x, y) is the smallest dyadic interval containing x and y. Actually, δ(x, y) is an

ultra-metric in X = R+ called the dyadic metric.

1.4.2. Balls as sections of convex functions. Suppose that φ : Rn → R is a

smooth convex function on Rn. Given a positive number t and a point x0 ∈ Rn, the

section of φ at x0 of height t is defined by

Sφ(x0, t) = {x ∈ Rn : φ(x) < φ(x0) +∇φ(x0) · (x− x0) + t}

x0

t

φ

Sφ(x0, t)

Rn

R+

Figure 1. The sections of the convex function φ.

How do this sections behave? Let us consider the most classical case. Let

φ(x) =
|x|2

2
=

1

2

n∑
i=1

x2i .

Then ∇φ(x0) = x0. Hence

Sφ(x0, t) = {x ∈ Rn : φ(x) < φ(x0) +∇φ(x0) · (x− x0) + t}
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=

{
x ∈ Rn :

|x|2

2
<

|x0|2

2
+ x0 · (x− x0) + t

}
=
{
x ∈ Rn : |x|2 + |x0|2 − 2x0 · x < 2t

}
=
{
x ∈ Rn : |x− x0|2 < 2t

}
.

In other words, the section of φ at x0 with height t is the Euclidean ball centered at x0

with radius
√
2t. Also, Sφ(x0, t) is the d-ball centered at x0 with radius t if d is the

quasi-metric d(x, y) = 1
2
|x− y|2 in Rn.

An important fact regarding the application of Theorem 1.2 to the harmonic analysis

setting for Monge-Ampère equation, is that some basic assumptions on a convex func-

tion φ imply that the family of sections of φ satisfy properties (a), (b), (c) and (d) in

Theorem 1.2. So that there is a quasi-metric in Rn describing the sections as metric balls.

See [AFT98].

1.4.3. Metrization of data affinities. Let X be a given set. Assume that an

affinity kernel K is defined on the pairs of points in X. Precisely, suppose that

K : X ×X → R+

satisfies the following natural properties for a measure of the affinity of two data points

in X:

(K1) K(x, x) = +∞;

(K2) K(x, y) = +∞, implies x = y;

(K3) K(x, y) = K(y, x) for every x, y ∈ X;

(K4) there exists a constant γ ∈ (0, 1) such that the inequalities K(x, y) > s and

K(y, z) > s imply the inequality K(x, z) > γs, for every s > 0.

The kernel K has some natural properties of what we could expect to be a measure of

affinity between data points in X. In particular, the only quantitative property of K is

given by (K4) which has a simple interpretation. In fact, if the affinity between x and y

is larger than s and the affinity between y and z is also larger than s, then the affinity

between x and z is larger than a half of s (when γ = 1/2).

Assume, then, that X is given and K is an affinity kernel satisfying (K1) to (K4).

Define the function

B : X × R+ → P(X)
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by

B(x, r) =

{
y ∈ X : K(x, y) >

1

r

}
.

Properties (a), (b) and (c) in Theorem 1.2 are easy to check. Property (d) holds with

constant c = γ−1. In fact, take x, y ∈ X and r > 0 with x ∈ B(y, r), then for z ∈ B(y, r)

we have both K(x, y) > 1
r
and K(y, z) > 1

r
. Hence, from (K4) we get that K(x, z) > γ

r
.

In other words, z ∈ B(x, r
γ
). This means that B(y, r) ⊆ B(x, 1

γ
r). In a similar way we

obtain (d.ii), B(x, r) ⊆ B(y, 1
γ
r). So that (d) holds with c = 1

γ
. Applying Theorem 1.2 we

obtain a quasi-metric d on X such that the family of d-balls is equivalent to the family B

of the level sets of the affinity kernel K.

1.5. Comments, problems and further results

(1) If (X, τ) is a topological space and x ∈ X, a subset V of X is said to be a

neighborhood of x if there exists A ∈ τ such that x ∈ A ⊆ V . Set Nx to denote

the family of all the neighborhoods of x ∈ X. Prove that

(a) if U ∈ Nx, then x ∈ U ;

(b) if U ∈ Nx and if V ∈ Nx, then U ∩ V ∈ Nx;

(c) if U ⊃ V and V ∈ Nx, then U ∈ Nx;

(d) if U ∈ Nx then, there exists V ∈ Nx with V ⊂ U and V ∈ Ny for every y ∈ V .

(2) Let X be a set. Let N : x → Nx be a function assigning to each x ∈ X a family

of parts of X satisfying properties (a), (b) and (c) in (1) above. Prove that the

family τ = {U : U ∈ Nx for every x ∈ U} is a topology on X. See the book of

Kelley [Kel62].

(3) Let (X, d) be a quasi-metric space. Define

Nx = {U : Bd(x, r) ⊂ U for some r > 0}

for every x ∈ X. Show that Nx satisfies properties (a), (b) and (c) in (1) above.

Hence

τ = {U : for every x ∈ U there exists r > 0 with Bd(x, r) ⊂ U}

is a topology on X. Call this topology the quasi-metric topology on X.

(4) Prove that d-balls may not be open sets in the quasi-metric topology when d is a

quasi-metric that is not a metric.





CHAPTER 2

Quasi-metrics in X and bands in X ×X

2.1. Introduction and basic facts

The robustness of the concept of quasi-metric with respect to the family of balls,

considered in the previpus chapter, can also be witnessed from the properties of the

diagonal bands in X×X. We shall explore this approach in this chapter. By the way, we

introduce some basic notation needed to face the metrization of quasi-metrics through

the structures of uniform spaces, that we shall consider in forthcoming chapters. Here,

instead of balls in X we consider families of relations on X×X that describe the behavior

of metric bands. For the sake of completeness let us introduce the basic notation and

definitions.

Let X be a set and let U and V be two subsets of X × X. The composition is

defined by

V ◦U = {(x, z) ∈ X×X : such that there exists y ∈ X with (x, y) ∈ U and (y, z) ∈ V }.

This definition is consistent with the composition of functions. With △ we denote the

diagonal of X × X, i.e. △ = {(x, x) : x ∈ X}. For U ⊆ X × X, U−1 is defined

by U−1 = {(x, y) : (y, x) ∈ U}. A set U in X ×X is said to be symmetric if U−1 = U .

For a given quasi-metric on X we shall provide some basic properties on the family

of metric bands

V (r) = {(x, y) ∈ X ×X : d(x, y) < r}

in X × X that characterize the existence of a quasi-metric in X with metric bands

equivalent to the given family.

2.2. Some properties of the family of quasi-metric bands on X ×X

Let (X, d) be a quasi-metric space with triangle constant K. For each r > 0 define

Vd(r) = {(x, y) ∈ X ×X : d(x, y) < r},

where Vd can be seen as a function from R+ to P(X×X), the family of subsets of X×X.
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The next result contains some basic properties of the function Vd which in turn shall

suffice to build a quasi-metric on X.

Proposition 2.1. Let (X, d) be a quasi-metric space with triangle constant equal

to K. Let Vd be defined as before. Then

(a) each Vd(r) is symmetric;

(b) △ ⊂ Vd(r), for every r > 0;

(c) Vd(r1) ⊆ Vd(r2), for 0 < r1 < r2;

(d)
⋃

r>0 Vd(r) = X ×X;

(e)
⋂

r>0 Vd(r) ⊆ △;

(f) Vd(r) ◦ Vd(r) ⊆ Vd(2Kr), for every r > 0.

Proof. Item (a) follows from the symmetry of d. Since d(x, x) = 0 for every x,

we see that △ ⊂ Vd(r) for every r > 0. Property (c) is clear. Since d(x, y) < ∞ for

every (x, y) ∈ X × X we have (d). On the other hand, if (x, y) belongs to every Vd(r)

we have that 0 ≤ d(x, y) < r for every r > 0. Hence d(x, y) = 0 and x = y. So

that (x, y) ∈ △, and we have (e). In order to prove (f), take (x, z) ∈ Vd(r) ◦ Vd(r), then
there exists y ∈ X such that (x, y) ∈ Vd(r) and (y, z) ∈ Vd(r). This means d(x, y) < r

and d(y, z) < r. From the triangle inequality for d we have

d(x, z) ≤ K(d(x, y) + d(y, z)) < 2Kr.

In other words, (x, z) ∈ Vd(2Kr) and we have (f). □

2.3. From bands to quasi-metrics

Properties (a) to (f) in Proposition 2.1, proved in the above section, for a general

function V : R+ → P(X × X) are sufficient in order to have a quasi-metric in X such

that the families {V (r) : r > 0} and {Vd(r) : r > 0} are “almost” the same. Let us precise

the meaning of “almost” in this setting. Given two functions V1 and V2 defined in R+

with values in P(X ×X), we say that V1 and V2 are equivalent, and we write V1 ∼ V2, if

there exist constants 0 < γ ≤ Γ <∞ such that

V1(γr) ⊆ V2(r) ⊆ V1(Γr)

for every r > 0. The result of this section is the following statement.

Theorem 2.2. Let X be a set. Let V : R+ → P(X ×X) satisfying
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(a) V (r) = V −1(r) for every r > 0;

(b) △ ⊂ V (r) for every r > 0;

(c) V is nondecreasing with respect to the usual orders in R+ and P(X ×X);

(d) X ×X =
⋃

r>0 V (r);

(e) △ =
⋂

r>0 V (r);

(f) there exists a positive constant c such that V (r) ◦ V (r) ⊆ V (cr) for every r > 0.

Then, there exists a quasi-metric d on X with constant for the triangle inequality bounded

above by c, such that V ∼ Vd. Where Vd(r) = {(x, y) : d(x, y) < r}.

Proof. Notice that from (d) we know that given any couple (x, y) ∈ X ×X we have

a positive r such that (x, y) ∈ V (r). Hence d(x, y) = inf{r > 0 : (x, y) ∈ V (r)}, is a well

defined nonnegative function. The symmetry of d follows from (a). From (b), we have

that (x, x) ∈ V (r) for every r > 0. Hence d(x, x) = 0. On the other hand, if d(x, y) = 0

we have that (x, y) ∈ V (r) for every r > 0. So that from (e) we have that (x, y) ∈ △,

which means x = y.

Let us check that d satisfies the triangle inequality. Take x, y, z ∈ X. For any given

positive ε we have that there exist positive numbers r1 and r2 satisfying

(i) r1 < d(x, y) + ε;

(ii) (x, y) ∈ V (r1);

(iii) r2 < d(y, z) + ε;

(iv) (y, z) ∈ V (r2).

Set r = sup{r1, r2}. Then from (c) and (f), (x, z) ∈ V (r2)◦V (r1) ⊆ V (r)◦V (r) ⊆ V (cr).

Hence

d(x, z) ≤ cr

≤ c(r1 + r2)

< c(d(x, y) + d(y, z)) + 2cε,

for every ε > 0. So that c is a triangle constant for d.

Let us finally check that Vd ∼ V . In fact, from (c) we have that Vd(r) ⊆ V (r) for

every r > 0. On the other hand, given (x, y) ∈ V (r) we have that d(x, y) ≤ r < 2r.

Hence V (r) ⊆ Vd(2r) for every r > 0. □
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2.4. Applications and examples

2.4.1. Dyadic metrics and bands. Let X = R+. The family of dyadic intervals

D = {Ijk = [k2−j, (k + 1)2−j) : j ∈ Z, k ≥ 0}

is the disjoint union D =
⋃

j∈ZDj, where Dj = {Ijk : k ≥ 0} are the dyadic intervals of

level j ∈ Z and length 2−j.

Given I ∈ D we write I− and I+ to denote the left and right halves of I, respectively.

Hence I = I− ∪ I+ with I− and I+ in Dj+1 when I ∈ Dj. For each j ∈ Z consider the

following subset of X ×X = R+
0 × R+

0 ,

Wj =
⋃
I∈Dj

[
(I− × I+) ∪ (I+ × I−)

]
.

The following figure depicts schematically the basic shapes of the sets Wj

Wj

I ∈ Dj R+
0

R+
0

Figure 2. The set Wj.

Define V : R+ → P(R+
0 × R+

0 ) by

V (r) =
⋃

j≥
[
log

1
r

]Wj.

We leave as an exercise to check that the function V satisfies properties (a) to (f) in

Theorem 2.2. Moreover, the quasi-metric obtained is the same δ(x, y) given as an example

in Section 1.4.1 of the previous chapter.
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2.4.2. Affinity kernels. In this section we consider, as in Section 1.4.3, the problem

of metrization of data sets on which we have a transitive kernel K. Let us state the result

of this sub-section.

Proposition 2.3. Let X be a set and K : X × X → R+ ∪ {+∞} be a symmetric

kernel satisfying the following properties

(K1) K(x, y) = K(y, x), x ∈ X, y ∈ X;

(K2) K(x, y) = +∞ if and only if x = y;

(K3) there exists 0 < ν < 1 such that K(x, y) > λ and K(y, z) > λ imply K(x, z) > νλ.

Then, there exist a quasi-metric d on X and a positive real number β such that K(x, y)

has the Newtonian form

K(x, y) ≃ 1

dβ(x, y)
,

for every x ∈ X and y ∈ X in the sense that

1

dβ(x, y)
≤ K(x, y) ≤ 2β

dβ(x, y)
.

Proof. Let α = log 2
log ν

. Notice that α < 0. Define

V (r) = {(x, y) ∈ X ×X : K(x, y) > r1/α}.

The function V satisfies (a) to (f) in Theorem 2.2. Properties (a) to (e) are straightforward

consequences of (K1) and (K2). Let us deal with the quantitative estimate (f). Take a

couple (x, z) ∈ V (r) ◦ V (r). Let y ∈ X be such that (x, y) ∈ V (r) and (y, z) ∈ V (r).

Then K(x, y) > r1/α and K(y, z) > r1/α. Hence, from (K3) we also have that

K(x, z) > νr1/α = νr
log ν
log 2 = (2r)

log ν
log 2 .

In other words (x, z) ∈ V (2r). Then, from Theorem 2.2, we have

d(x, y) = inf{r > 0 : (x, y) ∈ V (r)}

is a quasi-metric on X with triangle constant bounded above by 2. And, for every r > 0

{(x, y) : d(x, y) < r} ⊆ V (r) ⊆ {(x, y) : d(x, y) < 2r},

which is equivalent to{
(x, y) : d

1
α (x, y) > s

}
⊆ {(x, y) : K(x, y) > s} ⊆

{
(x, y) : d

1
α (x, y) > 2

1
α s

}
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for every s > 0. Set A(s) = {(x, y) : d1/α(x, y) > s}, B(s) = {(x, y) : K(x, y) > s}
and C(s) = {(x, y) : d1/α(x, y) > 21/αs}. Then A(s) ⊆ B(s) ⊆ C(s) for every s > 0.

Hence with s = K(x, y) we have that (x, y) /∈ B(K(x, y)) then (x, y) /∈ A(K(x, y)),

so d1/α(x, y) ≤ K(x, y).

On the other hand, since (x, y) /∈ C
(

d1/α(x,y)

21/α

)
, we also have (x, y) /∈ B

(
d1/α(x,y)

21/α

)
,

which means that K(x, y) ≤ d1/α(x,y)

21/α
. Hence

d
1
α (x, y) ≤ K(x, y) ≤ 2

1
|α|d

1
α (x, y),

for every (x, y) ∈ X ×X. These estimates are the desired with β = − 1
α
= log ν−1

log 2
. □

2.5. Comments, problems and further results

(1) A family U of parts of X ×X is said to be a uniform structure on X if

(a) △ ⊂ U for every U ∈ U ;
(b) U ∈ U if and only if U−1 ∈ U ;
(c) for each U ∈ U there exists V ∈ U such that V ◦ V ⊆ U ;

(d) for U and V in U , we have U ∩ V ∈ U ;
(e) for U in U and V ⊃ U we have V ∈ U .
We also say that (X,U) is a uniform space. Prove that

τ = {S ⊂ X : for every x ∈ S there exists U ∈ U such that U(x) ⊂ S}

is a topology on X, where U(x) = {y ∈ X : (x, y) ∈ U} is the section of U at x.

(2) Let d be a quasi-distance on X. For each r > 0 define Vr = {(x, y) : d(x, y) < r}
and

Ud = {U ∈ P(X ×X) : there exists r > 0 with Vr ⊂ U} .

Prove that Ud is a uniform structure on X. Prove that the d-balls centered at x

provide a neighborhood basis for the topology τd induced by Ud on X. These

neighborhoods are not necessarily τd-open sets.

(3) The introduction of the uniform structures and their metrization can be found in

[Kel62]. Their use to produce metrics starts with the results in [Fri37]. We shall

see in the next chapter the metrization of quasi-metrics whose pioneer contribu-

tions are given in [Gus74] and [MS79]. The approach provided in this chapter

for the metrization of affinity kernels is contained in [AG18a].



CHAPTER 3

Metrization of quasi-metrics

3.1. Introduction

In this chapter we provide a metrization result for quasi-metric spaces, which can

actually be extended to triangular inequalities of more general type than those consid-

ered in the previous chapters. The starting point for this approach is the basic remark

contained in the following statement.

Proposition 3.1. Let (X, ρ) be a metric space. Then, for every choice of x ∈ X

and y ∈ X we have that

ρ(x, y) = inf

{
n∑

i=1

ρ(xi, xi+1) : x1 = x, x2, . . . , xn, xn+1 = y;n ∈ N

}
.

In other words ρ(x, y) coincides with the infimum of the sums
∑n

i=1 ρ(xi, xi+1) over all

chains of points joining x with y.

Proof. If x1 = x, x2, x3, . . . , xn, xn+1 = y is any chain of points in X joining x

with y, from the triangle inequality (K = 1) for ρ we have that ρ(x, y) ≤
∑n

i=1 ρ(xi, xi+1).

Hence ρ(x, y) is a lower bound for the set{
n∑

i=1

ρ(xi, xi+1) : x1 = x, x2, . . . , xn, xn+1 = y;n ∈ N

}
.

On the other hand, clearly ρ(x, y) belongs to this set. And we are done. □

With the above observation in mind we shall search for some positive real number

less than one, that we denote by β, such that for a given quasi-metric d on X we have a

non-trivial behavior of the infimum of the set{
n∑

i=1

dβ(xi, xi+1) : x1 = x, x2, . . . , xn, xn+1 = y;n ∈ N

}
.

At this point some example helps to understand the role of the parameter β. Consider

in X = R, the quasi-distance d(x, y) = |x− y|2. Take 0 < β < 1, and assuming y > x,
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take h = y−x
n
, n ∈ N. Then for xi = x+ (i− 1)h, i = 1, 2, . . . , n+ 1, we have

n∑
i=1

dβ(xi, xi+1) =
n∑

i=1

(
|xi − xi+1|2

)β
=

n∑
i=1

h2β = n

(
y − x

n

)2β

= n1−2β(y − x)2β.

Hence the infimum of
{∑n

i=1 |xi − xi+1|2β : x1, . . . , xn+1;x1 = x, xn+1 = y;n ∈ N
}

van-

ishes for β > 1
2
. Nevertheless for β = 1

2
we recover the underlying metric structure

on X = R given by |x− y|.

3.2. Metrization of quasi-metric

In this section we prove the following result.

Theorem 3.2. Let X be a set and let d be a quasi-distance on X with triangle constant

equal to K. Then there exists a positive constant β less than or equal to one, depending

only on K, such that the function

ρ(x, y) = inf

{
n∑

i=1

dβ(xi, xi+1) : x1, x2, . . . , xn+1;x1 = x, xn+1 = y;n ∈ N

}

is a metric on X and ρ1/β ∼ d in the sense that for x ̸= y in X,

0 < c1 ≤
ρ1/β(x, y)

d(x, y)
≤ c2 <∞

for some constants c1 and c2. Moreover, the constant β can be taken to be less than or

equal to log 2
log 2K

.

The proof of Theorem 3.2 will be a consequence of the next two lemmas.

Lemma 3.3. Let X be a set. Let g be a nonnegative symmetric function defined

on X ×X vanishing on the diagonal △. Then the function

ρ(x, y) = inf
n∑

i=1

g(xi, xi+1)

is a pseudo-metric bounded above by g(x, y), where the infimum is taken over all finite

chains x = x1, x2, . . . , xn+1 = y joining x with y.

Proof. Notice first that since g(x, x) = 0 we have that ρ(x, x) = 0 by taking the

trivial chain joining x with x. The symmetry of ρ follows from the symmetry of g.

Given x, y, z ∈ X and ε > 0, take

x1 = x, x2, . . . , xn, xn+1 = y
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and

y1 = y = xn+1, y2, . . . , ym, ym+1 = z

such that
n∑

i=1

g(xi, xi+1) < ρ(x, y) + ε

and
m∑
j=1

g(yj, yj+1) < ρ(y, z) + ε.

Since x = x1, x2, . . . , xn, xn+1 = y = y1, y2, . . . , ym, ym+1 = z is a chain joining x and z,

we have

ρ(x, y) ≤
n∑

i=1

g(xi, xi+1) +
m∑
j=1

g(yj, yj+1)

< ρ(x, y) + ρ(y, z) + 2ε,

for every positive ε. Hence ρ(x, z) ≤ ρ(x, y) + ρ(y, z). □

Corollary 3.4. If d is quasi-distance in X and β > 0, then

ρ(x, y) = inf

{
n∑

i=1

dβ(xi, xi+1) : x1 = x, x2, . . . , xn, xn+1 = y;n ∈ N

}
is a pseudo-metric on X.

The next result provides at once the remaining property that makes ρ a metric and

the equivalence of d to a power of ρ.

Lemma 3.5. Let (X, d) be a quasi-metric space with constant K > 1. Then, for

every 0 < β ≤ log 2
log 2K

and every finite chain x1, x2, . . . , xk+1 of points in X we have the

inequality

dβ(x1, xk+1) ≤ 2
k∑

i=1

dβ(xi, xi+1).

Let us, assuming Lemma 3.5, prove Theorem 3.2.

Proof of Theorem 3.2. From Corollary 3.4 we know that ρ is a pseudo-metric.

From Lemma 3.5 we have
1

2
dβ(x, y) ≤ ρ(x, y).

So that, if ρ(x, y) = 0, then d(x, y) = 0 and, since d is quasi-metric on X we have

that x = y and ρ is a metric. On the other hand, since ρ(x, y) ≤ dβ(x, y) for every x ∈ X
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and every y ∈ X, we have

ρ
1
β (x, y) ≤ d(x, y) ≤ 2

1
β ρ

1
β (x, y),

or, briefly d ∼ ρα, α ≥ 1. □

Proof of Lemma 3.5. We shall proceed by induction on the length of the chain,

in order to prove the inequality

(a) dβ(x1, xk+1) ≤ 2
k−1∑
i=1

dβ(xi, xi+1).

Notice first that inequality (a) is trivial for k = 2. Now take n to be an integer larger

than two and assume that (a) holds for every k ≤ n. Let us prove

(b) dβ(x1, xn+1) ≤ 2
n∑

i=1

dβ(xi, xi+1).

Notice that if
∑n

i=1 d
β(xi, xi+1) = 0, then all the xi’s are the same and the inequality is

trivial. Assume then that

λ =
n∑

i=1

dβ(xi, xi+1) =
n∑

i=1

∆i > 0.

With a geometric point of view, we may think that we have a partition of the interval [0, λ]

into n subintervals with lengths ∆1,∆2, . . . ,∆n. We need to consider the distribution of

these intervals with respect to the middle point λ
2
of the interval [0, λ]. Let us plot the

possible situations.

• First: ∆1 = dβ(x1, x2) >
λ
2
.

0 λ
2

λ

∆1 ∆2 ∆3 . . . ∆n−1 ∆n

Figure 3. ∆1 >
λ
2

• Second:
∑n−1

i=1 ∆i ≤ λ
2
.

0 λ
2

λ

∆1 ∆2 ∆3 . . . ∆n−1 ∆n

Figure 4.
∑n−1

i=1 ∆i ≤ λ
2
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• Third: there exists k ∈ {1, 2, . . . , n− 2} such that
∑k

i=1∆i ≤ λ
2
but

∑k+1
i=1 ∆i >

λ
2
.

0 λ
2

λ

∆1 ∆2 . . . ∆k ∆k+1 ∆k+2 . . . ∆n−1 ∆n

Figure 5.
∑k

i=1∆i ≤ λ
2
and

∑k+1
i=1 ∆i >

λ
2
for some k ∈ {1, 2, . . . , n− 2}.

Let us start proving (b) in the third case. Recall that we know (a) for every k ≤ n. In fact

dβ(x1, xn+1) ≤ {2Kmax [d(x1, xk+1), 2Kmax(d(xk+1, xk+2), d(xk+2, xn+1))]}β

= (4K2)β max
{
dβ(x1, xk+1), d

β(xk+1, xk+2), d
β(xk+2, xn+1)

}
≤ (4K2)β max

{
2

k∑
i=1

∆i,∆k+1, 2
n∑

i=k+2

∆i

}

≤ (4K2)β max

{
2
λ

2
, λ, 2

λ

2

}
≤ (4K2)βλ

≤ 2λ

since (4K2)β ≤ 2.

For the first case we proceed in a similar way

dβ(x1, xn+1) ≤ {2Kmax [d(x1, x2), d(x2, xn+1)]}β

= (2K)β max
[
dβ(x1, x2), d

β(x2, xn+1)
]

≤ (2K)β max

[
∆1, 2

n∑
i=2

∆i

]
≤ (2K)βλ

≤ 2λ.

The second case is similar to the first one. And we are done. □

Theorem 3.2 has many important consequences. In particular we have that the quasi-

metrization method developed in Chapters 1 and 2 also provide metrization methods.

From the general point of view, we also obtain a natural topology on X induced by the
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quasi-metric d. In fact, there exist constants γ and Γ, positive and finite, such that

Bd(x, r) ⊆ Bρ(x, γr
β) ⊆ Bd(x,Γr)

for every r > 0.

Notice also that the d-balls do not need to be open sets even when they are neigh-

borhoods of their centers. The parameter β > 0 is relevant and its supremum could not

be a maximum. Nevertheless the set of values of β > 0 that produces a metric ρ as in

Theorem 3.2 is an interval with left end point 0.

3.3. Comments, problems and further results

(1) Let X = Rn and, for x = (x1, . . . , xn) and y = (y1, . . . , yn), set

d(x, y) = sup {|xi − yi|γi : i = 1, 2, . . . , n} ,

where γi > 0 for each i ∈ {1, . . . , n}.
(a) Show that d is a quasi-metric on X.

(b) Find the values of γi’s such that d becomes a metric on X.

(c) Show that d is translation invariant.

(d) Find the values of β > 0 for which

△β(x, y) = inf

{
m∑
i=1

dβ(xi, xi+1) : x = x1, x2, . . . , xm, xm+1 = y;m ∈ N

}
is identically 0.

(e) Find the values of β for which △β above is not faithful, i.e. there exist x

and y with △β(x, y) = 0 and x ̸= y.

(f) For λ > 0 set

Aλ =


λ1/γ1 0 . . . 0

0 λ1/γ2 . . . 0
...

...
. . .

...

0 0 . . . λ1/γn


Compute d(Aλx,Aλy) for every λ > 0 and every choice of x and y in Rn.

(2) Let X = {1, 2, . . . , n}. Let A be a symmetric n × n matrix with entries that are

only 0 or 1. Assume that the diagonal terms aii of A are all zero. Consider the
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function ρ : X ×X → R given by

ρ(i, j) = inf
m∑
l=1

g(il, il+1)

where g(i, j) = aij and the infimum is taken on the family of all finite chains

with i1 = i and im+1 = j. When is ρ a metric on {1, . . . , n}? Think of A as the

adjacency matrix of a graph with vertices X = {1, 2, . . . , n}. For instance, when

n = 4, consider

1 2

3 4

0 1 0 1

1 0 1 0

0 1 0 0

1 0 0 0


(3) The results of this chapter are a particular case of those in [AIN98]. The general

situation is considered in the next chapter.

(4) Some interesting and deep extensions of this basic idea in this chapter can be

found in [PS09] and in [MMMM13].





CHAPTER 4

Metrization of generalized quasi-metrics and generalized

affinities

4.1. Introduction

This chapter is devoted to consider some extensions of the previous results when the

quasi-triangular inequality or the transitivity of the affinities are nonlinear.

Let us briefly precise the above. Notice first that in metric space theory, a metric d

on X is called an ultra-metric if the triangle inequality take the strictly stronger form

d(x, z) ≤ sup{d(x, y), d(y, z)}.

A particular example of ultra-metric is the dyadic metric

δ(x, y) = inf{|I| : x, y ∈ I, I ∈ D},

with the notation given in Chapters 1 and 2. Nevertheless, most of the more used and

well known metrics are not ultra-metrics. In the context of quasi-metric spaces instead,

ultra-quasi-metrics are the same thing as quasi-metrics. In fact, if d is a quasi-metric

with constant K, then, for x, y, z ∈ X,

d(x, z) ≤ K(d(x, y) + d(y, z)) ≤ 2K sup{d(x, y), d(y, z)},

so that d is an ultra-quasi-metric with constant K̄ = 2K. On the other hand, if d is an

ultra-quasi-metric with constant K̄, then

d(x, z) ≤ K̄ sup{d(x, y), d(y, z)} ≤ K̄(d(x, y) + d(y, z))

and d is a quasi-metric with the same constant K̄.

Hence, in this chapter we shall adopt the following equivalent form of the definition of

quasi-metric space. Let X be a set. A nonnegative, symmetric function d on X ×X sat-

isfying d(x, y) = 0 if and only if x = y, is a quasi-metric if there exists a constant K such

that d(x, z) ≤ K sup{d(x, y), d(y, z)} holds for every x, y, z ∈ X. The right hand side in

the triangle inequality above can be seen as a linear operation on sup{d(x, y), d(y, z)}. In
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order to include some interesting nonlinear situations, we define η nonnegative, continu-

ous and increasing defined on the nonnegative real numbers with η(0) = 0. A function d

defined on X ×X is called an η-quasi-metric if

(η-qm-i) d(x, y) = d(y, x) for every x, y ∈ X;

(η-qm-ii) d(x, y) = 0 if and only if x = y;

(η-qm-iii) d(x, z) ≤ η(sup{d(x, y), d(y, z)}) for every x, y, z ∈ X.

Of course, when η(t) = Kt we recover the case of quasi-metrics.

η(t)
Kt

R+
0

R+
0

Figure 6. The function η.

On the other hand, when we are dealing with the idea underlying affinity of data

in a data set X, we consider, as before in Section 1.4.3, affinity kernels K satisfying

properties of type (K1), (K2), (K3) and (K4) in Section 1.4.3, with (K4) with a nonlinear

control that is weaker, and hence more realistic than (K4) as stated in Chapter 1. Let us

give the precise definition. Let ν be a continuous, concave, increasing and nonnegative

function defined on R+ onto R+ such that ν(t) < t for every t > 0. Given a set X, a

kernel K : X ×X → R+ ∪ {+∞} is said to be a ν-affinity on X if

(ν-af-i) K(x, x) = +∞, for every x ∈ X;

(ν-af-ii) K(x, y) = +∞ implies x = y;

(ν-af-iii) K(x, y) = K(y, x) for every x ∈ X, y ∈ X;

(ν-af-iv) if K(x, y) > λ and K(y, z) > λ, then K(x, z) > ν(λ).

Again, when ν(t) = γt with 0 < γ < 1 we recover the case introduced in Chapters 1

and 2.
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ν(t)

γt

R+
0

R+
0

Figure 7. The function ν.

4.2. Solving some functional inequalities

In this section we consider some technical lemmas that shall be used on the metriza-

tion schemes developed in the next sections. The common theme of these result is the

construction of solutions to some functional inequalities for positive functions defined

on R+. To illustrate the idea behind the first result let us recall that we are trying to

extend our metrization results to nonlinear controls on the triangle inequality. In the

linear case we are dealing with the function η(t) = Kt with K the triangle constant for

the quasi-metric. In this case the functional equation

ψ ◦ η ◦ η = 2ψ

has a solution ψ of power form, ψ(t) = tγ. In fact, for t > 0 we have

(ψ ◦ η ◦ η)(t) = (K2t)γ = 2tγ = 2ψ(t),

for γ = log 2
2 logK

. Notice that when K2 > 2 we have 0 < γ < 1.

For our purposes, with more general convex functions η, we only need to solve in-

equalities of the form ψ ◦ η ◦ η ≤ 2ψ. The next result provides some sufficient conditions

for the existence of concave solutions ψ for this inequality.

Lemma 4.1. Let η be a continuous, increasing and convex function defined on R+
0

with η(0) = 0 and η(t) > 2t for every t > 0. Then the functional inequality

ψ ◦ η ◦ η ≤ 2ψ
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has at least one solution ψ which is increasing, continuous and concave with ψ(0) = 0

and ψ(1) = 1.

When dealing with the Newtonian structure of affinity kernels the linear case is given

when for the transitivity condition we have a profile ν(t) of the form ν(t) = δt for

some 0 < δ < 1. For M larger than one the functional equation

ψ ◦ ν =Mψ

has now a negative power solution ψ.

In fact, with ψ(t) = tγ we have ψ ◦ ν(t) = (δt)γ = Mtγ when γ = logM
log δ

, which is

negative. For our purposes we only need to find convex solutions for the inequality

ψ ◦ ν ≤Mψ

when ν is concave. The result is contained in the next statement.

Lemma 4.2. Let ν be a concave, continuous, nonnegative and increasing function

defined on R+ onto R+ such that ν(λ) < λ for every λ > 0. Then, given M > 1, there

exists a continuous, decreasing and convex function ψ on R+ with ψ(1) = 1 satisfying the

inequality

ψ ◦ ν ≤Mψ.

1

1

ψ

ν

R+
0

R+
0

Figure 8. The functions ν and ψ.

Proof Lemma 4.1. Set η̂ to denote η◦η. We need to solve the inequality ψ◦ η̂ ≤ 2ψ

with ψ(1) = 1. Notice that η̂(t) ≥ 4t for t > 0. Since η is one-to-one and onto, so is η̂,
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and η̂−1 is well defined. Consider the following sequence of positive real numbers{
η̂(k)(1) : k ∈ Z

}
with η̂(1) = η̂, η̂(0) the identity, fork ∈ Z+, η̂(k) = η̂ ◦ η̂(k−1), and η̂(k) = η̂(−1) ◦ η̂(k+1)

for k ∈ Z− and η̂(−1) = η̂−1. Notice that {η̂(k)(1)} is increasing,

lim
k→∞

η̂(k)(1) = +∞, and lim
k→−∞

η̂(k)(1) = 0.

For notational simplicity, let us set tk = η̂(k)(1), k ∈ Z.

We proceed to define ψ as a piecewise linear function such that for every k ∈ Z

satisfies ψ(tk) = 2k. Let us observe that on the sequence {tk : k ∈ Z}, ψ solves the

equation ψ ◦ η̂ = 2ψ with ψ(1) = ψ(η̂(0)(1)) = ψ(t0) = 20 = 1. Let us check the equation

for each tk,

ψ ◦ η̂(tk) = ψ(η̂(η̂(k)(1))) = ψ(η̂(k+1)(1)) = ψ(tk+1) = 2k+1 = 2 · 2k = 2ψ(tk).

Now define ψ : R+ → R+ as the linear interpolation of the points (tk, ψ(tk)) = (tk, 2
k).

Set Ik = [tk, tk+1]. Then, the slope of the line in Ik is given by

mk =
2k+1 − 2k

tk+1 − tk
=

2k

tk+1 − tk
.

It is clear from the properties of ψ on the sequence {tk : k ∈ Z} that the defined function

ψ : R+ → R+ is strictly increasing, one-to-one and onto R+. Moreover ψ(1) = 1. Hence

it only remains to check the concavity of ψ and the inequality (ψ ◦ η̂)(t) ≤ 2ψ(t) for

every t > 0.

Let us check that ψ is concave. In fact, the concavity is equivalent to the decreasing-

ness of the slopes mk. In other words, we have to check that mk+1 ≤ mk. This inequality

is equivalent to
2k+1

tk+2 − tk+1

≤ 2k

tk+1 − tk
,

or

2(tk+1 − tk) ≤ tk+2 − tk+1,

or

3tk+1 ≤ tk+2 + tk.
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Since η̂(t) ≥ 4t, we have

3tk+1 < 4tk+1 ≤ η̂(tk+1) = tk+2 < tk+2 + tk

and we are done.

Let us finally check that (ψ ◦ η̂)(t) ≤ 2ψ(t) for every t > 0. If t = tk for some k ∈ Z

there is nothing to prove. Assume that t ̸= tk for every k ∈ Z. Let k ∈ Z such

that tk < t < tk+1. Hence tk+1 = η̂(tk) < η̂(t) < η̂(tk+1) = tk+2. Since η̂ is convex we

have

(4.1)
η̂(t)− η̂(tk)

t− tk
≤ η̂(tk+1)− η̂(tk)

tk+1 − tk

tk t tk+1

η̂

R+
0

R+
0

Figure 9. The monotonicity of the incremental quotient.

Now, from the definition of ψ(t) we have

(4.2) mk =
ψ(t)− 2k

t− tk

and

(4.3) mk+1 =
ψ(η̂(t))− 2k+1

η̂(t)− tk+1

.

Then, applying (4.3), the definition of mk+1, (4.1) and (4.2) we obtain the desired in-

equality

ψ(η̂(t)) = mk+1(η̂(t)− tk+1) + 2k+1

=
η̂(t)− tk+1

tk+2 − tk+1

2k+1 + 2k+1
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≤ (t− tk).
tk+2 − tk+1

tk+1 − tk
.

2k+1

tk+2 − tk+1

+ 2k+1

= 2(t− tk)mk + 2k+1

= 2(ψ(t)− 2k) + 2k+1

= 2ψ(t). □

Proof of Lemma 4.2. We proceed in a similar way as we did in the proof of

Lemma 4.1. Let us start by defining a sequence {λk : k ∈ Z} in R+ by the follow-

ing algorithm. Take λ0 = 1, λ1 = ν(1), λ−1 = ν−1(1). Notice that since ν(λ) < λ for

every λ > 0, we have

λ1 = ν(1) < 1 = ν−1(ν(1)) < ν−1(1) = λ−1.

λ1 = ν(1) 1 ν−1(1) = λ−1

1

ν

R+
0

R+
0

Figure 10. ν(1) < 1 < ν−1(1).

For k ∈ N define λk = ν(λk−1) and λ−k = ν−1(λ−k+1). Hence the monotonic-

ity λk < λk−1 holds for every k ∈ Z. Moreover, λk → 0 when k → ∞ and λk → +∞
when k → −∞.

Now, let us proceed to define ψ on the points of the sequence {λk : k ∈ Z}. Recall

that we have a fixed M > 1 given in the statement. Set ψ(λk) =Mk. Then

(ψ ◦ ν)(λk) = ψ(ν(λk)) = ψ(λk+1) =Mk+1 =Mψ(λk),

hence, on the sequence {λk : k ∈ Z} we have solved the functional equation ψ ◦ ν =Mψ.

Now, on the interval [λk+1, λk] we define ψ by linear interpolation. For λk+1 < λ < λk we
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have
Mk+1 −Mk

λk − λk+1

=
Mk+1 − ψ(λ)

λ− λk+1

.

Also, since λk+2 = ν(λk+1) < ν(λ) < ν(λk) = λk+1,

Mk+2 −Mk+1

λk+1 − λk+2

=
Mk+2 − ψ(ν(λ))

ν(λ)− λk+2

.

Hence, we have the two following formulas, the first for ψ(λ) and the second for (ψ◦ν)(λ),

(4.4) ψ(λ) =Mk+1 −Mk(M − 1)
λ− λk+1

λk − λk+1

and

(4.5)

ψ(ν(λ)) =Mk+2 −Mk+1(M − 1)
ν(λ)− λk+2

λk+1 − λk+2

=M

(
Mk+1 −Mk(M − 1)

ν(λ)− λk+2

λk+1 − λk+2

)
.

Since ν is concave we have

ν(λ)− ν(λk+1)

λ− λk+1

≥ ν(λk)− ν(λk+1)

λk − λk+1

.

In other words
ν(λ)− λk+2

λk+1 − λk+2

≥ λ− λk+1

λk − λk+1

,

which with (4.4) and (4.5) proves that

(ψ ◦ ν)(λ) ≤Mψ(λ),

as desired.

Let us finally check the convexity of ψ. Since ν is concave, we have that for ev-

ery 0 ≤ θ ≤ 1 and every s, t ∈ R+,

ν(θs+ (1− θ)t) ≥ θν(s) + (1− θ)ν(t).

Hence, for 0 < s < u < t we have

ν(t)− ν(u)

ν(t)− ν(s)
=
ν(t)− ν

(
s+ u−s

t−s
(t− s)

)
ν(t)− ν(s)

=
ν(t)− ν

(
(u−s
t−s

)t+ (1− u−s
t−s

)s
)

ν(t)− ν(s)

≤
ν(t)− (u−s

t−s
)ν(t)− ( t−u

t−s
)ν(s)

ν(t)− ν(s)
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=
t− u

t− s
.

Then,
ν(t)− ν(u)

t− u
≤ ν(t)− ν(s)

t− s
.

Since ν(0) = 0 and ν(t) < t we have

ν(t)− ν(u)

t− u
≤ ν(t)− ν(0)

t− 0
< 1

for every 0 < u < t. In order to prove the convexity of ψ we only need to check that

Mk −Mk−1

λk−1 − λk
≤ Mk+1 −Mk

λk − λk+1

,

or that
λk − λk+1

λk−1 − λk
≤ Mk(M − 1)

Mk−1(M − 1)
=M.

Since
λk − λk+1

λk−1 − λk
=
ν(λk−1)− ν(λk)

λk−1 − λk
< 1,

we are done, because M > 1. □

4.3. Metrization of η-quasi-metric spaces

In the introduction above we have defined an η-quasi-metric on a set X for η contin-

uous, increasing, convex with η(0) = 0 by the three basic properties:

(η-1) d(x, y) = d(y, x), x, y ∈ X;

(η-2) d(x, y) = 0 if and only if x = y;

(η-3) d(x, z) ≤ η(sup{d(x, y), d(y, z)}) for every x, y, z ∈ X.

With the ideas of Chapter 3 and Lemma 4.1 from the previous section, we have that

every η-quasi-metric is equivalent to a convex function of a metric in the sense explicitly

described in the next statement.

Theorem 4.3. Let η be a nonnegative, continuous, increasing and continuous func-

tion defined on the nonnegative real numbers such that η(t) > 2t and ψ(0) = 0. Let X be

a set and let d be an η-quasi-metric on X. Then for every ψ continuous, increasing and

concave solution of the inequality

ψ ◦ η ◦ η ≤ 2ψ

with ψ(1) = 1 and ψ(0) = 0, we have
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(a) ρ(x, y) = inf {
∑n

i=1 ψ(d(xi, xi+1)) : x1 = x, . . . , xn+1 = y;n ≥ 1} is a metric on X;

(b) ψ−1 ◦ ρ ≤ d ≤ ψ−1 ◦ (2ρ).

Proof. The proof of (a) follows the lines of Theorem 3.2. Notice first of all that,

from Lemma 3.3 we have that ρ is a pseudo-metric on X such that ρ ≤ ψ ◦ d. Which

is equivalent to the first inequality ψ−1 ◦ ρ ≤ d in (b). Hence if we prove the second

inequality in (b), which is equivalent to

ψ ◦ d ≤ 2ρ,

we are done since this inequality also implies the reliability of ρ. In fact, ρ(x, y) = 0

implies ψ(d(x, y)) = 0 and d(x, y) = 0. So that x = y. On the other hand, the proof

of the inequality ψ ◦ d ≤ 2ρ follows the lines of those in Lemma 3.5, using here the

fact that ψ ◦ η ◦ η ≤ 2ψ by Lemma 4.1. We have to show that for any k ≥ 1 and any

chain x1, x2, . . . , xk of points in X we have

(4.6) ψ(d(x1, xk)) ≤ 2
k−1∑
i=1

ψ(d(xi, xi+1)).

We proceed inductively on k. For k = 2 the inequality is trivial. In general, we as-

sume that (4.6) holds for every k ≤ n. Let us prove it for k = n + 1. To prove

that ψ(d(x1, xn+1)) ≤ 2
∑n

i=1 ψ(d(xi, xi+1)) we proceed as in Lemma 3.5. Now, with the

geometric pictures used there, we now have ∆i = ψ(d(xi, xi+1)) > 0. Doing so we get

three possible cases with λ =
∑n

i=1 ψ(d(xi, xi+1)),

• ∆1 = ψ(d(x1, x2)) >
λ
2
;

•
∑n−1

i=1 ∆i ≤ λ
2
;

• there exists k ∈ {1, 2, . . . , n− 2} such that
∑k

i=1 ∆i ≤ λ
2
and

∑k+1
i=1 ∆i >

λ
2
.

In the first case we have, using the inductive hypothesis, that

ψ(d(x1, xn+1)) ≤ ψ(η(sup{d(x1, x2), d(x2, xn+1)}))

≤ (ψ ◦ η ◦ η)(sup{d(x1, x2), d(x2, xn+1)}))

≤ 2ψ(sup{d(x1, x2), d(x2, xn+1)}))

≤ 2 sup{ψ(d(x1, x2)), ψ(d(x2, xn+1))}

≤ sup{λ, 2
n∑

i=1

ψ(d(xi, xi+1))}
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< 2λ.

The second case is similar to the first one. Let us check that the desired estimate holds

also in the third case. Notice that in this case we have that
∑n

i=k+2 ∆i ≤ λ
2
, since

λ =
n∑

i=1

∆i =
k+1∑
i=1

∆i +
n∑

i=k+2

∆i >
λ

2
+

n∑
i=k+2

∆i.

Hence we can apply two times the triangle inequality using d(x1, xk+1), d(xk+1, xk+2)

and d(xk+2, xn+1), and we get

ψ(d(x1, xn+1)) ≤ (ψ ◦ η ◦ η)(max{d(x1, xk+1), d(xk+1, xk+2), d(xk+2, xn+1)})

=
(
ψ ◦ η ◦ η ◦ ψ−1

)
(max{ψ(d(x1, xk+1)), ψ(d(xk+1, xk+2)), ψ(d(xk+2, xn+1))})

≤
(
ψ ◦ η ◦ η ◦ ψ−1

) (
max

{
2

k∑
i=1

ψ(d(xi, xi+1)), ψ(d(xk+1, xk+2)), 2
n∑

i=k+2

ψ(d(xi, xi+1))
})

≤
(
ψ ◦ η ◦ η ◦ ψ−1

)
(λ) = (ψ ◦ η ◦ η)(ψ−1(λ))

≤ 2ψ(ψ−1(λ)) = 2λ.

In the last inequality we used Lemma 4.1. So that ψ ◦ d ≤ 2ρ and the theorem is

proved. □

4.4. Metrization of ν-affinities

In this section we aim to use Lemma 4.2 in order to prove the Newtonian structure

of affinity kernel with a nonlinear control on the transitive property. The basic context

is the following. Let X be a set. A kernel K : X × X → R+ ∪ {+∞} is said to be

a ν-affinity kernel, with ν concave, continuous, increasing, nonnegative onto R+ with

ν(λ) < λ for λ > 0, if

(1) K(x, y) = +∞ if and only if x = y;

(2) K(x, y) = K(y, x) for every x ∈ X and y ∈ X;

(3) if K(x, y) > λ and K(y, z) > λ, then K(x, z) > ν(λ).

Theorem 4.4. Let X be a set. Let K be a ν-affinity kernel on X ×X. Then, there

exist a continuous, decreasing and convex function ψ on R+ with ψ(1) = 1, and a quasi-

metric d on X such that

K ≃ ψ ◦ d
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with constants that shall explicitly be given in the proof.

Proof. Let ψ be the function provided by Lemma 4.2 associated to the control ν

on the quantitative transitive property given in the definition of ν-affinity, with M = 2.

Define V : R+ → P(X ×X) by

V (r) = {(x, y) ∈ X ×X : K(x, y) > ψ−1(r)}.

Let us check that this function satisfies properties (a) to (f) from Theorem 2.2 of Chap-

ter 2. Property (a) is the symmetry of each V (r), which is clear, since K itself is symmet-

ric. Property (b) holds because K(x, x) = +∞ for every x ∈ X. To prove property (c)

take 0 < r1 < r2, since ψ
−1 is decreasing, we have that ψ−1(r1) > ψ−1(r2). Hence if

K(x, y) > ψ−1(r1) then ψ−1(r2) < K(x, y) and (x, y) ∈ V (r2). Since ψ is onto R+ we

have (d). Property (e) follows from the fact that K(x, y) = +∞ implies x = y. Let us

check that property (f) in Theorem 2.2 holds with c = 2. In fact, for r > 0, we have

V (r) ◦ V (r) = {(x, z) : (x, y) ∈ V (r) and (y, z) ∈ V (r) for some y ∈ X}

⊆ {(x, z) : K(x, y) > ψ−1(r) and K(y, z) > ψ−1(r) for some y ∈ X}

⊆ {(x, z) : K(x, z) > ν(ψ−1(r))}

= {(x, z) : ψ(K(x, z)) < (ψ ◦ ν)(ψ−1(r))}

⊆ {(x, z) : ψ(K(x, z)) < 2ψ(ψ−1(r))}

= {(x, z) : K(x, z) > ψ−1(2r)}

= V (2r).

Then, applying Theorem 2.2 we have a quasi-metric d on X ×X such that

Vd(r) ⊆ V (r) ⊆ Vd(2r).

Hence K(x, y) ≃ ψ−1(d(x, y)). □

4.5. Comments, problems and further results

(1) Show that the function η : R+
0 → R+

0 given by η(t) = 3(et − 1) satisfies the

hypotheses of Lemma 4.1 What can we say about the growth at infinity of the

function ψ provided by Lemma 4.1?
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(2) Let ν(t) = log(t + 1), t > 0. Show that ν satisfies the hypotheses of Lemma 4.2.

What can we say about the growth at zero of the function ψ provided by Lemma 4.2?

(3) Let α ∈ (0, 1] and ψ(t) = t−α, t > 0. Let (X, d) be a metric space and

K(x, y) = ψ(d(x, y)).

Then K satisfies property (3) in Section 4.4, with ν(λ) = λ
2
. What if d is a

quasi-metric? What if α > 1?

(4) Some of the results of this chapter are contained in [AIN98] and [AG18a].





CHAPTER 5

An algorithm based on Frink’s Lemma for the metrization of

weighted undirected graphs

In this chapter we look at Frink’s metrization of uniformities with countable bases,

from an algorithmic point of view that can help to obtain some natural metrics on

weighted undirected graphs. And, as far as possible, to compute those metrics or to

build their families of balls. These metric structures on a graph allow the introduction of

analytical tools like filtering of signals on nonconvolutional settings. In the first section

we introduce Frink’s Lemma as stated and proved in the book of Kelley [Kel62]. Then

we introduce the basic algorithm proving the main properties needed to make it work.

5.1. The basic Frink’s Lemma

With the notation introduced in Chapter 2, we have the following result that was first

used to show the metrizability of uniform spaces with countable bases.

Lemma 5.1. Let X be a set. Let {Um : m = 0, 1, . . .} be a sequence of subsets of X×X
that satisfy the following properties.

(i) U0 = X ×X;

(ii) Un = U−1
n for every n;

(iii) △ ⊂ Un for every n;

(iv) Un+1 ◦ Un+1 ◦ Un+1 ⊆ Un for every n.

Then, there exists a pseudo-metric d defined on X such that for every n = 1, 2, 3, . . .

Un ⊆ {(x, y) ∈ X ×X : d(x, y) ≤ 2−n} ⊆ Un−1.

Proof. Set g : X ×X → R+
0 to denote the function given by g(x, y) = 0 if and only

if (x, y) ∈ ∩n≥0Un, and g(x, y) = 2−n for (x, y) ∈ Un \ Un+1. Now, as we did in previous

chapters, define

d(x, y) = inf

{
n∑

i=1

g(xi, xi+1) : x = x1, x2, . . . , xn, xn+1 = y;n ∈ N

}
.
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Hence d(x, y) is a pseudo-metric on X by Lemma 3.3. Moreover, d(x, y) ≤ g(x, y) for ev-

ery (x, y) ∈ X×X. Thus if (x, y) ∈ Un, we have that g(x, y) ≤ 2−n, so that d(x, y) ≤ 2−n

and we have the first inclusion in the statement.

On the other hand, if we prove that for every n and every chain joining x0 with xn+1

we have

(5.1) g(x0, xn+1) ≤ 2
n∑

i=0

g(xi, xi+1),

then d(x, y) ≤ 2−n implies g(x, y) ≤ 2−n+1, hence (x, y) ∈ Un−1. So that we get the

second inclusion {d(x, y) ≤ 2−n} ⊆ Un−1.

Now, (5.1) follows from property (iv) as we did before in the previous chapter. In

fact, proceeding by induction on the length n of the chain and assuming that

g(x0, xn+1) ≤ 2
k∑

i=0

g(xi, xi+1),

holds for k = 0, 1, . . . , n− 1, let us prove it for k = n.

Set λ =
∑n

i=1 g(xi, xi+1). Take k the largest integer such that
∑k−1

i=0 g(xi, xi+1) ≤ λ
2
.

Then g(x0, xk) ≤ 2λ
2
= λ, g(xk, xk+1) ≤ λ and g(xk+1, xn+1) ≤ 2λ

2
= λ. Let m be the

smallest integer such that 2−m ≤ λ, then we have that (x0, xk) ∈ Um, (xk, xk+1) ∈ Um

and (xk+1, xn+1) ∈ Um. So that, from (iv), (x0, xn+1) ∈ Um−1. Hence

g(x0, xn+1) ≤ 2−m+1 = 2 · 2−m ≤ 2λ,

as desired. □

5.2. Composition of subsets of X ×X and matrix multiplication in the finite

case

Let n be a large positive integer. Let X = {1, 2, . . . , n} be the set of the n first positive

integers. Let U and V be two nonempty subsets of X ×X. As before, the composition

of U and V is given by

V ◦ U = {(i, k) : there exists j ∈ {1, 2, . . . , n} such that (i, j) ∈ U and (j, k) ∈ V }.

We shall also write V (m) to denote the composition of V m-times, for m ≥ 1. Given a

set V ⊂ X ×X, set AV to denote the indicator n × n matrix of the set V ⊂ X × X.
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Precisely, if AV = (aij(V )), then

aij(V ) =

1, if (i, j) ∈ V

0, if (i, j) /∈ V.

Proposition 5.2. With the notation introduced above, we have

(a) given U and V two subsets of X ×X, then V ◦ U is given by the locations of the

nonvanishing entries of the product matrix AUAV ;

(b) if V is a subset of X ×X containing the three main diagonals of X ×X, i.e.

{(i, j) ∈ X ×X : |i− j| ≤ 1} ⊂ V,

then there exists an integer m such that every entry of the matrix (AV )
(m) is

positive;

(c) for V and m as in (b) we have that V (m) = V ◦ V ◦ · · · ◦ V m times coincides

with X ×X = {1, 2, . . . , n}2.

Proof.

(a) Set (aij(U)) = AU , (aij(V )) = AV and (pij) = AUAV . Recall that aij = 1

if (i, j) ∈ U and aij(U) = 0 if (i, j) /∈ U . Also aij(V ) = 1 for (i, j) ∈ V

and aij(V ) = 0 when (i, j) /∈ V . Since pij =
∑n

k=1 aik(U)akj(V ) > 0 is equiv-

alent to the existence of k ∈ {1, . . . , n} such that aik(U) = 1 and akj(V ) = 1, we

have that pij > 0 if and only if (i, k) ∈ U and (k, j) ∈ V . So that pij > 0 if and

only if (i, j) = V ◦ U and (a) is proved.

(b) Let (aij) be the entries of AV . Then aij > 0 for |i− j| ≤ 1. Set (alij) to denote

the entries of A
(l)
V . Then alij > 0 for |i− j| ≤ l. Let us prove it by induction on l.

For l = 2, we have

a2i,i+2 =
n∑

k=1

aikak,i+2 ≥ ai,i+1ai+1,i+2 > 0.

Also a2i+2,i > 0, a2ii > 0, a2i+1,i > 0 and a2i,i+1 > 0.

Assume that alij > 0 for every |i− j| ≤ l. Take now (i, j) with |i− j| ≤ l + 1.

If |i− j| < l + 1 we have al+1
ij =

∑n
k=1 a

l
ikakj ≥ alijajj > 0 from the inductive

hypothesis because |i− j| ≤ l. If |i− j| = l + 1 we have that i = j + l + 1
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or i = j − l − 1. Let us consider only the first case,

al+1
ij = al+1

j+l+1,j =
n∑

k=1

alj+l+1,kakj ≥ alj+l+1,j+1aj+1,j > 0,

because |(j + l + 1)− (j + 1)| = l and the induction hypothesis. With l = n − 1

we have that all the entries of (AV )
(n−1) are positive.

(c) From (a) we have that V (m) is the set of indices of nonvanishing entries of (AV )
(m)

which, from (b), coincides with the whole set {1, 2, . . . , n}2. □

5.3. Affinity kernels and Frink’s Lemma

In the next lemma we obtain a sequence of levels for an affinity kernel on a set X

in such way that the corresponding level sets satisfy the hypothesis of Frink’s Lemma

proved in Section 5.1.

Lemma 5.3. Let X be a set and let K be a positive symmetric function defined

on X ×X such that

(i) K(x, x) = supy∈X K(x, y) for every x ∈ X;

(ii) Λ∞ = sup{α > 0 : {K > α}(m) = X ×X for some positive integer m} > 0.

Then, for every 0 < Λ < Λ∞ there exists a finite sequence

0 = λ(0) < λ(1) < · · · < λ(k) = Λ

such that {K > λ(i)}(3) ⊆ {K > λ(i− 1)}, for every i = 1, 2, . . . , k and △ ⊂ {K > λ(i)}
for every i = 0, 1, 2, . . . , k.

Proof. Let us start with two basic observations. First, notice that the set of

those α > 0 for which {K > α}(m) = X × X for some m, is the interval (0,Λ∞)

which could be all R+. Second, observe that if 0 < α < Λ∞, then △ ⊂ {K > α}.
Take Λ0 ⊂ (0,Λ∞). We may think to choose it as close to Λ∞ as desired. Now

set m0 = min{m : {K > Λ0}(m) = X ×X}. Then {K > Λ0}(m0) = X × X and we may

assume m0 ≥ 3.

Set A1 = {α > 0 : {K > Λ0}(3) ⊆ {K > α}}. If A1 = ∅, then the sequence λ(0) = 0

and λ(1) = Λ0 satisfies that {K > λ(1)}(3) ⊆ {K > λ(0)}. Assume now that A1 ̸= ∅.
Take Λ1 > supA1 − ε for ε > 0. Set A2 = {α > 0 : {K > Λ1}(3) ⊆ {K > α}}. If

A2 = ∅ we take the sequence λ(0) = 0, λ(1) = Λ1 and λ(2) = Λ0. If A2 ̸= ∅ we

keep iterating this selection process. Since {K > Λ0}(m0) = X × X we see that the
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procedure stops after a finite number of steps of the order of m0

3
. Hence we have a

sequence Λ∞ > Λ0 > Λ1 > · · · > Λk. With λ(i) = Λk−i for i = 0, 1, 2, . . . , k we obtain

the lemma. □

Theorem 5.4. Let X be a a set and let K be a nonnegative function on X × X

satisfying (i) and (ii) in Lemma 5.3. Then, for every sequence

λ⃗ = {λ(i) : i = 0, 1, 2, . . . , k = k(λ⃗)}

as the one provided in Lemma 5.3, there exists a pseudo-metric dλ⃗ on X such that

(1) {K > λ(i)} ⊆ {dλ⃗ < 2−i} ⊆ {K > λ(i− 1)} for every i = 1, 2, . . . , k;

(2) the function

δλ⃗ = 2−λ−1◦K,

where λ−1 is the inverse of any increasing extension of λ(i) to the whole inter-

val [0, k(λ⃗)], is equivalent to the Frink’s pseudo-metric dλ⃗ associated to the fam-

ily {{K > λ(i)} : i}. Precisely,

1

4
δλ⃗(x, y) ≤ dλ⃗(x, y) ≤ 2δλ⃗(x, y)

for every x and y in X such that

2−k(λ⃗) ≤ dλ⃗(x, y) < 1.

Proof. From Lemma 5.3 we see that the sequence Ui = {K > λ(i)} satisfies proper-

ties (i) to (iv) in the hypothesis of Lemma 5.1. Then there exists a pseudo-metric, that

we denote by dλ⃗, on X such that

{K > λ(i)} ⊆ {dλ⃗ < 2−i} ⊆ {K > λ(i− 1)}

for every i = 1, 2, . . . , k. Let us prove (2). For x, y ∈ X such that 2−k(λ⃗) ≤ dλ⃗(x, y) < 1,

there exists i = 0, 1, 2, . . . , k(λ⃗) such that

2−(i+1) ≤ dλ⃗(x.y) < 2−i.

From the second inclusion in (1) we have that K(x, y) > λ(i−1). From the first inclusion

in (1) and the first inequality above, dλ⃗(x, y) ≥ 2−(i+1), we see that (x, y) /∈ {K > λ(i+1)}
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or that K(x, y) ≤ λ(i+ 1). In other words

λ(i− 1) < K(x, y) ≤ λ(i+ 1)

when

2−(i+1) ≤ dλ⃗(x, y) < 2−i.

Hence

i− 1 < (λ−1 ◦ K)(x, y) ≤ i+ 1

for 2−(i+1) ≤ dλ⃗(x, y) < 2−i. Then

1

4
= 2−(i+1)2i−1 < dλ⃗(x, y)2

(λ−1◦K)(x,y) ≤ 2−i2i+1 = 2

or
1

4
δλ⃗ < dλ⃗(x, y) ≤ 2δλ⃗(x, y),

as desired. Notice that dλ⃗ ≤ 1 everywhere and we are done. □

The result in (2) of the above theorem can be rephrased as a Newtonian type form

for K. In fact

K ≃ λ

(
log2

1

δλ⃗

)
.

Notice also that for 2−k(λ⃗) ≤ r < 1 we have, for x ∈ X, that

Bδ
λ⃗
(x, r) =

{
y ∈ X : K(x, y) > λ

(
log2

1

r

)}
.

5.4. An algorithm for the metrization of weighted undirected graphs based

on Frink’s Lemma

The above results can be used to produce an explicit an computable algorithm for

the metrization of weighted undirected graph. Let G = (V , E ,W ) be a weighted graph.

The set V is the set of vertices. The set E is the set of all edges joining each ver-

tex i ∈ V to each vertex j ∈ V . The weights W are provided by an n × n ma-

trix (wij : i = 1, . . . , n; j = 1, . . . , n) where n = #(V). Each wij is a positive real number.

Since we think that wij is measuring affinity of the vertices i and j, we naturally assume

that wij = wji. On the other hand, it is also natural to assign to each i ∈ V the largest

affinity with itself than with each other j ∈ V for j ̸= i. In other words wii ≥ wij for

every i, j ∈ V .



Test and comparison with the diffusive metric for Newtonian affinities 43

Taking X = V , E = X×X, K = W in the above sections we can design the following

algorithm to find a sequence λ(i), a metric δλ⃗ on V and the family of balls provided by

Theorem 5.4.

Step 1. Compute the minimum of W on the three main diagonals, i.e.

min{wi−1,i;wi,i;wi,i+1 : i = 1, . . . , n} = Λ0;

Step 2. build the matrix A0 = A{(i,j):wij≥Λ0};

Step 3. compute A3
0 = A0A0A0 = (a

(3)
ij );

Step 4. define U0 = {(i, j) : a(3)ij > 0};
Step 5. find Λ1 = max{α : {wij ≥ α} ⊇ U0};
Step 6. build the matrix A1 = A{(i,j):wij≥Λ1};

Step 7. compute A3
1;

Step 8. define U1 = {(i, j) : the (i, j) entry of A3
1 is positive};

Step 9. find Λ2 = max{α : {wij ≥ α} ⊇ U1};
...

In this way we obtain the sequence Λk < Λk−1 < · · · < Λ2 < Λ1 < Λ0. Set λ(i) = Λk−i

for i = 0, . . . , k. Now compute a version of λ−1 and define

δλ⃗(i, j) = 2−λ−1(wij).

Finally, plot Bδ
λ⃗
(i, r) = {j : wij > λ(log2

1
r
)}, 0 < r < 1 and i ∈ V .

5.5. Test and comparison with the diffusive metric for Newtonian type

affinities

Proposition 2.3 and Theorem 4.4 suggest testing the algorithm on affinities defined

as discretizations of Newtonian type potentials of the form

Kα(x, y) =
1

|x− y|α

for α positive. Once a discretization of Kα is given we may run our algorithm and also

the well known diffusion metric introduced in [CL06]. The diffusive metric at time t > 0

is given by

dt(i, j) =

{∑
l

e2tνl
∣∣xli − xl

∣∣2}1
2
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where xl and νl, l = 1, . . . , L are the eigenvectors and the eigenvalues of the Laplace

operator on the graph with affinity given by the metric wij.

Figure 11. Graph.

We shall only write down the comparison of the families of δλ-balls, dt-balls and

Euclidean balls for a couple of values of the radii, when we consider the discretization

wij =

2, for i = j

|i− j|−α , for i ̸= j

with i, j = 0, . . . , 59.

It is worthy pointing out here that the choice of 60 points of discretization is only

taken for the sake of getting better images for the graphs. In particular for the visibility

of some edges.

Let us also point out that in the following graphs, the numerical label of each vertex

is assigned according to the order of the rows in the affinity matrix, but a priori has

nothing to do with distance or affinity.

Figure 11 labels with the integers 0, 1, . . . , 59 the 60 vertices of our graph.

We shall now plot some balls centered at two different vertices, 25 and 50, each for

the three metrics, the Euclidean metric (E), the Diffusive metric (D) with t = 0.005

and Frink’s metric (F). The comparison of both, (D) and (F) with the Euclidean (E) is

essential because K itself is built in terms of (E). Let us say again that we are interested

in the shape of the balls but not in the particular radii for which those balls are attained.

This fact is particularly clear in this case where the Euclidean metric is unbounded.

Nevertheless we shall write out the values of the radii for which each ball in each metric

is plotted. Actually the following pictures show in different colors the annuli between two
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(D) Y, G, 0.11, T, 0.135, L, 0.31, P, 0.404327
(F)Y, 0.0169492, G, 0.037037, T,
0.111111, L, 0.333333, P, 1

(E)Y, G, 1, T, 3, L, 27, P, 59

Figure 12. Center at 50

consecutive balls. We use yellow for the center, green for the first annulus, turquoise for

the second, lavender for the third and purple for the last annulus.

In Figure 12 above and Figure 13 below we use capital letters, Y,G, T, L and P to

denote the colors. The sequences of letters and numbers describe the inner and outer

radii of each annulus.

It is worthy noticing that the sequence of radii for (D) has been chosen in such a way

that the dt balls become as close as possible to Euclidean balls. At least for this simple

situation, of a kernel defined by a metric, the metrization scheme, (F), introduced here

seems to reproduce the exact shapes of the balls associated to the metric defining the

kernel. It could be argued that the exponential character of Frink’s construction provides

only a few balls of the graph. Nevertheless we know from the very proof of our main

result that we have at hand changing the initial parameter Λ < Λ∞ to produce a profuse

diversity of sequences λ(i).
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(D)Y, G, 0.13, T, 0.17, L, 0.212, P, 0.404327
(F)Y, 0.0169492, G, 0.037037, T, 0.111111, L,
0.333333, P, 1

(E)Y, G, 1, T, 3, L, 27, P, 59

Figure 13. Center at 25

5.6. Comments, problems and further results

(1) Let X be a set and let U and V be two parts of X ×X. Compute (U ◦ V )−1.

(2) Let (X, d) be a quasi-metric space with triangle constant K ≥ 1. Find a se-

quence {Um : m = 0, 1, . . .} of subsets of X ×X satisfying properties (i) to (iv) in

Lemma 5.1. Compare the pseudo-metric provided by Lemma 5.1 with the given d.

Show that the pseudo-metric provided by Lemma 5.1 is actually a metric.

(3) Let X = {1, 2, . . . , n} and V be the subset of X ×X given by

V = {(i, j) ∈ X ×X : j − i > 1} .

Compute V (m) = V ◦ V ◦ · · · ◦ V m-times for m large.

(4) The results of this chapter are related to those in [AG18a] and [AAG21].

(5) The basic facts regarding Frink’s Lemma and its application to the metrization of

uniformities with countable basis can be found in [Kel62]. See also the original

work of Frink in [Fri37].



CHAPTER 6

Measuring distances with a thermometer. Diffusion distances

6.1. Introduction

In the Euclidean space Rn the diffusion of thermal energy is governed by the well

known heat equation,

(6.1)
∂u

∂t
= ∇ · A∇u = divA grad u,

where A is the conductivity matrix which might depend on the point x ∈ Rn and even on

time t. Of course, the most classical case is the associated to the identity matrix A = I,

∂u

∂t
= ∆u.

Let x and y be two points of Rn and, assuming the standard uniform ellipticity condition

for A, set ux and uy to denote solutions of

(Px) =


∂ux
∂t

= ∇ · A∇ux

ux(z, 0) = δx(z)

and

(Py) =


∂uy
∂t

= ∇ · A∇uy

uy(z, 0) = δy(z)

respectively, with δx and δy the Dirac deltas at x and y. Recall that the matrix A

collects both the isotropy and homogeneity properties of the material where the diffusion

is taking place. Or better, when A is not diagonal neither constant the model contains

the information on how heterogeneous and non isotropic is the material. From the point

of view of the motion of the thermal energy inside the domain we may think that we

have different metric structures on Rn associated to those matrices A Since no a priori

information about this metric structure on Rn due to A, is known, we may use the

temperatures ux an uy at some fixed level of time in order to have an insight on how A-far

away are the points x and y. Since, for t fixed, ux and uy are functions of the space
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variable z, we may use some norm on the function spaces containing ux(t, ·) and uy(t, ·).
For example the L2(dz) norm to provide, for fixed t > 0, a quantity

dt(x, y) = ∥ux(t, ·)− uy(t, ·)∥L2 .

Moreover, in any setting where a Laplacian is defined we may solve problems (Px) and (Py)

and then construct such functions as the above dt.

This approach in discrete cases is due to Coifman and Lafon [CL06], and [CLL+05].

In this chapter we aim to explore the basic definitions and properties of the functions

of type dt for different settings.

6.2. The classical heat case

Let us start by the standard homogeneous and isotropic media model provided by the

basic heat equation in Rn, ∂u
∂t

= ∆u = div grad u. In this simple case, given x ∈ Rn, the

Weierstrass kernel Wt(x, z) = (4πt)−
n
2 e−

|x−z|2
4t solves

(Px) =


∂

∂t
Wt(x, z) = ∆zWt(x, z), z ∈ Rn, t > 0;

W0(x, z) = δx(z),

in the sense that
´
Rn Wt(x, z)φ(z)dz tends to φ(x) for every φ smooth and bounded.

Proposition 6.1. For t > 0 fixed, the function

dt(x, y) =

√ˆ
z∈Rn

|Wt(x, z)−Wt(y, z)|2 dz

is a metric defined on Rn × Rn.

Proof. Notice first that the Gaussian decay of the Weierstrass kernel guarantees

the convergence of the integral. The positivity and symmetry properties of dt are im-

mediate. On the other hand, if dt(x, y) = 0, then Wt(x, z) = Wt(y, z) for every z ∈ Rn.

Hence |x− z| = |y − z| for every z ∈ Rn, so x = y. Now if we write Wt,x(z) = Wt(x, z),

dt(x, y) = ∥Wt,x −Wt,y∥L2(Rn)

= ∥(Wt,x −Wt,ξ) + (Wt,ξ −Wt,y)∥L2(Rn)

≤ ∥Wt,x −Wt,ξ∥L2(Rn) + ∥Wt,ξ −Wt,y∥L2(Rn)

= dt(x, ξ) + dt(ξ, y),
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and we are done. □

Notice also that dt(x, y) ≤ ∥Wt,x∥L2 + ∥Wt,y∥L2 . Since Wt,x(z) = (4πt)−
n
2 e−

|x−z|2
4t , we

have that

dt(x, y) ≤ 2
1

(4πt)n/2

(ˆ
Rn

e−
|z|2
2t dz

)1/2

= 2
1

(4πt)n/2

(
(2t)n/2

ˆ
Rn

e−|z|2dz

)1/2

= 2
(2tπ)n/4

(4πt)n/2

= 21−
3
4
nπ−n

4 t−
n
4 .

Hence each dt is bounded above. Moreover this bound tends to zero as t → ∞. So that

any of the metrics dt on Rn is far from being equivalent to the Euclidean distance. Nev-

ertheless, as we shall prove, the family of dt-balls coincides with the family of Euclidean

balls for every t > 0.

Recall that, since the Fourier transform of e−πλ|x|2 is λ−
n
2 e−

π|ξ|2
λ for every λ > 0, the

Weierstrass kernel defines a semigroup by convolution. In other words Wt1 ∗Wt2 = Wt1+t2 ,

where Wt(z) = (4πt)−
n
2 e−

|z|2
4t , and Wt1 ∗ Wt2(x) =

´
Rn Wt1(x− z)Wt2(z)dz.

Let us state and prove the main result of this section.

Proposition 6.2. Let dt be defined as before. Then

(a) dt is translation invariant;

(b) dt(x, y) depends only on |x− y|, i.e. dt(x, y) = ρt (|x− y|);
(c) ρt is strictly increasing and continuous, with ρt(0) = 0;

(d) the family of dt-balls are the Euclidean balls.

Proof. To prove (a) we only have to change variables y − z = u in the integral

defining d2t (x, y). Hence dt(x, y) = dt(x − y, 0). To prove (b) we have to show that the

function of x, dt(x, 0), is rotation invariant. Take a rotation R of Rn. Then, since Wt is

radial

d2t (Rx, 0) =

ˆ
z∈Rn

∣∣Wt(Rx− z)− Wt(z)
∣∣2 dz

=

ˆ
z∈Rn

∣∣Wt(R(x−R−1z))− Wt(R
−1z)

∣∣2 dz
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=

ˆ
u∈Rn

∣∣Wt(R(x− u))− Wt(u)
∣∣2 du

= d2t (x, 0).

In order to prove (c), notice that since d2t is a radial function of x− y, a formula for the

profile ρ2t (r) is given for r > 0 by ρ2t (r) =
´
z∈Rn

∣∣Wt(re⃗1− z)−Wt(z)
∣∣2 dz, with e⃗1 the first

vector of the canonical basis of Rn. For t fixed, the derivative of ρ2t as a function of r > 0

is given by

dρ2t
dr

(r) =
1

(4πt)n

ˆ
z∈Rn

2

(
e−

|re⃗1−z|2
4t − e−

|z|2
4t

)
(−2)(r − z1)

4t
e−

|re⃗1−z|2
4t dz

= − 4

(4πt)n

[ˆ
z∈Rn

e−
2|re⃗1−z|2

4t
(r − z1)

4t
dz −

ˆ
z∈Rn

e−
|z|2
4t e−

|re⃗1−z|2
4t

(r − z1)

4t
dz

]

= −2

ˆ
z∈Rn

e−
|z|2
4t

(4πt)−n/2

e−
|re⃗1−z|2

4t

(4πt)−n/2
(−2)

(r − z1)

4t
dz

= −2

(
Wt ∗

∂Wt

∂x1

)
(re⃗1)

= −2
∂

∂x1

(
Wt ∗ Wt

)
(re⃗1)

= −2
∂

∂x1
W2t(re⃗1)

= −2
∂

∂x1

(
1

(8πt)n/2
e−

|x|2
8t

)
(re⃗1)

=

(
4

(8πt)n/2
e−

|x|2
8t
x1
8t

)
(re⃗1)

=
4

(8πt)n/2
e−

r2

8t
r

8t
> 0,

where we have used the semigroup property of Wt, so (c) is proved. Property (d) is now

a consequence of (c). □

The classical definition of equivalence of metrics and quasi-metrics in a quantitative

form given by d ∼ δ if for some constants 0 < c1 ≤ c2 < ∞ we have that c1d ≤ δ ≤ c2d,

does not apply for dt(x, y) and |x− y| in Rn. Nevertheless property (d) in Proposition 6.2

shows that the equivalence takes place in different sense. That is, the families Bdt and B|·|

of dt-balls and Euclidean balls are the same. On the other hand, the quantitative equiva-

lence c1d ≤ δ ≤ c2d provide equivalence of balls, not coincidence. So that, in some sense,

the result of (d) is stronger than quantitative equivalence.
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6.3. A non isotropic homogeneous case

A special case of the general diffusion equation ∂u
∂t

= ∇ · A∇u is provided by the

homogeneous but non isotropic case with A a symmetric constant and positive defi-

nite n× n matrix. In this case the divergence and non divergence form of ∇ · A∇u
coincide. Let A = (aij), and let B = (bij) be its inverse. The general heat equation in

this case is explicitly given by

∂u

∂t
=

n∑
i=1

n∑
j=1

aij
∂2u

∂xi∂xj
on Rn+1

+ = Rn × R+.

The fundamental solution is now provided by the multivariate Gaussian distributions

determined by the covariances defined by the anisotropy matrix A = (aij).

Let us precise the above. For fixed x ∈ Rn, Ut, a constant times the function

Vt(x, z) =
1

(4π)n/2tn/2(detA)1/2
e
−⟨z−x,A−1(z−x)⟩

4t

as a function of t > 0 and z ∈ Rn, solves the problem
∂Ut

∂t
=

n∑
i=1

n∑
j=1

∂2

∂zi∂zj
Ut, t > 0, z ∈ Rn;

U0(x, z) = δx(z).

In the definition of Vt the angular brackets ⟨·, ·⟩ denote the inner scalar product in Rn. We

leave as exercises for the reader most of the computations in this section. In particular,

the proof of the above claims.

Proposition 6.3. For t > 0 fixed, the function

dA,t(x, y) =

√ˆ
z∈Rn

|Vt(x, z)− Vt(y, z)|2 dz

is a metric defined on Rn × Rn.

Proof. Follows the lines of the proof of Proposition 6.1. □

On the other hand, the quadratic form induced in Rn by the elliptic matrix A defines

the norm ∥x∥A =
√
⟨x,A−1x⟩ and hence the metric dA(x, y) = ∥x− y∥A. We leave to

the reader the task of comparing the metrics dA and dA,t for t > 0.
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6.4. A general spectral approach to diffusive metrization

In this section we aim to introduce strategy of metrization of a measure space through

orthonormal bases for the space of square integrable measurable functions.

Let (X,F , µ) be a σ-finite measure space. Notice that we have not a priori given any

metric or topology on X. We want to introduce metric and hence topology on X based

on the topology that we certainly have on the function spaces defined on X.

As usual we denote by Lp or Lp(X) the Banach space of those measurable real func-

tions on X such that
´
X
|f |p dµ < ∞ for 1 ≤ p < ∞ and ess supX |f | < ∞ for p = ∞.

The norms are ∥f∥p =
(´

X
|f |p dµ

)1/p
for 1 ≤ p <∞ and ∥f∥∞ = ess supx∈X |f(x)|. The

special case p = 2 has a Hilbert space structure with the inner product ⟨f, g⟩ =
´
X
fgdµ.

The Hilbert structure of L2 with the property of separability is a natural environ-

ment for the existence and the construction and design of orthonormal bases. A se-

quence B = {ϕn : n ≥ 0}, which could be finite when the space X itself is finite, is said

to be an orthonormal basis for L2(X), if ∥ϕn∥ = 1 for every n, ⟨ϕn, ϕm⟩ = 0 when n ̸= m

and for every f ∈ L2(X) we have

f =
∑
n≥0

⟨f, ϕn⟩ϕn,

where the convergence of the series is understood in the sense of the L2-norm∥∥∥∥∥f −
N∑

n=0

⟨f, ϕn⟩ϕn

∥∥∥∥∥
L2

−→ 0 as N → ∞.

Let us say that a function f ∈ L2(X) is simple or that f ∈ S(B) if f is a linear (finite)

combination of elements in B. In other words S(B) is the linear span of B. Let SN(B)
be the linear span of {ϕ0, ϕ1, . . . , ϕN}.

Lemma 6.4. The identity operator on SN(B) is an integral operator with kernel

KN(x, y) =
N∑

n=0

ϕn(y)ϕn(x)

in the sense that for every f ∈ SN(B) we have

f(x) =

ˆ
X

KN(x, y)f(y)dµ(y).
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Proof. Let f =
∑N

n=0 cnϕn, with cn ∈ R, be given. Then
ˆ
X

f(y)ϕn(y)dµ(y) = ⟨f, ϕn⟩ = cn,

so that

f =
N∑

n=0

(ˆ
X

f(y)ϕn(y)dµ(y)

)
ϕn

=

ˆ
X

(
N∑

n=0

ϕn(y)ϕn

)
f(y)dµ(y)

=

ˆ
X

KN(·, y)f(y)dµ(y). □

In most of the well known instances of the above, the functions ϕn in the basis B are

much better than L2-functions. In the classical Fourier case the functions ϕn are C ∞ and

bounded. The wavelet cases provide bounded sequences. We shall assume that each ϕn is

well defined for every x ∈ X. So that the kernel KN(x, y) is well defined and symmetric

on the whole product measure space X ×X.

Of course, in such a general setting, very little can be said about the convergence of

the series
∑

n≥0 ϕn(y)ϕn(x). On the other hand, we can help the convergence of the series

by multiplying each tensor product ϕn(x)ϕn(y) by the terms of a sequence {αn : n ≥ n}
which tends to zero as n → ∞. So the chances of convergence of

∑
n≥0 αnϕn(x)ϕn(y)

are now better. In doing so we may obtain some integrable kernels to produce the

corresponding integral operators defined in L2(X). The most interesting case for our

purposes is instead the search of differential type operators making possible to produce

diffusions on X. This possibility is based on the good behavior of the individual members

of B. The paradigmatic and better understood case is of course the Fourier case. If we

want to produce differential type operators instead of integral operators, and with the

guide of the case of the Laplacian which is negative, since ∆̂φ(ξ) = −4π2 |ξ|2 φ̂(ξ), we can
take a sequence λn of negative numbers with |λn+1| > |λn| and |λn| → +∞ as n→ ∞.

In our restricted attention to SN(B) instead of the whole space L2(X), we have no dif-

ficulty at defining such a Laplacian type operator. Let Λ denote the sequence {λn : n ≥ 0}
with λn+1 < λn ≤ 0, λn → −∞, n→ ∞.

Thus, given (X,F , µ) a σ-finite measure space, an orthonormal basis B = {ϕn : n ≥ 0}
for L2(X), a sequence Λ as above and a positive integerN , we define the B,Λ, N -Laplacian
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of f ∈ SN(B) by

∆N
B,Λf =

N∑
n=0

λn ⟨f, ϕn⟩ϕn.

Which being N finite has also the kernel representation

∆N
B,Λf =

ˆ
X

KN,Λ(x, y)f(y)dµ(y),

with KN,Λ(x, y) =
∑N

n=0 λnϕn(x)ϕn(y).

Let us now observe that in the previous sections the unit mass Dirac delta at a

point x ∈ Rn can be seen as the identity operator when we are in such convolutional

settings. Now that Lemma 6.4 gives us a good interpretation for the identity operator

on SN(B) in our setting, and the above definition of ∆N
B,Λ, we may build diffusions on X

by solving the problem, for fixed x ∈ X,

(Px) =


∂ux
∂t

= ∆N
B,Λux, inX × R+;

ux(z, 0) = KN(x, z).

Here ux : X × R+
0 → R, ux = ux(z, t) and the operator ∆N

B,Λ acts on the variable z.

Theorem 6.5. The function

ux(z, t) =
N∑

n=0

eλntϕn(x)ϕn(z)

is well defined for every t ≥ 0 as a function in SN(B) and solves problem (Px).

Proof. For x fixed and t ≥ 0 fixed, ux(·, t) is a linear combination of the first N +1

terms of B. On the other hand, taking term by term differentiation with respect to t of

the C ∞ function of t defined by ux(z, ·) we see that

∂ux
∂t

(z, t) =
N∑

n=0

λne
λntϕn(x)ϕn(z)

=
N∑

n=0

λn

〈
N∑
k=0

eλktϕk(x)ϕk, ϕn

〉
ϕn(z)

= ∆N
B,Λ

(
N∑
k=0

eλktϕk(x)ϕk(z)

)
= ∆N

B,Λux(z, t).
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On the other hand, clearly

ux(z, 0) =
N∑

n=0

eλn.0ϕn(x)ϕn(z) = KN(x, z). □

Notice that since the sequence of λn’s is negative, the factor eλnt for t > 0 is con-

tributing to convergence if we worry about the size of N . So the terms corresponding to

large values of n become less relevant.

Now, from Theorem 6.5, we can launch two diffusions, one starting at x ∈ X and the

other starting at y ∈ X with x ̸= y by solving the two problems

(Px) =


∂ux
∂t

= ∆N
B,Λux

ux(z, 0) = KN(x, z)

(Py) =


∂uy
∂t

= ∆N
B,Λuy

uy(z, 0) = KN(y, z)

with the same lenght N . Hence the function

dNt (x, y) =

√ˆ
z∈X

|ux(z, t)− uy(z, t)|2 dµ(z)

for t > 0 fixed is well defined.

Proposition 6.6. The function dNt has an explicit formula in terms of the orthonor-

mal basis B of L2(X) and of the eigenvalues Λ of the operator ∆B,Λ given by

dNt (x, y) =

√√√√ N∑
n=0

e2λnt |ϕn(x)− ϕn(y)|2.

Proof. Notice that from Theorem 6.5

[dNt (x, y)]
2 =

ˆ
z∈X

|ux(z, t)− uy(z, t)|2 dµ(z)

=

ˆ
z∈X

∣∣∣∣∣
N∑

n=0

eλnt[ϕn(x)ϕn(z)− ϕn(y)ϕn(z)]

∣∣∣∣∣
2

dµ(z)

=

ˆ
z∈X

∣∣∣∣∣
N∑

n=0

eλnt[ϕn(x)− ϕn(y)]ϕn(z)

∣∣∣∣∣
2

dµ(z).
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The last expression for t, N, x and y fixed is the square of the norm of a function given

by its Fourier series in terms of the basis B. So that by Plancherel-Parseval we have

[dNt (x, y)]
2 =

N∑
n=0

e2λnt |ϕn(x)− ϕn(y)|2 ,

which is the desired inequality. □

Proposition 6.7. For each N ∈ N and each t > 0, the function dNt is a pseudometric

in X. In other words, dNt (x, y) ≥ 0 for every x, y ∈ X; dNt (x, x) = 0 for every x ∈ X

and dNt (x, y) ≤ dNt (x, z) + dNt (z, y) for every x, y, z ∈ X.

Proof. Follows readily from the definition of dNt and the triangle inequality for

the L2(X)-norm. □

Let us provide here a simple ilustration of the above. Let X = {1, 2, . . . , n} be a finite

but large set. The space L2(X) with the counting measure onX can be identified with Rn.

Let B = {e⃗1, . . . , e⃗n} denote the canonical basis of Rn. Let λn < λn−1 < · · · < λ2 < λ1 ≤ 0

be given, then Propositions 6.6 and 6.7 give the pseudo-metric generated by the diffusion

induced by ∆B,Λ. Precisely, for i, j ∈ X, d2t (i, j) =
∑n

k=1 e
2λkt |e⃗k(i)− e⃗k(j)|2, where e⃗k(i)

is the i-th component of e⃗k, so that

d2t (i, j) =

0, if i = j

e2λit + e2λjt, if i ̸= j.

or

dt(i, j) =

0, if i = j
√
e2λit + e2λjt, if i ̸= j.

Notice that when every λi vanishes, we have dt(i, j) =
√
2 = ∥e⃗i − e⃗j∥. On the other

hand, i and j become closer with respect to dt when λi and λj are more negative. More

interesting and useful cases will be considered in next sections.

6.5. The trigonometric case

Let X = [−π, π) ∼ S1 = {|z| = 1} be equipped with the Lebesgue measure dx. Con-

sider B =
{

1√
2π
eikx : k ∈ Z

}
the classical Fourier basis for L2([−π, π]). For f ∈ L2([−π, π])
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the function

Θ(x, t) =
∑
k∈Z

e−t|k|2
〈
f,

eik·√
2π

〉
eikx√
2π

solves the heat problem 
∂Θ

∂t
=
∂2Θ

∂x2
,

Θ(x, 0) = f(x).

The corresponding kernel description of Θ is given by

Θ(x, t) =
1

2π

ˆ π

−π

Kt(x, y)f(y)dy,

with

Kt(x, y) =
∑
k∈Z

e−t|k|2eikxe−iky =
∑
k∈Z

e−t|k|2eik(x−y).

Proposition 6.8.

(a) dt(x, y) =
√´ π

−π
|Kt(x, z)−Kt(y, z)|2 dz is a well defined pseudo-metric on [−π, π];

(b) d2t (x, y) =
∑

k∈Z e
−2t|k|2

∣∣eikx − eiky
∣∣2 =∑k∈Z e

−2t|k|2
∣∣1− eik(x−y)

∣∣2;
(c) on [−π, π) each dt is a metric;

(d) for |z| < π
2
, we have dt(z, 0) ≥ ce−t |z|;

(e) for |z| < π
2
and |z| log 1

|z| < t we have dt(z, 0) ≤ c(t) |z|.

Proof.

(a) Notice that for t > 0, since 0 < e−t < 1, the series defining Kt is uniformly

convergent. Then, the integral defining dt is convergent. Clearly dt is symmetric

and for every x, dt(x, x) = 0. On the other hand, the triangle inequality follows

from Minkowski inequality for the L2([−π, π])-norm.

(b) Is a particular case of Proposition 6.6.

(c) Since dt(x, y) =
∑

k∈Z e
−2t|k|2

∣∣1− eik(x−y)
∣∣2 we have that dt(x, y) = 0 if and only

if x− y = 2πj for some j ∈ Z. On the interval [−π, π) the equation x− y = 2πj

holds only when j = 0. Or when x = y.

(d) Let |z| < π
2
. Then

d2t (z, 0) =
∑
k∈Z

e−2t|k|2 ∣∣1− eikz
∣∣2

=
∑
k∈Z

e−2t|k|2 [(1− cos kz)2 + sin2 kz]
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= 2
∑
k∈Z

e−2t|k|2 [1− cos kz]

= 4
∑
k≥1

e−2t|k|2[1− cos kz]

≥ 4e−2t(1− cos z)

≥ ce−2t |z|2 ,

which proves (d).

(e) Let |z| < π
2
and |z| log 1

|z| < t. Then

d2t (z, 0) =
∑

1≤k≤ 1
|z|

e−2tk2(1− cos kz) +
∑
k≥ 1

|z|

e−2tk2(1− cos kz)

≤ |z|2
∑

1≤k≤ 1
|z|

e−2tk2k2 + 2
∑
k≥ 1

|z|

(e−2t)k

≤ c1(t) |z|2 + c2(t)e
−2t

1
|z| .

For t > |z| log 1
|z| we have that − t

|z| < − log 1
|z| so that

d2t (z, 0) ≤ c1(t) |z|2 + c2(t)e
− log

1
|z|2 = c(t) |z| 2. □

The results of the above proposition show again that, as in the case of the Weierstrass

kernel, the diffusion on a compact interval produce a family of metrics which are locally

equivalent to the Euclidean metric of the setting. In the current case the metrics dt are

locally equivalent to the standard metric in S1.

6.6. The diffusion metric associated to the fractional Laplacian in Rn

The probabilistic view of the standard diffusion in Rn associated to the classical Lapla-

cian ∆, is provided by Brownian Motion, mathematically described by Wiener Process.

The Wiener Process belongs to a much larger family of Stochastic Processes called the

Lévy Process or the Lévy Flights. The analytical counterpart of the Lévy Flights is

provided by the diffusions generate by the fractional powers the Laplacian (−∆)s. The

diversity of approaches to the theory is far beyond the scope of these notes. Nevertheless,

perhaps the most simple way of introducing these difussion is also the most useful for our

purposes.
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The solutions of initial value problems of the form

(P ) =


∂u

∂t
= (−∆)su

u(x, 0) = f(x)

for 0 < s < 1 can be described in terms of the Fourier Transform. In fact, in terms of the

Fourier Transform ̂ in the space variable for fixed time, the solution of (P) is given by

û(ξ, t) = e−t|ξ|2s f̂(ξ).

This formula for û is very general. For example if we take as initial data f = δ0, the

Dirac delta, we have that e−t|ξ|2s = û(ξ, t) solves (P) with f = δ. So that we also can

provide, via the Fourier Analysis, solutions for

(Px) =


∂ux
∂t

= (−∆)sux

ux(·, 0) = δx

and

(Py) =


∂uy
∂t

= (−∆)suy

uy(·, 0) = δy

with x ̸= y both in Rn. Precisely,

ûx(ξ, t) = e−t|ξ|2se−2πiξ·x, and

ûy(ξ, t) = e−t|ξ|2se−2πiξ·y.

Since the above two functions of ξ belong to L2(Rn), then

dt(x, y) = ∥ûx(·, t)− ûy(·, t)∥2

is well defined.

Again, we explore the relation of dt(x, y) with the Euclidean distance, at least locally.

Proposition 6.9. For t > 0 we have

(a) d2t (x, y) =
´
ξ∈Rn e

−2t|ξ|2s
∣∣1− e−2πiξ·(x−y)

∣∣2 dξ;
(b) dt is bounded above;

(c) dt is translation invariant;

(d) dt is radial.
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Proof. Properties (a) and (b) are clear. Property (c) follows from (a). Let us

check (d). Using spherical coordinates in Rn we have

d2t (x, 0) =

ˆ
ξ∈Rn

e−2t|ξ|2s ∣∣1− e−2πiξ·x∣∣2 dξ
=

ˆ ∞

0

e−2tρ2s
ˆ
ξ′∈Sn−1

∣∣∣1− e−2πi(ξ
′ ·x′)ρ|x|

∣∣∣2 dσ(ξ′
)ρn−1dρ

=

ˆ ∞

0

e−2tρ2s
(ˆ

ξ′∈Sn−1

∣∣∣1− e−2πiξ
′
1ρ|x|
∣∣∣2 dσ(ξ′

)

)
ρn−1dρ.

In the last integral we used the rotation invariance of the surface integral, with ξ′1 the

first component of the vector ξ′ ∈ Sn−1. So that

d2t (x, 0) =

ˆ ∞

0

e−2tρ2sρn−1φ(ρ |x|)dρ,

with

φ(λ) =

ˆ
Sn−1

∣∣∣1− e−2πiξ′1λ
∣∣∣2 dσ(ξ′).

Hence d2t (x, 0) depends only on |x|. □

Notice that (b) in Proposition 6.9 shows that there is no hope for a global equivalence

between dt and the Euclidean distance in Rn. Nevertheless we next show that locally

they are equivalent. Let us first give an estimate for the behavior of the function φ(λ)

introduced in the proof of Proposition 6.9, for λ small.

Lemma 6.10. Let φ(λ) =
´
Sn−1

∣∣1− e−2πiξ1λ
∣∣2 dσ(ξ). Then there exist numbers c1, c2

with 0 < c1 < c2 <∞ for which

c1 ≤ λ−2φ(λ) ≤ c2

for 0 ≤ λ ≤ 1
2π
.

Proof. Let us first compute ψ(λ)

φ(λ) =

ˆ
Sn−1

∣∣1− e−2πiξ1λ
∣∣2 dσ(ξ)

=

ˆ
Sn−1

[(1− cos 2πξ1λ)
2 + sin2 2πξ1λ]dσ(ξ)

= 2

ˆ
Sn−1

(1− cos 2πξ1λ)dσ(ξ
′)
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= 2

ˆ
Sn−1

(∑
n≥1

(−1)n+1 (2πξ1λ)
n

(2n)!

)
dσ(ξ)

= 8π2λ2
∑
n≥1

(−1)n+1 (2πλ)
2(n−1)

(2n)!

(ˆ
Sn−1

ξ2n1 dσ(ξ)

)

= 8π2λ2
(
1

2

ˆ
Sn−1

ξ21dσ(ξ)−
(2πλ)2

24

ˆ
Sn−1

ξ41dσ(ξ) + · · ·
)
.

For 0 ≤ λ ≤ 1
2π

the series above is alternating with decreasing absolute value and we are

done. □

Theorem 6.11. For each t > 0 there exist three positive numbers c1, c2 and c3,

depending on t, such that, for |x| ≤ c1 we have that c2 |x| ≤ dt(x, 0) ≤ c3 |x|.

Proof. With the above notation we have

d2t (x, 0) =

ˆ ∞

0

e−2tρ2sρn−1φ(ρ |x|)dρ =
ˆ 1

2π|x|

0

+

ˆ ∞

1
2π|x|

= I + II.

Assume 0 < |x| ≤ 1. Since I and II are both nonnegative we only have to show that

for |x| small, I ≃ |x|2 and II ≤ c(t) |x|2. To prove that I ≃ |x|2 let us apply Lemma 6.10.

Since in I, 0 ≤ ρ |x| ≤ 1
2π

we have that φ(ρ |x|) ≃ ρ2 |x|2, so that

I ≃ |x|2
ˆ 1

2π|x|

0

e−2tρ2sρn−1ρ2dρ ≃ |x|2 .

Of course the equivalence constants depend on t. For the second term, since e−tρ2sρn−2s

is bounded above as a function of ρ ≥ 1 with constant depending on t, we have

II =

ˆ ∞

1
2π|x|

e−2tρ2sρn−1φ(ρ |x|)dρ

≤ c

ˆ ∞

1
2π|x|

e−2tρ2sρn−1dρ

= c

ˆ ∞

1
2π|x|

e−tρ2s
(
e−tρ2sρn−2s

)
ρ2s−1dρ

≤ c(t)

ˆ ∞

(
1

2π|x| )
2s

e−trdr

= c(t)e
−t

(
1

2π|x|

)2s

≤ c(t) |x|2
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for |x| small enough. □

6.7. Comments, problems and further results

(1) For m > 1 consider the diffusion distances generated by the elliptic operator

defined in R2 by

Lmu =
∂2u

∂x2
+m

∂2u

∂y2
.

How are those metrics related to the Euclidean distance in the plane R2?

(2) In the general approach of Section 6.4, consider the limit cases t→ 0 and t→ +∞
for dNt (x, y).

(3) The introduction of diffusion metrics in the analysis of data sets was first provided

by [CL06]. See also [BBL+17].

(4) The result in the second section is contained in [AAGM21b].



CHAPTER 7

The dyadic fractional diffusion metric

7.1. Introduction

This chapter is devoted to consider a problem which is analogous to the one considered

in the last section of Chapter 6. The analogy concerns the fractional aspect of the

differential calculus involved in (−△)s. In some settings there are not integer orders of

differentiation, nevertheless some fractional derivatives make sense. The difference of the

subject considered here and that of Chapter 6 is given by the change of trigonometric

bases by wavelets in R+. Even when we lose the translation or rotation invariance that

was crucial for the results in Chapter 6, the diffusion distance generated by the Haar

system is closely related to the dyadic metric on R+. The results of this chapter are

contained in [AAGM21b].

7.2. Haar basis and dyadic diffusion

Let D be the family of all dyadic intervals in R+ = {x ≥ 0}. Precisely

D =
{
Ijk = [k2−j, (k + 1)2−j) : j ∈ Z, k ∈ N0

}
.

With D j =
{
Ijk : k ∈ N0

}
we have that D =

⋃
j∈Z D j.

Let H =
{
hjk = 2j/2h00(2

jx− k) : j ∈ Z, k ∈ N0

}
be the Haar wavelet system in R+,

with h00 = X[0, 1
2
)(x) − X[ 1

2
,1)(x), where as usual XE denotes the indicator function of the

set E. The family H constitutes an orthonormal basis of L2 (R+). Let hI denote the

Haar wavelet supported on the dyadic interval I, so for I = Ijk we have that hI = hjk.

Let I(h) denote the dyadic interval that supports the wavelet h ∈ H .

Definition 7.1. The dyadic distance is defined by

δ(x, y) = inf {|I| : I is a dyadic interval containing x and y} .

Notice that if x ̸= y there exists a smallest dyadic interval containing x and y, which

we will denote by I(x, y). Taking I(x, x) = {x}, we have that δ(x, y) = |I(x, y)| for
every x, y ∈ R+.
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The metric δ on R+ is not translation invariant and is an upper bound for the Eu-

clidean. In fact |x − y| ≤ δ(x, y). Of course, they are not equivalent. This means

that δ(x, y) is in general much larger than |x − y|. Hence we could expect some better

integrability properties of the powers of δ(x, y), locally and/or globally. Nevertheless, the

behavior of the local and global integral properties of δ(x, y) are exactly the same as those

of the powers of |x−y|. From a general point of view these properties are consequences of

the fact that
(
R+, δ,m

)
is a normal or 1-Ahlfors regular space of homogeneous type (see

[MS79]) without atoms and with infinite total Lebesgue measure m. Then the integrals

of δα(x, y), α ∈ R, inside Bδ(x, r) and outside Bδ(x, r), for r > 0, are exactly the same as

the integrals of |x−y|α inside and outside the corresponding Euclidean balls (x−r, x+r).
In particular, the local and global singularity is provided by δ(x, y)−1 = 1

δ(x,y)
. Hence,

the natural fractional integrals or Riesz type operators of the setting are given by kernels

of the form δ(x, y)−1+s = 1
δ(x,y)1−s for s > 0. So that the natural fractional differential

operators are defined by kernels of the form δ(x, y)−1−s = 1
δ(x,y)1+s for 0 < s < 1. Of

course, as in the Euclidean case, the strong local singularity of this kernel needs for some

regularity of the functions in the domain of the operator. As proved in [AG18b] the

indicator function of a dyadic interval belongs to the class of Lipschitz-1 functions with

respect to δ. In particular, the Haar wavelets in H are all smooth in this sense. Actually,

for f bounded and Lipschitz-σ for 0 < s < σ ≤ 1 we have that

Ds
dyf(x) =

ˆ
R+

f(y)− f(x)

δ(x, y)1+s
dy

is well defined. We call Ds
dyf the dyadic fractional Laplacian of f in R+.

The initial value problem 
∂u

∂t
(x, t) = Ds

dyu(x, t)

u(x, 0) = f(x)

was considered in [AA16] and, like in the Euclidean case, can be solved as an integral

operator, which of course lacks the convolution structure. In fact

u(x, t) =

ˆ
R+

Ks(x, y; t)f(y) dy,

where

Ks(x, y; t) =
∑
h∈H

e−t|I(h)|−s

h(x)h(y).
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7.3. Dyadic fractional diffusion metric

With the kernel Ks obtained in the above section and the ideas in Chapter 6 we may

try to define a fractional dyadic diffusion distance given, for t > 0 and 0 < s < 1 by

dt(x, y) =

√ˆ
z∈R+

|Ks(x, z; t)−Ks(y, z; t)|2 dy.

In the next results we shall see the good definition and the metric character of dt, and

determine its spectral representation through the Haar wavelet system.

Proposition 7.1. Let s > 0 and t > 0 be given. Then dt is well defined, is a metric

on R+ and can be computed as

dt(x, y) =

√∑
h∈H

e−2t|I(h)|−s |h(x)− h(y)|2.

Proof. First, notice that the diffusion kernel Ks(x, y; t) is well defined and finite for

every x, y ∈ R+. Indeed, as |hI(w)| = |I|− 1
2XI(w) so

Ks(x, y; t) =
∑

I⊇I(x,y)

e−t|I|−s

hI(x)hI(y)

whose absolute series is bounded above by∑
I⊇I(x,y)

|I|−1 =
∑
j∈N0

2−j|I(x, y)|−1 = 2 |I(x, y)|−1 = 2δ(x, y)−1.

By definition, dt is the norm of the difference of the diffusion kernel at time t centered at

two points in consideration, so the metric properties follow trivially. As well, by Parseval’s

identity

dt(x, y)
2 = ∥Ks(x, ·; t)−Ks(y, ·; t)∥2

=

∥∥∥∥∥∑
h∈H

e−t|I(h)|−s

[h(x)− h(y)]h

∥∥∥∥∥
2

=
∑
h∈H

e−2t|I(h)|−s |h(x)− h(y)|2 .

The finiteness of dt(x, y) will follow from the next results. □

Let us now proceed to determine the structure of dt and compare it with the dyadic

distance δ(x, y) on R+.



66 The dyadic fractional diffusion metric

Lemma 7.2. Let s > 0. For t > 0 define

ψt(λ) =

√
2

λ
ηt (λ−s)

with ηt(σ) = 2e−2tσ +
∑

ℓ≥1 2
ℓe−2t2sℓσ. Then, when restricted to the sequence of integer

powers of 2, {2j : j ∈ Z}, we have

(a) ψt is strictly increasing;

(b) ψt(0
+) = 0;

(c) ψt(+∞) ≃ t−
1
2s .

Proof. Define, for i ∈ Z,

f(i) :=
1

2
ψ2
t (2

i)

= 21−ie−2t2−is

+
∑
ℓ≥1

2ℓ−ie−2t2−is2ℓs

= 21−ie−2t2−is

+
∑

k=ℓ−i≥1−i

2ke−2t2ks .

Then

f(i+ 1) = 2−ie−2t2−(i+1)s

+
∑
k≥−i

2ke−2t2ks

and so

f(i+ 1)− f(i) = 2−ie−2t2−(i+1)s − 2.2−ie−2t2−is

+ 2−ie−2t2−is

= 2−ie−2t2−is2−s − 2−ie−2t2−is

= 2−i
[
ξ2

−s − ξ
]
> 0

because the function ξx is monotone decreasing in the variable x (since ξ := e−2t2−is
is

positive and less than one) and 2−s < 1. This shows that ψ2
t is an increasing function

and therefore so is ψt, on account of its positivity. Thus (a) is proved.

To check (b) notice that

lim
i→−∞

f(i) = lim
i→−∞

21−ie−2t2−is

= 2 lim
x→+∞

xe−2txs

= 0

and so

lim
i→−∞

ψt(2
i) = 0.
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In order to prove (c) notice first that

lim
i→+∞

f(i) = lim
i→+∞

21−ie−2t2−is

+
∑
k∈Z

2ke−2t2ks

=
∑
k∈Z

2ke−2t2ks

<
∑
k∈Z

2

ˆ 2k

2k−1

e−2txs

dx

= 2

ˆ +∞

0

e−2txs

dx < +∞

which implies that limi→+∞ ψt(2
i) = ψt(+∞) < +∞. On the other hand, we attain a

lower bound from ∑
k∈Z

2ke−2t2ks >
∑
k∈Z

ˆ 2k

2k−1

e−2txs

dx =

ˆ +∞

0

e−2txs

dx.

So, since ψt(+∞) =
√

2 limi→+∞ f(i) , we have

√
2 ct(s) < ψt(+∞) < 2 ct(s)

for ct(s) =
√´ +∞

0
e−2txs dx = t−

1
2s

√´ +∞
0

e−2xs dx. □

At this point it is important to remark that, in contrast with property (d) in Propo-

sition 6.2, now for 0 < t1 < t2 we have that dt2(x, y) ≤ dt1(x, y) for every x, y ∈ R+. On

the other hand, there is no constant C > 0 such that the inequality dt1(x, y) ≤ Cdt2(x, y)

holds for every x, y ∈ R+. In fact, both observations above follow from the fact that

d2t2(x, y)

d2t1(x, y)
≤ e−2(t2−t1)δ−s(x,y)

for every x and y in R+.

From Lemma 7.2 we can deduce that the graph of ψt is flatter as t increases and,

conversely, it reaches higher values at infinity as t approaches zero.

Theorem 7.3. Let dt be the fractional dyadic diffusion metric of order s > 0 at t > 0.

Let ψt be as in Lemma 7.2 with ψt(0) := 0. Then

(a) dt(x, y) = ψt(δ(x, y)) for x, y ∈ R+;

(b) the family of dt-balls, given as usual by Bt(x, r) = {y ∈ R+ : dt(x, y) < r} for x ∈ R+

and r > 0, coincides with D , the family of all dyadic intervals.
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Proof. In order to prove (a), let us use the representation formula for d2t provided

by Proposition 7.1. For x ̸= y,

d2t (x, y) =
∑

h : x∈I(h)∨y∈I(h)

e−2t|I(h)|−s |h(x)− h(y)|2

= e−2t|I(x,y)|−s ∣∣hI(x,y)(x)− hI(x,y)(y)
∣∣2

+
∑

h : x∈I(h)∧y/∈I(h)

e−2t|I(h)|−s |h(x)|2

+
∑

h : x/∈I(h)∧y∈I(h)

e−2t|I(h)|−s |h(y)|2

= 4|I(x, y)|−1e−2t|I(x,y)|−s

+ 2
∑
ℓ≥1

e−2t(2−ℓ|I(x,y)|)
−s (

2−ℓ|I(x, y)|
)−1

=
2

|I(x, y)|

[
2e−2t|I(x,y)|−s

+
∑
ℓ≥1

2ℓe−2t|I(x,y)|−s2ℓs

]

=
2

|I(x, y)|
ηt
(
|I(x, y)|−s

)
=

2

δ(x, y)
ηt

(
1

δ(x, y)s

)
= ψ2

t

(
δ(x, y)

)
.

Item (b) follows readily from the fact that for 0 < r < ψt(+∞) we have

Bt(x, r) =
{
y ∈ R+ : ψt(δ(x, y)) < r

}
= I,

where I is the largest dyadic interval containing x for which ψt(|I|) is less than r. □

7.4. Comments, problems and further results

(1) Let f(x) = X[0,1)(x). Compute the Haar series for f and the series for the dyadic

derivative of order s ∈ (0, 1) of f . What happens when s→ 0+ and s→ 1−?

(2) Prove that δ(x, y) is an ultra-metric in R+. That is, δ(x, y) = 0 if and only

if x = y, δ(x, y) = δ(y, x) and δ(x, z) ≤ max{δ(x, y), δ(y, z)} for every x, y and z

in R+.

(3) With the notation in Theorem 7.3 and t > 0, show that the dt-balls are the dyadic

intervals.

(4) The results in this chapter are contained in [AAGM21b].



CHAPTER 8

Divergence and Laplacian. A general approach to diffusion and

diffusion metrics

8.1. Introduction

Taking as starting point for the basic operator defining diffusion the form div grad,

we consider in this chapter a general form of a divergence operator that can be applied

in several settings. In particular, in the discrete and useful case of weighted undirected

graphs. We start by stating the definition of the Kirchhoff divergence in a very general

setting containing all the further realizations of the basic theory. Then, we consider the

derived metrization problem both in the general setting and in the special cases which

are relevant in the applications. We also illustrate some particular instances of interest.

8.2. The generalized divergence

In this section we follow the lines of [AG20]. Let X be a set. Let S1 be a topological

algebra of real valued functions defined onX. Let S2 be a topological algebra of functions

defined on X ×X taking also real values. Set S1 ⊗ S1 to denote the set

S1 ⊗ S1 = {(φ⊗ η)(x, y) = φ(x)η(y) : φ ∈ S1 and η ∈ S1} ,

and σ(S1 ⊗ S1) to denote the linear span of S1 ⊗ S1. A basic assumption relating S1

and S2 is in order. We assume, and we shall profusely illustrate it, that S1 ⊗ S1 is

continuously contained in S2 and that σ(S1 ⊗ S1) is dense in S2.

We shall denote with S
′
i , i = 1, 2, the dual spaces (topological), with single brack-

ets ⟨ , ⟩ the duality S1-S ′
1 and with double brackets ⟨⟨ , ⟩⟩ the duality S2-S ′

2.

Let us illustrate the above situation in a well known Euclidean case. Let X = Rn

so X × X ≃ R2n, and S1 = S (Rn) the class of Schwartz functions on Rn. The

dual S ′
1 = S ′(Rn) is the space of Schwartz tempered distributions. The action of T ∈ S ′

1

on φ ∈ S1 is denoted by ⟨T, φ⟩ ∈ R. On the other hand, S2 = S (R2n) is the Schwartz

class of smooth functions in R2n, and S ′
2 = S ′(R2n) are the tempered distributions
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on R2n. Now, the action of S ∈ S ′
2 on a function Φ ∈ S2 is denoted by ⟨⟨S,Φ⟩⟩. This

notation of capital greek characters for the functions in S2 will be preserved in the sequel.

Let us start by showing how a given “distribution” S ∈ S ′
2 and a given “test func-

tion” Φ ∈ S2 defines naturally a “distribution” T ∈ S ′
1.

Lemma 8.1. Let S ∈ S ′
2 and Φ ∈ S2 be given and fixed. Then, the functional Σ = ΣS,Φ

defined for φ ∈ S1 by

⟨Σ, φ⟩ = ⟨⟨S, φΦ⟩⟩

is well defined and belongs to S ′
1.

Proof. Let φ ∈ S1 be a test function on X. It is easy to deduce from the relation be-

tween S1 and S2 stated before, that the function φΦ defined by (φΦ)(x, y) = φ(x)Φ(x, y)

for (x, y) ∈ X ×X also belongs to S2. Hence, since S ∈ S ′
2 we have that ⟨⟨S, φΦ⟩⟩ is a

well defined real number. Hence we have a well defined function from S1 to R, by

φ
Σ−→ ⟨⟨S, φΦ⟩⟩ .

The linearity of Σ is clear;

⟨Σ, αφ1 + βφ2⟩ = ⟨⟨S, αφ1Φ + βφ2Φ⟩⟩ = α ⟨⟨S, φ1Φ⟩⟩+β ⟨⟨S, φ2Φ⟩⟩ = α ⟨Σ, φ1⟩+β ⟨Σ, φ2⟩ .

On the other hand, since S1 × S1 is continuously contained in S2, we have, for φn → 0

in S1 that φnΦ → 0 in S2 and, since S is continuous in S2, we have ⟨Σ, φn⟩ → 0

in R. □

Now we are in position to define the divergence or Kirchhoff divergence operator.

But let us first give some heuristic idea underlying the precise definition. The objects S

and T are structural to the model that we are considering. For example, S could be the

matrix of weights of the edges E = V × V of a graph and T the vector of weights of

the vertices V = X of the graph. Given a function Φ on the edges (a vector field) we

would like to find its divergence ψ, a function on the vertices (a scalar field) associated

to the structure provided by S and T on the graph (V , E). Since we are looking for

an operator that, in its more classical instances, is a differential operator, to wit the

divergence, it is natural to expect that our definition should involve some frequencies

forbidden operation of division of the distribution S by the distribution T . Nevertheless

these two distributions belong to quite different settings S ′
2 and S ′

1. Lemma 8.1 helps
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us to transport S from S ′
2 to Σ in S ′

1. So that we shall look for a correct sense for the

object

KirT,S Φ =
ΣS,Φ

T
.

Actually we shall be very demanding the object KirT,S Φ since in all the important in-

stances it becames a function in S1 with the same “regularity” of Φ ∈ S2.

Definition 8.1 (Kirchhoff divergence of Φ ∈ S2 with respect to T ∈ S ′
1 and S ∈ S ′

2).

A function ψ : X → R is said to be a Kirchhoff divergence of Φ with respect to T and S if

(a) φψ ∈ S1 for every φ ∈ S1;

(b) ψT = ΣS,Φ.

Remark 8.1. Condition (b) above explicitly means that

⟨T, φψ⟩ = ⟨⟨S, φΦ⟩⟩

for every φ ∈ S1.

Not always, but sometimes we have that for f ∈ S1 the function

∇f(x, y) = f(y)− f(x),

which we call the gradient of f , belongs to S2. Following the classical pattern for the

Laplace operator as the iteration ∆ = div grad = ∇ · ∇ = ∇2, we say that

∆S,Tf = KirS,T (∇f),

when it exists, is a Laplacian for f with respect to S and T .

8.3. The classical Laplacian seen from the Kirchhoff divergence

In this section we aim to provide distributions T ∈ D ′(Rn) and S ∈ D ′(R2n) such

that for a given smooth f we have that

∆f(x) = KirT,S(f(y)− f(x)),

where ∆ is the classical Laplacian in Rn, i.e.

∆f(x) =
n∑

i=1

∂2f

∂x2i
(x).

Let us start by the construction of the distribution S ∈ D ′(R2n). Let π be the

Lebesgue n-dimensional measure on the diagonal of R2n. Precisely, for E a Borel set in R2n
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define π(E) = |{x ∈ Rn : (x, x) ∈ E}|, where the vertical bars denote the n-dimensional

Lebesgue volume.

π(E)

E

Rn

Rn

Figure 14. The action of π on a Borel set E of R2n.

Since π is a locally finite measure it defines a distribution in D ′(R2n); in fact, for a

given Φ ∈ D(R2n) = C ∞
c (R2n),

⟨⟨π,Φ⟩⟩ =
¨

R2n

Φ(x, y)dπ(x, y) =

ˆ
Rn

Φ(x, x)dx.

The support of π coincides with the diagonal of R2n. If we denote by (x, y) the points

in R2n and explicitly in terms of its coordinates (x, y) = (x1, . . . , xn; y1, . . . , yn) any distri-

bution in D ′(Rn) can be differentiated up to any order with respect to any to the variables

x1, x2, . . . , xn; y1, y2, . . . , yn. In particular we may take all the pure second derivatives

with respect to the variables yj and add them in order to produce a new distribution in

D ′(R2n). Let us proceed in this way with the distribution induced by π in R2n. Set

S =
n∑

j=1

∂2π

∂y2j
∈ D ′(Rn).

Proposition 8.2. Let T be the Lebesgue measure Λ on Rn, i.e. ⟨T, φ⟩ =
´
Rn φdx.

Let S as above. Then

∆f(x) = KirΛ,S(f(y)− f(x)).

Proof. Let us first compute KirΛ,S Φ for Φ ∈ D(R2n). Take φ ∈ D(Rn), then

⟨⟨S, φΦ⟩⟩ =
n∑

j=1

〈〈
∂2π

∂y2j
, φΦ

〉〉

=
n∑

j=1

〈〈
π,

∂2

∂y2j
φΦ

〉〉
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=
n∑

j=1

〈〈
π, φ(x)

∂2Φ

∂y2j

〉〉

=
n∑

j=1

ˆ
Rn

φ(x)
∂2Φ

∂y2j
(x, x)dx

=

ˆ
Rn

φ(x)

(
n∑

j=1

∂2Φ

∂y2j
(x, x)

)
dΛ(x)

= ⟨T, φ∆yΦ⟩

= ⟨T, φψ⟩ ,

so that ψ(x) = (∆yΦ)(x, x) is a Kirchhoff divergence of Φ associated to T and S. Tak-

ing Φ(x, y) = f(y)− f(x), we have (∆yΦ)(x, y) = ∆f(y). So that

ψ(x) = (∆yΦ)(x, x) = ∆f(x),

as desired. □

8.4. Fractional Kirchhoff divergence and fractional Laplacian

In Section 6.6 of Chapter 6 we introduced the fractional powers (−∆)s of the Lapla-

cian, in terms of the Fourier Transform,

((−∆)sf )̂(ξ) = (2π)2s |ξ|2s f̂(ξ).

Which recovers the Laplacian when s = 1. The kernel approach to the operator (−∆)s

for 0 < s < 1 with |x− y|−(n+2s) becomes more singular as s increases. For 0 < s < 1
2
the

kernel is less singular and is well defined on Hölder-Lipschitz classes. This fact allows the

extension of the case 0 < s < 1
2
to metric spaces. For 1

2
≤ s < 1, instead, more regularity

is required and the integrals have to be taken as principal values. The formal aspect of

the kernel approach to (−∆)s is given by

(−∆)sf(x) =

ˆ
Rn

f(y)− f(x)

|x− y|n+2s dy.

In this section we aim to write (−∆)s in the factorized div grad form as we did in the

previous section for the case s = 1. The integral expression above shows clearly the basic

order zero gradient f(y) − f(x) of f . So that we have to find a Kirchhoff divergence

operator allowing us to write (−∆)s in the frame of Section 8.2 above. Let us consider

the case 0 < s < 1
2
.
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Lemma 8.3. Let 0 < s < 1
2
. Then

(a) the function g(x, y) = Φ(x,y)−Φ(x,x)

|x−y|n+2s belongs to L1(R2n) for every Φ ∈ D(R2n);

(b) the linear functional S : D(R2n) → R given by

⟨⟨S,Φ⟩⟩ =
¨

R2n

Φ(x, y)− Φ(x, x)

|x− y|n+2s dxdy

defines a distribution in D ′(R2n).

Proof. Let K be a compact set in Rn containing the projection in the variables x of

the support of Φ, i.e. suppΦ ⊂ K × Rn. Set ωn−1 to denote the surface area of the unit

sphere of Rn. Then
¨

R2n

Φ(x, y)− Φ(x, x)

|x− y|n+2s dxdy

=

ˆ
K

ˆ
Rn

Φ(x, y)− Φ(x, x)

|x− y|n+2s dydx

≤
ˆ
K

{ˆ
|x−y|<1

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy + 2 ∥Φ∥∞
ˆ
|x−y|≥1

dy

|x− y|n+2sdy

}
dx

≤
ˆ
K

{ˆ
|x−y|<1

∥∇yΦ∥∞ |x− y|
|x− y|n+2s dy +

ωn−1 ∥Φ∥∞
s

}
dx

= ωn−1 |K|
(
∥∇yΦ∥∞
1− 2s

+
∥Φ∥∞
s

)
.

This proves (a). The linearity of S is clear. In order to prove the continuity of the

functional

⟨⟨S,Φ⟩⟩ =
¨

R2n

Φ(x, y)− Φ(x, x)

|x− y|n+2s dxdy

defined for Φ ∈ D(R2n), take a sequence {Φk : k ≥ 1} ⊂ D(R2n) that tends to zero in the

inductive limit topology of D(R2n). This means that there exists a compact set K in R2n

containing the supports of the Φk’s, i.e. K ⊃ ∪k≥1 suppΦk, and all the derivatives of Φk

converge uniformly to zero in R2n. Let K be the projection of K in the x = (x1, . . . , xn)

variables of R2n. Now, from the estimate above we have that

|⟨⟨S,Φk⟩⟩| ≤
ˆ
K

ˆ
Rn

Φk(x, y)− Φk(x, x)

|x− y|n+2s dxdy

≤ ωn−1 |K|
(
∥∇yΦk∥∞
1− 2s

+
∥Φk∥∞
s

)
,

which tends to zero when k tends to infinity. □
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The distribution S built in Lemma 8.3 and the distribution T provided by the

Lebesgue measure on Rn give the basic ingredients, through Lemma 8.1, to obtain a

Kirchhoff divergence operator KirT,S Φ defined for Φ ∈ D(R2n).

Lemma 8.4. Let 0 < s < 1
2
. For each function Φ ∈ D(R2n) the function ψ defined

on Rn by

ψ(x) =

ˆ
Rn

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

belongs to D(Rn) and

∥ψ∥∞ ≤ ωn−1

(
∥∇yΦ∥∞
1− 2s

+
∥Φ∥∞
s

)
.

Proof. For x outside the first projection of the support of Φ we have, clearly,

that ψ(x) = 0. Notice that, changing variables,

ψ(x) =

ˆ
Rn

Φ(x, x− y)− Φ(x, x)

|y|n+2s dy.

So that the differentiability of ψ follows from that of Φ. Finally, as we proved in the

previous lemma

|ψ(x)| ≤ ωn−1

(
∥∇yΦ∥∞
1− 2s

+
∥Φ∥∞
s

)
for every x, and we are done. □

Proposition 8.5. Let 0 < s < 1
2
be given. Let S be the distribution defined in

Lemma 8.3. Take T as the Lebesgue measure on Rn. Then, the function ψ provided by

Lemma 8.4 is a Kirchhoff divergence of Φ ∈ D(R2n) with respect to T and S. In other

words

ψ(x) = KirT,S Φ(x) =

ˆ
y∈Rn

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy.

Proof. We only have to check (b) in Definition 8.1, that is

⟨T, φψ⟩ = ⟨⟨S, φΦ⟩⟩

for every φ ∈ D(Rn). Take φ ∈ D(Rn). Then

⟨⟨S, φΦ⟩⟩ =
¨

R2n

φ(x)Φ(x, y)− φ(x)Φ(x, x)

|x− y|n+2s dxdy

=

ˆ
Rn

φ(x)

(ˆ
Rn

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

)
dx
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=

ˆ
Rn

φ(x)ψ(x)dx

= ⟨T, φψ⟩ ,

as desired. □

We are in position to state the main result of this section.

Theorem 8.6. Let 0 < s < 1
2
. Let T be the Lebesgue measure on Rn and S the

distribution in D ′(R2n) provided by Lemma 8.3, i.e.

⟨⟨S,Φ⟩⟩ =
¨

R2n

Φ(x, y)− Φ(x, x)

|x− y|n+2s dxdy.

Then, for f bounded with bounded gradient we have

(−∆)sf(x) = KirT,S(f(y)− f(x)).

Proof. The estimate for ψ given in Lemma 8.4 shows that KirT,S is well defined

for Φ(x, y) = f(y)− f(x) with f and its gradient in L∞(Rn). Now

KirT,S(f(y)− f(x)) =

ˆ
y∈Rn

(f(y)− f(x))− (f(x)− f(x))

|x− y|n+2s dy

=

ˆ
y∈Rn

f(y)− f(x)

|x− y|n+2s dy

= (−∆)
s
2f(x). □

8.5. The fractional Laplacian as a KirT,S grad operator for the case 1
2
≤ s < 1

When 1
2
≤ s < 1 and Φ ∈ D(R2n) the function Φ(x,y)−Φ(x,x)

|x−y|n+2s is generally not abso-

lutely integrable in R2n and the distribution S used in Section 8.4 is no longer valid.

Nevertheless, the distribution can be defined correctly as a principal value.

Lemma 8.7. Let 1
2
≤ s < 1. For ε > 0 let us denote with Bε the ε-band about the

diagonal of Rn × Rn, i.e. Bε = {(x, y) ∈ Rn × Rn : |x− y| < ε}. Set Bc
ε to denote the

complement, Rn × Rn \Bε, of Bε. Then

(a) for Φ ∈ D(R2n), the

lim
ε→0

¨
Bc

ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dxdy

exists and is finite;
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(b) the application S : R2n → R given by

Φ
S−→ lim

ε→0

¨
Bc

ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dxdy

defines a distribution in D ′(R2n).

Proof. With ∇yΦ we denote the gradient operator of Φ(x, ·) as a function of the

second variables y = (y1, . . . , yn), for x fixed in Rn. That is

∇yΦ(x, y) =
n∑

i=1

∂Φ

∂yi
(x, y)ei,

where {ei : i = 1, . . . , n} is the canonical basis of Rn. It is clear that the fact that s is

now large, s ≥ 1
2
, improves the integrability of Φ(x,y)−Φ(x,x)

|x−y|n+2s at infinity. Let us see this by

estimating precisely the integrals
¨

Bc
ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dxdy,

for ε > 0. Let Φ ∈ D(R2n) be given, and let K be a compact set in Rn such that

suppΦ ⊂ K × Rn. Then
¨

Bc
ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dxdy =

ˆ
x∈K

(ˆ
|x−y|>ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

)
dx

≤ Cn,s ∥Φ∥∞ |K| ε−2s.

Notice now that for 0 < ε < 1,

ˆ
ε≤|x−y|<1

∇yΦ(x, x) · (x− y)

|x− y|n+2s dy =
n∑

j=1

∂Φ

∂yj
(x, x)

ˆ
ε≤|x−y|<1

xj − yj

|x− y|n+2sdy

=
n∑

j=1

∂Φ

∂yj
(x, x)

ˆ
ε≤|y|<1

yj

|y|n+2sdy = 0,

since each
yj

|y|n+2s is bounded and odd in the symmetric annulus {y : ε ≤ |y| < 1}. So

that we may write

Iε =

¨
Bc

ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dxdy

=

ˆ
x∈K

(ˆ
ε≤|x−y|<1

Φ(x, y)− Φ(x, x)−∇yΦ(x, x) · (y − x)

|x− y|n+2s dy

+

ˆ
|x−y|≥1

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

)
dx.



78 Divergence and Laplacian. A general approach to diffusion and metrics

In order to prove the convergence of Iε as ε → 0, let us check the Cauchy character

of {Iε : 0 < ε < 1}. Take 0 < δ < ε < 1. Then from the formula for Iε we get

|Iδ − Iε| =
∣∣∣∣ˆ

x∈K

(ˆ
δ≤|x−y|<ε

Φ(x, y)− Φ(x, x)−∇yΦ(x, x) · (y − x)

|x− y|n+2s dy

)
dx

∣∣∣∣
≤
ˆ
x∈K

ˆ
δ≤|x−y|<ε

sup
α=2

∥∥∂αyΦ∥∥∞ |x− y|2

|x− y|n+2sdydx

= Cn,s |K| sup
α=2

∥∥∂αyΦ∥∥∞ (ε2(1−s) − δ2(1−s)),

which tends to zero for ε→ 0.

It is easy to check that the application S : D(R2n) → R defined by

⟨⟨S,Φ⟩⟩ = lim
ε→0

¨
Bc

ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dxdy

is linear.

To prove that S ∈ D ′(R2n), we only need to check its continuity. Consider a se-

quence {Φk : k ≥ 1} ⊂ D(R2n) such that Φk → 0 in D(R2n) as k → ∞. Then, there

exists a compact set K in R2n with K ⊃ ∪k≥1 suppΦk and ∂αΦk ⇒ 0 uniformly for every

multi-index α ∈ (N∪ {0})2n. Let K be a compact set in Rn such that K ×Rn ⊇ K, then

|⟨⟨S,Φk⟩⟩| = lim
ε→0

∣∣∣∣ˆ
x∈K

(ˆ
ε≤|x−y|<1

Φk(x, y)− Φk(x, x)−∇yΦk(x, x) · (y − x)

|x− y|n+2s dy

+

ˆ
|x−y|≥1

Φk(x, y)− Φk(x, x)

|x− y|n+2s dy

)
dx

∣∣∣∣
≤ lim sup

ε→0

ˆ
x∈K

ˆ
ε≤|x−y|<1

|Φk(x, y)− Φk(x, x)−∇yΦk(x, x) · (y − x)|
|x− y|n+2s dydx

+ cn,s ∥Φk∥∞ |K|

≤ cn,s |K|

(
sup
|α|=2

∥∂αΦk∥∞ + ∥Φk∥∞

)
,

which tends to zero for k → ∞. □

Lemma 8.8. For Φ ∈ D(R2n) we have

ψ(x) = lim
ε→0

ˆ
|x−y|>ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

is a well defined continuous function with compact support in Rn.
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Proof. Set

ψε(x) =

ˆ
{y:|x−y|>ε}

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy.

The above arguments allows proving that {ψε : ε > 0} is of Cauchy type in the uniform

norm on the compact K with K × Rn ⊃ suppΦ. □

Theorem 8.9. Let T be the distribution in Rn induced by the Lebesgue measure. Let

S be the distribution provided by Lemma 8.7. Then

(a) for Φ ∈ D(R2n)

KirT,S Φ(x) = lim
ε→0+

ˆ
|x−y|≥ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy;

(b) for φ ∈ D(Rn)

(−∆)sφ(x) = KirT,S(φ(s)− φ(x)).

Proof. We have only to check (a). Take Φ ∈ D(R2n) and φ any test function

in D(Rn). Then

⟨⟨S, φΦ⟩⟩ = lim
ε→0+

¨
Bc

ε

φ(x)Φ(x, y)− φ(x)Φ(x, x)

|x− y|n+2s dxdy

= lim
ε→0+

ˆ
Rn

φ(x)

(ˆ
|x−y|≥ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

)
dx.

Hence, from Lemma 8.8 and the Lebesgue dominated convergence theorem, we have

⟨⟨S, φΦ⟩⟩ =
ˆ
Rn

φ(x)

(
lim
ε→0+

ˆ
|x−y|≥ε

Φ(x, y)− Φ(x, x)

|x− y|n+2s dy

)
dx

=

ˆ
Rn

φ(x)ψ(x)dx

= ⟨T, φψ⟩ ,

for every φ ∈ D(Rn). Therefore ψ is a Kirchhoff divergence of Φ with respect to T

and S. □

8.6. The case of S and T given by locally finite measures

Let X = (X, τ) be a locally compact topological space. With our abstract approach in

the search of Kirchhoff divergences, take S1 = Cc(X), the space of compactly supported

continuous functions with real values defined on X. Let S2 = Cc(X × X) the space

of compactly supported continuous functions with real values defined on X ×X. Borel

measures which are finite on compact sets of X and X × X provide the distributions
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in S ′
1 and S ′

2 respectively. Given a measure µ on the Borel sets of X that is finite on

compact sets of X, it defines the distribution

⟨Tµ, φ⟩ =
ˆ
X

φdµ,

with φ ∈ S1. That is, Tµ is linear and continuous on S1. On the other hand, given a

Borel measure π on X ×X that is finite on the compact subsets of X ×X, it defines the

distribution

⟨⟨Sπ,Φ⟩⟩ =
¨

X×X

Φdπ,

with Φ ∈ S2.

Lemma 8.10. Let X, S1, S2, S ′
1, S ′

2, µ and π be as before. Then, ψ is a Kirchhoff

divergence of Φ ∈ S2 if and only if ψ satisfies

(8.1)

ˆ
X

φψdµ =

¨
X×X

φΦdπ

for every φ ∈ S1.

Proof. Just write the equation

⟨Tµ, φψ⟩ = ⟨⟨Sπ, φΦ⟩⟩

by the definitions of Tµ and Sπ. □

In this case we write Kirµ,π Φ instead of KirTµ,Sπ Φ to denote the function ψ. It is

worthy realizing that equation (8.1) may have no solution or more than one solution.

Example 1. Let X = [0, 1] with its usual topology. Take µ = δ0 the Dirac delta

and dπ = dxdy, the area probability measure on X ×X = [0, 1]2. Then for a continuous

function ψ and every φ ∈ C ([0, 1]) equation (8.1) reads

φ(0)ψ(0) =

ˆ
[0,1]

φψdδ0 =

¨
[0,1]2

φ(x)Φ(x, y)dxdy.

Thus, if we take Φ ≡ 1 on [0, 1]2, we have φ(0)ψ(0) =
´
[0,1]

φ(x)dx, for every φ ∈ C ([0, 1]).

For φ ∈ C ([0, 1]) with φ(0) = 0 and
´
[0,1]

φ = 1 we have 0·ψ(0) = 1, which has no solution

in C ([0, 1]).

Example 2. Let X, S1, S2 be as in Example 1. Take again two probability

measures µ = δ0 in [0, 1] and π = δ0 × δ0 in [0, 1]2. Again, when considering Φ ≡ 1
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equation (8.1) gives φ(0)ψ(0) = φ(0)Φ(0, 0) = φ(0). So that any ψ ∈ C ([0, 1]) such

that ψ(0) = 1 is a solution of (8.1).

The situation becomes more interesting when, in some sense, π is a “coupling” for µ.

Let us precise this fact in two cases which reflect independence and determinism.

Theorem 8.11. Let X, S1, S2 be as before. Let µ be a positive Borel measure on X

which is finite on compact subsets of X. Assume that π = π1 × π2 with π1 absolutely

continuous with respect to µ and π2 a Borel measure on X which is finite on the compact

subsets of X. Then, if dπ1

dµ
denotes the Radon-Nikodym derivative of π1 with respect to µ

and Φ ∈ S2, we have that

Kirµ,π Φ(x) =
dπ1
dµ

(x)

ˆ
y∈X

Φ(x, y)dπ2(y)

is a Kirchhoff divergence for Φ with respect to µ and π. Also, when π2(X) <∞ and f is

continuous and bounded, we have a µ, π-Laplacian of f given by

∆µ,πf(x) =
dπ1
dµ

(x)

(ˆ
y∈X

f(y)dπ2(y)− f(x)π2(X)

)
.

In particular f is µ, π-harmonic if and only if f is constant,

f(x) =
1

π2(X)

ˆ
y∈X

f(y)dπ2(y).

Proof. For φ ∈ S1 and Φ ∈ S2 we have
¨

X×X

φΦdπ =

ˆ
x∈X

φ(x)

(ˆ
y∈X

Φ(x, y)dπ2(y)

)
dπ1(x)

=

ˆ
x∈X

φ(x)

[
dπ1
dµ

(x)

ˆ
y∈X

Φ(x, y)dπ2(y)

]
dµ(x)

=

ˆ
x∈X

φ(x)ψ(x)dµ(x). □

For deterministic coupling we have the following result.

Theorem 8.12. Let (X, τ) be a locally compact topological space. Let µ be a Borel

measure on X such that µ(K) < ∞ for every compact set K of X. Let F be a given

continuous function from X to X.

Let G : X → X ×X be given by

G(x) = (x, F (x)).
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F

µ

E

X

X

Figure 15. Deterministic coupling.

Let π be the measure defined on the Borel subsets of X ×X by

π = µ ◦G−1.

Precisely, for E a Borel subset of X ×X,

π(E) = µ(G−1(E)) = µ({x ∈ X : (x, F (x)) ∈ E}).

Then, for Φ ∈ S2 = Cc(X ×X) we have that the function

Kirµ,π Φ(x) = Φ(x, F (x))

is a Kirchhoff divergence of Φ with respect to µ and π. Moreover, for f : X → R

continuous we have a well defined Laplacian of f with respect to µ and π and is explicitly

given by

∆µ,πf = f ◦ F − f.

Proof. Let us start by proving a basic formula which allows us computing integrals

with respect to π in terms of integrals with respect to µ. Notice that for E a Borel subset

of X ×X, if we denote by XE = XE(x, y) the indicator function of E, the definition of π

in terms of µ gives
¨

X×X

XE(x, y)dπ(x, y) = π(E) = µ(G−1(E))

=

ˆ
X

XG−1(E)(x)dµ(x)

=

ˆ
X

XE(x, F (x))dµ(x).

Now, with standard arguments in measure theory, the last formula
¨

X×X

XEdπ =

ˆ
X

XE(x, F (x))dµ(x)
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extends to functions Θ ∈ S2 to provide
¨

X×X

Θdπ =

ˆ
X

Θ(x, F (x))dµ(x).

Let us apply the last formula to Θ(x, y) = φ(x)Φ(x, y) with any φ ∈ S1 and Φ ∈ S2.

Then ˆ
X×X

φ(x)Φ(x, y)dπ(x, y) =

ˆ
X

φ(x)Φ(x, F (x))dµ(x)

for every φ ∈ S1. Which is equation (8.1) from Lemma 8.10 for every φ ∈ S1.

Hence Φ(x, F (x)) works as a divergence for Φ with respect to µ and π. Now the for-

mula for the Laplace type operator follows readily by taking Φ(x, y) = f(y)− f(x),

∆µ,πf(x) = Kirµ,π(f(y)− f(x))

= f(F (x))− f(x)

= (f ◦ F − f)(x). □

8.7. Problems, comments and further results

(1) With the notation given in Lemma 8.1, compute ΣS,Φ when S is the distribution

in S ′(R2n) defined by the function f ≡ 1, and Φ(x̄, ȳ) = e−(|x̄|2+|ȳ|2). Compute

also KirT,S Φ with S and Φ as above and T given by the function e−|x̄|2 in Rn.

(2) With the notation of Theorem 8.12, take (X, τ) = [0, 1] with its usual topology.

Let µ be Lebesgue measure on [0, 1]. Characterize the harmonic measure associ-

ated to the µ, π-Laplacian ∆µ,π if F (x) = −x.
(3) The results of this chapter are contained in [AG22]. See also [AG20].





CHAPTER 9

Divergence and Laplacian on discrete structures

9.1. Introduction

Most of the results of this chapter are interesting particular cases of the general setting

discussed in the previous chapter. Perhaps the most useful application of these discrete

versions is the metrization of graph structures through the diffusion technique. Also,

some theoretical approximation results of continuous settings by natural and standard

discretization are in order.

9.2. Divergence and Laplacian defined by Dirac deltas and affinities on the

Euclidean space

Take X = Rn in our general setting of the previous chapter. Take S1 = D(Rn)

and S2 = D(R2n) the usual test function spaces for general distributions on Rn. Set δx

to denote the measure (distribution) defined by the Dirac delta at x ∈ Rn. In other

words, ⟨δx, φ⟩ = φ(x), φ ∈ S1 as a distribution. Or δx(E) = 1 if x ∈ E, and δx(E) = 0

if x /∈ E, as a measure. Let {xk : k ≥ 1} be a given sequence of points in Rn and

let {ak : k ≥ 1} be a sequence of positive real numbers which is locally finite with respect

to {xk : k ≥ 1}. That is, for every bounded set B in Rn,
∑

{k:xk∈B} ak < ∞. Then, the

measure µ defined by

µ(E) =
∑
k≥1

akδxk
(E) =

∑
{k:xk∈E}

ak

is of Borel type and is finite on compact sets of Rn. In a similar way, take a sequence

of nonnegative real numbers {wij : i, j ≥ 1} which is locally finite with respect to the

sequence of points of Rn × Rn given by {(xi, xj) : i, j ≥ 1}. In other words, for every

bounded subset B of Rn × Rn we have∑
{(i,j):(xi,xj)∈B}

wij <∞.

Set, for A a Borel subset of Rn × Rn,

π(A) =
∑
i≥1

∑
j≥1

wijδ(xi,xj)(A) =
∑

{(i,j):(xi,xj)∈A}

wij,
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which defines a Borel measure on Rn ×Rn that is finite on compact subsets of Rn ×Rn.

Now, in the search for a Kirchhoff divergence of Φ ∈ S2 and a corresponding Laplacian

operator associated to the couple of measures µ on Rn and π on Rn ×Rn, we may apply

the result in Lemma 8.10 of the previous chapter and look for a solution ψ of
ˆ
Rn

φψdµ =

¨
Rn×Rn

φΦdπ

for every φ ∈ S1 = D(Rn).

Let us state and prove the main result of this section. Recall that given a measure ν

on a product space which is finite, we have well defined marginals ν1 and ν2. If ν is a

finite measure on X × X and E is a Borel subset of X, the first marginal ν1 is defined

on E by ν1(E) =
˜

E×X
dν = ν(E ×X).

Theorem 9.1. Let µ and π be as before and Φ a given function in S2. Then,

(a) πΦ(A) =
˜

A
Φdπ for A a Borel subset of Rn ×Rn is a finite measure on Rn ×Rn

and the first marginal π1
Φ of πΦ is absolutely continuous with respect to µ;

(b) the Radon-Nikodym derivative of π1
Φ with respect to µ is a Kirchhoff divergence

of Φ with respect to π and µ. In other words,

Kirµ,π Φ =
dSΦ

dµ
;

(c) explicitly, for every k ≥ 1

Kirµ,π Φ(xk) =
1

ak

∑
j≥1

wkjΦ(xk, xj);

(d) if the measure π is finite, i.e.
∑

i≥1

∑
j≥1wij < ∞, then, for f ∈ S1, we can

take Φ(x, y) = f(y)− f(x) and

∆µ,πf(xk) =
1

ak

∑
j≥1

wjk(f(xj)− f(xk));

(e) if π is finite, f is µ, π-harmonic if and only if

f(xk) =
1∑

j≥1wjk

∑
j≥1

wjkf(xj).

Proof. Notice that

π1
Φ(E) = πΦ(E × Rn) =

¨
E×Rn

Φdπ =
∑

{k:xk∈E}

∑
j≥1

wkjΦ(xk, xj).
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If E is a Borel subset of Rn such that µ(E) = 0, then, since all the ak are positive we

have that E ∩ {xk : k ≥ 1} = ∅. Hence π1
Φ(E) = 0 and (a) is proved.

Let us check (b). We have
¨

Rn×Rn

φΦdπ =
∑
k≥1

∑
j≥1

wkjφ(xk)Φ(xk, xj)

=
∑
k≥1

φ(xk)

(∑
j≥1

wkjΦ(xk, xj)

)

=

ˆ
Rn

φ(x)dS1
Φ(x)

=

ˆ
Rn

φ(x)
dS1

Φ

dµ
dµ(x)

=

ˆ
Rn

φ(x)ψ(x)dµ(x),

for every φ ∈ S1 with ψ =
dS1

Φ

dµ
. Notice that

π1
Φ({xk}) =

∑
j≥1

wkjΦ(xk, xj)

and µ({xk}) = ak. So that
dπ1

Φ

dµ
(xk) =

1
ak

∑
j≥1wkjΦ(xk, xj).

Items (d) and (e) follow readily from (c). □

Note that equation in (e) for harmonic functions, i.e. ∆µ,πf ≡ 0, is a mean value

formula.

A particular case of the above, closely related with the classical harmonic functions is

provided by the particular case of the finite difference scheme for the numerical approxi-

mation of solutions of partial differential equations. Let us state the result precisely.

Theorem 9.2. Let h > 0 be given and fixed. For k⃗ = (k1, . . . , kn) ∈ Zn, set xk⃗ = hk⃗.

With the notation in Theorem 9.1, let us weight each xk⃗ taking ak⃗ = hn, the volume of the

n-cube of side h, for every k⃗ ∈ Zn. Take µh =
∑

k⃗∈Zn hnδx
k⃗
. Now define the weight wk⃗j⃗

in the following way,

wj⃗k⃗ =

0 if j⃗ = k⃗ or
∣∣∣⃗j − k⃗

∣∣∣ > 1,

hn−2 if
∣∣∣⃗j − k⃗

∣∣∣ = 1.
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Set

πh =
∑
j⃗∈Zn

∑
k⃗∈Zn

wj⃗k⃗δ(xj⃗ ,xk⃗
).

Then

Kirµh,πh
Φ(hk⃗) =

1

h2

n∑
m=1

[
Φ(hk⃗, h(k⃗ + e⃗m)) + Φ(hk⃗, h(k⃗ − e⃗m))

]
where e⃗m is the m-th vector of the canonical basis of Rn. For f ∈ S1 we have

∆hf(hk⃗) = ∆µh,πh
f(hk⃗) =

n∑
m=1

f(h(k⃗ + e⃗m))− 2f(hk⃗) + f(h(k⃗ − e⃗m))

h2
.

Moreover, the µh, πh-harmonic functions for which

f(hk⃗) =
1

2n

n∑
m=1

[
f(h(k⃗ + e⃗m)) + f(h(k⃗ − e⃗m))

]
.

Proof. The result is just a corollary of Theorem 9.1 taking into account that{
j⃗ ∈ Zn :

∣∣∣⃗k − j⃗
∣∣∣ = 1

}
=
{
k⃗ + e⃗m : m = 1, . . . , n

}
∪
{
k⃗ − e⃗m : m = 1, . . . , n

}
. □

We also have a discretization for fractional divergences and fractional Laplacians.

Theorem 9.3. Let h, {xk⃗ : k⃗ ∈ Zn} and µh be as in Theorem 9.2. As the sequence

of weights take, instead, for α > 0

wj⃗k⃗ =


0 if j⃗ = k⃗,

hn−α 1

|⃗j−k⃗|n+α if j⃗ ̸= k⃗.

Let πα
h =

∑
k⃗

∑
j⃗ w

α
j⃗k⃗
δ(hk⃗,h⃗j). Then, for Φ ∈ S2 we have

Kirµh,π
α
h
Φ(hk⃗) =

1

hα

∑
j⃗ ̸=k⃗

Φ(hk⃗, h⃗j)∣∣∣⃗k − j⃗
∣∣∣n+α .

For f ∈ S1,

∆α
hf(hk⃗) =

1

hα

∑
j⃗ ̸=k⃗

f(h⃗j)− f(hk⃗)∣∣∣⃗k − j⃗
∣∣∣n+α .

Moreover, f is α, h-harmonic if

f(hk⃗) =
1

c(α)

∑
j⃗ ̸=k⃗

f(h⃗j)∣∣∣⃗k − j⃗
∣∣∣n+α , with c(α) =

∑
j⃗ ̸=0⃗

∣∣∣⃗j∣∣∣−n−α

.
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9.3. The case of finite graphs

Let (V , E) = G be an undirected graph. Assume

that V = {1, 2, . . . , n} and that

E = {{i, j} : i, j ∈ V ; i ̸= j}

is the set of all edges joining every pair of vertices in V .

E
V

In the abstract framework above we have that X = V and, except for the diago-

nal, X ×X = E . Assume that each vertex has assigned an intensity measure by a posi-

tive number i→ ai > 0. Assume also that the edge joining nodes i and j is a measure of

affinity wij ≥ 0 between those nodes. When wij = 0 there is not affinity between nodes i

and j in V and we can remove from E the edge {i, j}. The sequence of ai’s defines a

positive measure µ on V and the sequence of the wij’s defines a nonnegative measure π on

E . In fact, for A a subset of V the measure µ is given by µ(A) =
∑

i∈A ai. For E ⊂ E , we
have π(E) =

∑
{i,j}∈E wij. We assume that wii = 0 since we have no loops in the graph.

Proposition 9.4. Let G = (V , E), µ and π be as before. Then, for any func-

tion Φ = Φ(i, j) defined on E, the function ψ : V → R given by

ψ(i) =
1

ai

n∑
j=1

wijΦ(i, j)

is a Kirchhoff divergence of Φ with respect to µ and π. Moreover, for f : V → R we have

a well defined Laplacian by

∆µ,πf(i) =
1

ai

n∑
j=1

wij(f(j)− f(i)).

Proof. We have to check that
´
V φψdµ =

˜
E φΦdπ, for every φ : V → R. In fact,

¨
E
φΦdπ =

n∑
i=1

n∑
j=1

φ(i)Φ(i, j)wij

=
n∑

i=1

φ(i)

(
1

ai

n∑
j=1

Φ(i, j)wij

)
ai

=
n∑

i=1

φ(i)ψ(i)ai

=

ˆ
V
φψdµ,
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as desired. The formula for the Laplacian follows directly from the formula for the

Kirchhoff divergence. □

The result in Proposition 9.4 brings a matrix description and computation of the

Laplacian ∆f = ∆µ,πf . In doing so, the computational tools for matrix analysis are

providing the spectral theory that we need to pose the problem in the general setting for

metrization described above.

Proposition 9.5. Let

A =


a1 · · · 0

. . .

0 · · · an


with ai > 0 for every i = 1, . . . , n. Let

W =


0 w12 w13 · · · w1n

w12 0 w23 · · · w2n

...
...

...
. . .

...

w1n w2n w3n · · · 0

 = (wij : i, j = 1, . . . , n)

with wii = 0 for each i = 1, . . . , n and wij = wji.

Let f : V → R which can be given by the n-vector of its values f = (f1, f2, . . . , fn). Let

D =


∑

j w1j 0 · · · 0

0
∑

j w2j · · · 0
...

...
. . .

...

0 0 · · ·
∑

j wnj


be the diagonal matrix with diagonal (

∑
j wij : i = 1, . . . , n) (the usually called degree

matrix). Then, the µ, π-Laplacian of f can be computed in matrix form as the n-vector ∆f

given by

∆f = A−1(W −D)f.

Or, avoiding the test function f , the µ, π-Laplacian is the matrix

∆ = A−1(W −D).
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Proof. Notice that (∆f)i is the i-th component of the product A−1(W −D)f which

is given by

1

ai

n∑
j=1

(wij −Dij)fj =
1

ai

n∑
j=1

(wijfj −Dijfj)

=
1

ai

(
n∑

j=1

wijfj −
n∑

j=1

Dijfj

)

=
1

ai

(
n∑

j=1

wijfj −Diifi

)

=
1

ai

(
n∑

j=1

wijfj −

(
n∑

j=1

wij

)
fi

)

=
1

ai

(
n∑

j=1

wij(fj − fi)

)
= ∆µ,πf(i),

according to Proposition 9.4. □

Even when on finite settings the function spaces are all of them the same and the

norms are equivalent, the Hilbert structure is still important and no so invariant. Re-

call that the basic space in our general setting is L2(X,µ) which in the current case

is the space of all real functions defined on V . Nevertheless the underlying norm and

scalar product are important when orthogonality matters. Since µ is defined by the se-

quence {ai : i = 1, . . . , n} then ∥f∥22 =
∑n

i=1(fi)
2ai, so that the inner or scalar product

is

⟨f, g⟩A =

ˆ
V
fgdµ =

n∑
i=1

figiai.

This scalar product is important for the analysis of the duality associated to our Lapla-

cian.

Proposition 9.6. The operator ∆ in Proposition 9.5 above is self-adjoint with respect

to the inner product ⟨f, g⟩A in L2(X,µ).

Proof. Let f and g in L2(X,µ) (two vectors in Rn). Then

⟨∆f, g⟩A =
〈
A−1(W −D)f, g

〉
A
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=
n∑

i=1

(∆f)igiai

=
n∑

i=1

(
1

ai

n∑
j=1

(wij −Dij)fj

)
giai

=
n∑

i=1

n∑
j=1

(wij −Dij)fjgi

=
n∑

j=1

n∑
i=1

(wij −Dij)fjgi

=
n∑

j=1

(
1

aj

n∑
i=1

(wji −Dji)gi

)
fjaj

= ⟨f,∆g⟩A . □

Proposition 9.7. For ∆ as before we have that −∆ is positive definite in the sense

that

⟨−∆f, f⟩A ≥ 0

for every f .

Proof. As before

⟨−∆f, f⟩A =
n∑

i=1

(−∆f)ifiai

=
n∑

i=1

n∑
j=1

(Dij − wij)fjfi

= n

n∑
j=1

Dijfjfi −
n∑

i=1

n∑
j=1

wijfifj

=
n∑

i=1

Diif
2
i −

n∑
i=1

n∑
j=1

wijfifj

=
n∑

i=1

n∑
j=1

wijf
2
i −

n∑
i=1

n∑
j=1

wijfifj

=
n∑

i=1

n∑
j=1

wij(f
2
i − fifj)

=
1

2

(
n∑

i=1

n∑
j=1

wij(f
2
i − fifj) +

n∑
i=1

n∑
j=1

wij(f
2
j − fifj)

)
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=
1

2

n∑
i=1

n∑
j=1

wij(f
2
i + f 2

j − 2fifj)

=
1

2

n∑
i=1

n∑
j=1

wij(fi − fj)
2 ≥ 0. □

Corollary 9.8. The operator ∆ is diagonalizable. Moreover, there exists a sequence

of nonpositive numbers λ and a sequence of n-orthonormal vectors with respect to the

inner product ⟨f, g⟩A such that the eigenvalues can be arranged as

λn−1 ≤ λn−2 ≤ . . . ≤ λ1 ≤ λ0 = 0

and

∆ϕj = λjϕj, j = 0, 1, . . . , n− 1

with ⟨ϕj, ϕi⟩A = δij.

Proof. Follows from Propositions 9.6 and 9.7 and basic results of linear algebra. □

So far, given a weighted graph G, we have been able to provide an orthonormal

sequence {ϕj} for L2(V , dµ) and the corresponding sequence {λj} of eigenvalues, and we

are in position to apply our general approach to metrization.

9.4. Problems, comments and further results

(1) With the notation in Section 9.2, let xj⃗ = j⃗ = (j1, . . . , jn) ∈ Zn; aj⃗ = 1 for every j⃗;

w⃗i⃗j =
∣∣∣⃗i− j⃗

∣∣∣−(n+1)

if i⃗ ̸= j⃗ and w⃗i⃗i = 0. Write the Laplacian of a function f defined

on Zn. Give conditions on f for the existence of the Laplacian.

(2) With the notation of Theorem 9.2 provide conditions on f in such a way that ∆hf

tends to the classical Laplacian of f in some sense (weak).

(3) The results of Chapter 9 are contained in [AG22].





CHAPTER 10

An application to the metrization of AMBA based on public

transport

10.1. Introduction

This chapter contains a special case of the results in [AAGM21a] as an application

of the general results of the last section in the previous chapter.

The acronym AMBA is used to name the 41 cities that concentrate one third of the

total population of Argentina and is spatially concentrated around Buenos Aires City.

The following map depicts their distribution.

Figure 16. The cities of AMBA.
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Aside from the geographical distance between locations i and j in the map there is a

valuable information given by the public transport system in AMBA. The system SUBE

keeps a great amount of information that allows to have another geometry provided by

a connectivity distance built on this big data source.

With the notation used in Chapter 9 we have here the sets V = {1, 2, 3, . . . , 41}
and E = {{i, j} : i, j = 1, . . . , 41 and i ̸= j}. In what follows we shall take on V the

counting measure normalized to a probability. That is ai =
1
41

for every i = 1, . . . , 41. For

the matrix W = (wij : i, j = 1, . . . , 41) we shall take the much more subtle construction

of a probability matrix, i.e.
∑

i,j wij = 1, starting from profuse data of the system SUBE

which collects all the public transport system of AMBA.

Once the matrix W is given, the results in Chapter 9 provide the Laplace operator of

the setting

∆ = A−1(W −D),

with

A−1 =


41 0 . . . 0

0 41 . . . 0
...

...
. . .

...

0 0 . . . 41

 and D =


∑

j w1j 0 . . . 0

0
∑

j w2j . . . 0
...

...
. . .

...

0 0 . . .
∑

j w41j

 .

Using Python we can compute the eigenvalues and eigenvectors of ∆ and we have a

natural associated diffusive metric

d2t (i, j) =
∑
l≥0

e2tλl |ϕl(i)− ϕl(j)|2 ,

where λl are the nonpositive eigenvalues of ∆ and ϕl are the corresponding eigenvectors.

Here t is fixed but small. Hence, we can plot the balls with some center and different radii

provided by such dt. These balls will provide an idea of proximity which is different from

the Euclidean one and could be of help when considering the propagation of COVID-19

and other diseases through the public transport system.

10.2. The matrix W and the metrics dt

The unnormalized matrix weighting, through data provided by SUBE, the degree of

connection of any two of the 41 cities in AMBA is given by
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Figure 17. SUBE unnormalized matrix.

Once the above matrix is normalized to probability and introduced in the general

algorithm with the sequence ai =
1
41

and t = 1
10

= 0.10, that computes the eigenvalues

of ∆ = A−1(W − D) its eigenfunctions and d21
10

(i, j) =
∑

l≥0 e
λl

5 |ϕl(i)− ϕl(j)|2 , imple-

mented here in Python. The matrix d 1
10
(i, j) is

Figure 18. The diffusion metric matrix in AMBA for t = 1
10
.

Aside from the uniform distribution ai =
1
41

at the nodes we use also a normalization

to probability of the COVID disease at each location.
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Let us only illustrate some dt-balls for t = 0.10 with two different weights a⃗: the

uniform a⃗u =
(

1
41
, . . . , 1

41

)
and

a⃗d =(0.0023, 0.0009, 0.0004, 0.0014, 0.0015, 0.0009, 0.0012, 0.0030, 0.0007, 0.0009, 0.0011,

0.0015, 0.0008, 0.0016, 0.0049, 0.0005, 0.0006, 0.0018, 0.0015, 0.0031, 0.0013, 0.0008, 0.0012,

0.0010, 0.0019, 0.0022, 0.0014, 0.0006, 0.0019, 0.0095, 0.0011, 0.0004, 0.0015, 0.0018, 0.0018,

0.0026, 0.0013, 0.0018, 0.0029, 0.0018, 0.0034)

which is a normalization of the density of the disease in each location (total number

of active infections over population) by July 2020. The algorithms are implemented in

Python.

Figure 19. Weight a⃗u; t = 0.10

Figure 20. Weight a⃗d; t = 0.10

10.3. Comments and further results

The results of these chapter are contained in the Technical Report [AAC+21]. See

also [AAGM21a].



CHAPTER 11

Energy and the Laplacian on graphs

11.1. Introduction

One may, or should, ask why the spectral analysis based metrics dt of the previous

chapters have some real world, say physical, meaning. The energy considerations can

provide a point of view that is more robust from this point of view. Recall that in a

domain Ω of Rn, the energy of a real function defined in Ω is given by the regularity part

of the Sobolev norm of u

E(u) =

ˆ
Ω

|∇u|2 dx =

ˆ
Ω

∇u · ∇u dx.

Here we are assuming that the “texture” of Ω is homogeneous and isotropic. Otherwise

we would have

E(u) =

ˆ
Ω

∇u · A∇u dx

where the matrix A collects the anisotropies and heterogeneities of the media in Ω.

Actually E(u) is the value on the diagonal of the bilinear form

B(u, v) =

ˆ
Ω

∇u · ∇v dx,

i.e. E(u) = B(u, u). On the other hand, the Laplacian can be obtained as the Euler-

Lagrange operator associated to E. Moreover, if Ω = Rn and u ∈ S (Rn) then

E(u) =

ˆ
Rn

|∇u|2 dx =
n∑

j=1

ˆ
Rn

(
∂u

∂xj

)2

dx

=
n∑

j=1

ˆ
Rn

(
∂̂u

∂xj

)2

dξ

=
n∑

j=1

ˆ
Rn

4π2ξ2j |û(ξ)|
2 dξ

=

ˆ
Rn

4π2 |ξ|2 |û(ξ)|2 dξ.
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In other words, the spectrum of the Laplacian 4π2 |ξ|2 is defined and determining the

energy on the Fourier side of the theory.

11.2. Energy of weighted undirected graphs and the variational

Euler-Lagrange approach

Let G = (V , E , A,W ) be a weighted undirected graph with #(V) = n, A = I the

density matrix and W a symmetric n × n matrix with nonnegative entries. Given any

real valued function f on V and using vector notation f(i) = fi we define the energy of f

with respect to G by

E(f) =
n∑

i=1

n∑
j=1

wij(fi − fj)
2.

This notion of energy is the restriction to the diagonal g = f of the bilinear form

B(f, g) =
n∑

i=1

n∑
j=1

wij(fi − fj)(gi − gj).

By taking the Gâteaux derivative of E at f in every “direction” g, in the next result we

obtain the Laplacian on G as the Euler-Lagrange equation associated to E.

Theorem 11.1. Let G = (V , E , A,W ) be as before. If f : V → R is a minimizer of

the energy E, then f is harmonic with respect to the Laplacian associated to the graph G.

Proof. Set δE(f, g) to denote the first Gâteaux variation of the Energy at “the

point” f with “the direction” g. In other words

δE(f, g) = lim
t→0

1

t
(E(f + g)− E(f)).

The particular form of E allows us to get an explicit formula for δE(f, g). In fact,

1

t
(E(f + g)− E(f)) =

1

t

[
n∑

i=1

n∑
j=1

wij(fi + tgi − fj − tgj)
2 −

n∑
i=1

n∑
j=1

wij(fi − fj)
2

]

=
1

t

n∑
i=1

n∑
j=1

[
((fi − fj) + t(gi − gj))

2 − (fi − fj)
2
]
wij

=
1

t

n∑
i=1

n∑
j=1

wij

[
2t(fi − fj)(gi − gj) + t2(gi − gj)

2
]

= 2
n∑

i=1

n∑
j=1

(fi − fj)wij(gi − gj) + t

n∑
i=1

n∑
j=1

(gi − gj)
2.
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Hence δE(f, g) = 2
∑n

i=1

∑n
j=1(fi−fj)wij(gi−gj). Since we are assuming that f is a local

minimizer of the energy E, we must have that δE(f, g) = 0 for every g. This equation

translates into
n∑

i=1

n∑
j=1

(fi − fj)wij(gi − gj) = 0

for every g : V → R. Then

0 =
n∑

i=1

n∑
j=1

wij(fi − fj)gi −
n∑

i=1

n∑
j=1

wij(fi − fj)gj

=
n∑

i=1

n∑
j=1

wij(fi − fj)gi +
n∑

i=1

n∑
j=1

wij(fj − fi)gj

=
n∑

i=1

n∑
j=1

wij(fi − fj)gi +
n∑

i=1

n∑
j=1

wji(fi − fj)gi

= 2
n∑

i=1

n∑
j=1

wij(fi − fj)gi,

for every g. In the last equation above we used wij = wji. So that

n∑
i=1

n∑
j=1

wij(fi − fj)gi = 0

for every g. Taking g : V → R to be g(i) = 1, g(l) = 0 for l ̸= i, we get

n∑
j=1

wij(fi − fj) = 0

for every i, which is equivalent to ∆Gf(i) = 0 for every i, with ∆G given in Proposition 9.5.

This fact means that f is harmonic with respect to the Laplacian ∆G defined by the

graph G. □

Let us now consider the variational form of the Laplacian type operator when we have

different weights at each vertex of the graph.

Theorem 11.2. Let G = (V , E , A,W ) with V, E and W as before. Assume now that

each vertex i ∈ V has a positive weight ai, hence A =

( a1 0
a2

...
0 an

)
. If the energy E

associated to the bilinear form

B(f, g) =
n∑

i=1

n∑
j=1

wij(fi − fj)(gi − gj)aiaj
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given by

E (f) = B(f, f) =
n∑

i=1

n∑
j=1

wij(fi − fj)
2aiaj,

assumes its minimum at f , then f solves

n∑
j=1

wij(fi − fj)aj = 0

for every i ∈ V.

Proof. Let, as before, compute

δE (f, g) = lim
t→0

(E (f + g)− E (f)).

Now, we have E (f + g) − E (f) =
∑n

i=1

∑n
j=1wijaiaj [2t(fi − fj)(gi − gj) + t2(gi − gj)

2].

Hence δE (f, g) = 2
∑n

i=1

∑n
j=1wij(fi − fj)(gi − gj)aiaj. Since we are assuming that f is

a minimum for E , then we have the equation

0 =
n∑

i=1

n∑
j=1

wijaiaj(fi − fj)(gi − gj)

for every g : V → R. Since the matrix (wijaiaj : i, j) is symmetric, we have that

n∑
i=0

ai

[
n∑

j=1

wij(fi − fj)aj

]
gi = 0

for every g. Then
n∑

j=1

wij(fi − fj)aj = 0

for every i ∈ V . □

Notice that when the distribution of weights on the vertices is not homogeneous we

have, for the variational approach, a different form for the operator of Laplace type than

the one obtained in the previous chapter. In fact, the non-variational form provides a

nondivergence type operator
1

ai

n∑
j=1

wij(fi − fj)

and the variational form provides a divergence form operator,

n∑
j=1

wijai(fi − fj),
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which, except for a multiplicative constant coincide when all the ai’s are the same.

The above results allow us considering the spectral analysis of the Laplacian operator

of each setting as a quantification of the main direction of energy. This point of view

gives us an intuition of the reasons why the diffusive metrics are providing an adequate

results for applications.

11.3. Problems, comments and further results

(1) Show that the smooth functions minimizing the energy

E(u) =

ˆ
Ω

|∇u|2 dx

are harmonic.

(2) Provide conditions on a graph in such a way that the variational and non-variational

Laplacians coincide.
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