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Abstract

In this work we obtain boundedness results for the fractional integral operator
of the the bi-harmonic Schrödinger operator on weighted Lebesgue and BMO
type spaces in Rd with d ≥ 5. The techniques are based on some new estimates
involving the kernel of the heat semigroup.

Keywords: Bi-Harmonic Operator, Schrödinger Operator, Fractional Integral, BMO
Spaces

1 Introduction

Lets consider the bi-harmonic Schrödinger operator on Rd with d ≥ 5,

L = (−∆)2 + V 2, (1)
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where the potential V is non-negative, non-identically zero, and satisfies a reverse
Hölder inequality for some q > d/2. That means, there exists a constant C such that(

1

|B|

∫
B

V (y)q dy

)1/q

≤ C

|B|

∫
B

V (y) dy, (2)

for every ball B ⊂ Rd.
We shall say that V ∈ RHq when V satisfies (2).
In the last years, the behaviour of some operators associated to (1) has been

studied in many works. For instance, in [6] the authors deal with Hardy spaces and
characterizations, giving boundedness results for a higher order Riesz transform and
the fractional integral of (1) by making use of those caracterizations. In [7] the authors
give boundedness results for a variety of operators related to (1) acting on Lipschitz-
type spaces.

Most of the techniques used for the study of the Schrödinger operator −∆ + V
can also be used to develop the theory associated to (1). Some classical works in this
subject are [9], [10], [11], [15].

The aim of this article is to give boundedness results for the fractional integral
of (1), which we will write as L−α/4. In order to do that, we studied the heat kernel
of the bi-harmonic operator, among other kernels, obtaining some useful estimates.
These estimates allowed us to categorize L−α/4 into the family of operators given in
[5] and in [14], respectively and use the results stated in those articles. The estimates
for the kernels are presented in Section 3.

Next, we will state the central results of this work. Theorem 1 and Theorem 3 give
boundedness results for L−α/4 which are analogous to the ones stated in Theorem 1.4
in [14] and Theorem 1 in [2], respectively. On the other hand, Theorem 2 deals with
the limit case p = d

α , in weighted Lebesgue and BMO-type spaces.

Theorem 1. The fractional integral operator L−α/4 is bounded from BMOβ
ρ to

BMOα+β
ρ , for 0 < β < 1 such that α+ β < min{1, δ} and from BMOρ to BMOα

ρ , if
α < min{1, δ}.
Theorem 2. The fractional integral operator L−α/4 is bounded from Ld/α(wd/α) into
BMOρ(w), for every w such that wd/(d−α) ∈ Aρ

1.
Theorem 3. Let 0 < α < d, d

α ≤ p < d
(α−δ)+ and w ∈ RHp′ ∩ Dη, where 1 ≤ η <

1− α
d + δ

d +
1
p , then the operator L−α/4 is bounded from Lp,∞(w) into BMO

α−d/p
ρ (w).

2 Definitions and auxiliary results

In this section, we will give some important definitions and intermidiate results to
fully understand the theorems stated in the previous section.

As in the study of the theory associated to −∆ + V , we will use the well known
critical radius function

ρ(x) = sup

{
r > 0 :

1

rd−2

∫
B(x,r)

V ≤ 1

}
, x ∈ Rd, (3)

2

IMAL PREPRINT # 2023-0067
ISSN 2451-7100 
Publication date: October 23, 2023

Prep
rin

t



which, under our the assumption given in (2), it is easy to check 0 < ρ(x) < ∞ (see
[15]).

The following propositions will be useful for the results to come.
Proposition 4 (See Lemma 1.4 in [15]). There exist positive constants c0 and k0 such
that

c−1
0 ρ(x)

(
1 +

|x− y|
ρ(x)

)−k0

≤ ρ(y) ≤ c0 ρ(x)

(
1 +

|x− y|
ρ(x)

) k0
k0+1

,

for all x, y ∈ Rd.
Note that in the particular case where |x− y| ≤ ρ(x), we have ρ(x) ≃ ρ(y).
In the next lemma and in the rest of this article we shall denote δ = 2−d/q. Notice

that, under the assumption q > d/2 we have δ > 0.
Lemma 5. For r > 0 and x ∈ Rd, there exist constants C and η > 0 such that

i) if r ≤ ρ(x), ∫
B(x,r)

[V (y)]2dy ≤ C

(
r

ρ(x)

)2δ

rd−4;

ii) if r > ρ(x), ∫
B(x,r)

[V (y)]2dy ≤ C

(
r

ρ(x)

)η

[ρ(x)]d−4,

where η depends on the dimension d and the constant in (2).

The proof for part i) of the previous lemma can be found in [6] (see Lemma 2.6),
whereas part ii) can be proved similarly as Lemma 1.8 in [15], by making a few obvious
adaptations.

A function w defined on Rd is called rapidly decaying if for every N > 0 there
exists a constant CN such that

|w(x)| ≤ CN (1 + |x|)−N .

Corollary 6. Let w be a rapidly decaying non-negative function, then there exist
constants C and c > 0 such that

∫
Rd

[V (y)]2wt(x− y)dy =

C
t

(
4√t

ρ(x)

)2δ
if t ≤ ρ4(x),

Ct−d/4
(

4√t
ρ(x)

)c
[ρ(x)]d−4 if t > ρ4(x),

where wt(x) = t−d/4w(x/ 4
√
t).

A proof for the case t ≤ ρ4(x) can be found in [6] (see Lemma 2.7) and the other
case can be proved in the same way, using part ii) of Lemma 5. Note that, although the
result in the mentioned article was proved for the particular case where w(x) = |x|4/3,
it can be proved for any rapidly decaying function w as well.

We shall denote the kernels of the heat semi-groups e−tL and e−t(−∆)2 , kt(x, y)
and ht(x, y), respectively, and qt(x, y) = kt(x, y)− ht(x, y), for t > 0 and x, y ∈ Rd. It
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is known (see [6]) that qt can be written as

qt(x, y) =

∫ t

0

∫
Rd

hs(x, z)[V (z)]2kt−s(z, y)dzds. (4)

The fractional integral operator of order α > 0, associated to L can be expressed
in terms of its heat semigroup as

L−α/4f(x) =

∫ ∞

0

e−tLf(x)tα/4
dt

t
.

Also, we can write this operator in terms of the expression for the heat semigroup
e−tL as follows

L−α/4f(x) =

∫ ∞

0

∫
Rd

kt(x, y)f(y)t
α/4dy

dt

t
=

∫
Rd

Kα(x, y)f(y)dy,

where

Kα(x, y) =

∫ ∞

0

kt(x, y)t
α/4 dt

t
.

Throughout this paper, we will focus on L−α/4 with α in the range 0 < α < d.
Next, we will give some definitions for classes of weights. These weights w are non-

negative, locally integrable functions. The following classes depending on the critical
radius function ρ, were defined in [4].

Given p > 1, a weight w belongs to the class Aρ,θ
p , for some θ ≥ 0 if there exists a

constant C such that

1

|B|

(∫
B

w

)1/p(∫
B

w− 1
p−1

)1/p′

≤ C

(
1 +

r

ρ(x)

)θ

,

for every ball B = B(x, r).

As for the case p = 1, a weight w belongs to the class Aρ,θ
1 , for some θ ≥ 0 if there

exists a constant C such that

1

|B|

∫
B

w ≤ C

(
1 +

r

ρ(x)

)θ

inf
B

w,

for every ball B = B(x, r). In this last inequality, the infimum is the essential infimum
with respect to the Lebesgue measure.

The classes Aρ
p, for p ≥ 1 are defined as Aρ

p =
⋃
θ≥0

Aρ,θ
p .

Given a critical radius function ρ, for q > 1, RHρ
q =

⋃
θ≥0 RHρ,θ

q , where RHρ,θ
q is

the class of weights w such that there exists a constant C such that(
1

|B|

∫
B

wq

)1/q

≤ C

(
1

|B|

∫
B

w

)(
1 +

r

ρ(x)

)θ

,
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for every ball B = B(x, r).
Given a critical radius function ρ, for η ≥ 1, Dρ

η =
⋃

θ≥0 D
ρ,θ
η , where Dρ,θ

η is the
class of weights w such that there exists a constant C such that

w(tB) ≤ Ctdηw(B)

(
1 +

r

ρ(x)

)θ

,

for every ball B = B(x, r) and t ≥ 1.
Notice that in both classes of weights, if θ = 0, we obtain the classic reverse Hölder

RHq and doubling Dη spaces, respectively. This gives us the inclusions RHq ⊆ RHρ
q

and Dη ⊆ Dρ
η.

For p > 1 and a weight w, Lp,∞(w) is the space of measurable functions f such that

[f ]p,w =

(
sup
t>0

tp
∣∣∣∣{x :

|f(x)|
w(x)

> t

}∣∣∣∣)1/p

< ∞.

Analogously, the weighted Lebesgue spaces Lp(w) are defined as the set of measureable
functions f such that

∥f∥Lp(w) =

∫
Rd

∣∣∣∣ f(x)w(x)

∣∣∣∣p dx < ∞.

The estimates for the fractional integral of L are given in certain BMO-type spaces,
which were first introduced in [3]. The so called BMOγ

ρ (w) spaces, for γ ≥ 0 and a

weight w, are defined as the set of locally integrable functions f in Rd, satisfying the
following conditions∫

B

|f − fB | ≤ Cw(B)|B|γ/d, with fB =
1

|B|

∫
B

f, (5)

and ∫
B

|f | ≤ Cw(B)|B|γ/d, if R ≥ ρ(x), (6)

for every ball B = B(x,R), with x ∈ Rd and R > 0. If γ = 0, we denote the space by
BMOρ(w) and if w = 1, we shall write BMOγ

ρ .

3 Estimates for the kernels

In this section we give smoothness estimates, first for the function qt and then for the
kernel kt, as a consequence of the first one. These estimates are interesting in itself
and also will allow us to show the main results in this work.

Regardless of the many technical steps contained in the proofs of these estimates,
we decided to include them, hoping it will help the reader. We start presenting some
known estimates of the size of ht, which is controlled exponentially. In fact (see section
5.2 in [8]), there exist constants C and c > 0, such that

|ht(x, y)| ≤ Ct−d/4e
− c|x−y|4/3

t1/3 . (7)
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As to kt, in [6] (see Theorem 2.5 there) the authors showed that for every N ∈ N,
there exist constants CN and c > 0, where c is independent of N , such that

|kt(x, y)| ≤ CN t−d/4e
− c|x−y|4/3

t1/3

(
1 +

√
t

ρ2(x)
+

√
t

ρ2(y)

)−N

. (8)

Also, in that same work (see Theorem 2.8 there), it is proved that there exist
constants C and c > 0 such that

|qt(x, y)| ≤ Ct−d/4

(
4
√
t

ρ(x)

)2δ

e
− c|x−y|4/3

t1/3 . (9)

Next, we will give some smoothness estimates. By the Mean Value Theorem and
making use of size estimates for the derivatives of the bi-harmonic heat kernel, which
can be found in [13], we get the following smoothness estimate for ht.
Lemma 7. There exist constants C and c > 0, such that

|ht(x+ h, y)− ht(x, y)| ≤ C|h|t−
d+1
4

(
1 +

|x− y|
4
√
t

)− d−1
3

e
− c|x−y|4/3

t1/3 , (10)

for every h, x, y ∈ Rd such that |h| ≤ |x− y|/4.
Lemma 8. Given ε, 0 < ε < min{1, δ}, there exist constants C and c > 0, such that

|qt(x, y + h)− qt(x, y)| ≤ C

(
|h|
ρ(x)

)ε

t−d/4e
− c|x−y|4/3

t1/3 , (11)

for every h, x, y ∈ Rd such that |h| ≤ |x−y|/4, |h| < C̃ρ(y), for some constant C̃ > 0,
with c independent of ε.

Proof. We will only show the result in case |h| ≤ ρ(x). Otherwise, the statement easily
follows from estimates (7) and (8).

Because of the simetry of qt and expression (4), we have

|qt(x,y + h)− qt(x, y)| ≤
∫ t

0

∫
Rd

|hs(y + h, z)− hs(y, z)| [V (z)]2kt−s(z, x)dzds

=

(∫ t/2

0

∫
Rd

+

∫ t

t/2

∫
Rd

)
|hs(y + h, z)− hs(y, z)| [V (z)]2kt−s(z, x)dzds

= A+B.

6
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We will start with A. Using (8), we can obtain another estimate for the integrand.
Then we will split the integral as shown below. For each N > 0,

A ≤ CN

∫ t/2

0

∫
Rd

|hs(y + h, z)− hs(y, z)| [V (z)]2

×
(
1 +

√
t− s

ρ2(x)
+

√
t− s

ρ2(z)

)−N

(t− s)−d/4e
− c|z−x|4/3

(t−s)1/3 dzds

= CN

∫ t/2

0

∫
4|h|<|z−y|≤|x−y|/2

+

∫ t/2

0

∫
|z−y|≤4|h|

|z−y|≤|x−y|/2

+

∫ t/2

0

∫
|z−y|>|x−y|/2


|hs(y + h, z)− hs(y, z)| [V (z)]2

(
1 +

√
t− s

ρ2(x)
+

√
t− s

ρ2(z)

)−N

× (t− s)−d/4e
− c|z−x|4/3

(t−s)1/3 dzds

= A1 +A2 +A3.

Now, applying (7), we have

A1 ≤ CN |h|
(
1 +

√
t

ρ2(x)

)−N

t−d/4e
− c|x−y|4/3

t1/3

×
∫ t

0

s−1/4

∫
4|h|<|z−y|≤|x−y|/2

s−d/4e
− c|z−y|4/3

s1/3 [V (z)]2dzds

≤ CN |h|ε
(
1 +

√
t

ρ2(x)

)−N

t−d/4e
− c|x−y|4/3

t1/3

×
∫ t

0

∫
Rd

s−
d
4−

ε
4 e

− c|z−y|4/3

s1/3

(
|z − y|

4
√
s

)1−ε

[V (z)]2dzds

= CN |h|ε
(
1 +

√
t

ρ2(x)

)−N

t−d/4e
− c|x−y|4/3

t1/3

×

(∫ ρ4(y)

0

∫
Rd

+

∫ t

ρ4(y)

∫
Rd

)

s−
d
4−

ε
4 e

− c|z−y|4/3

s1/3

(
|z − y|

4
√
s

)1−ε

[V (z)]2dzds.

(12)

7
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For the first integral, by using Corollary 6, we get∫ ρ4(y)

0

s−
ε
4

∫
Rd

s−
d
4 e

− c|z−y|4/3

s1/3

(
|z − y|

4
√
s

)1−ε

[V (z)]2dzds

≤ CN

∫ ρ4(y)

0

s−
ε
4

(
4
√
s

ρ(y)

)2δ
ds

s

= CNρ(y)−ε.

(13)

As to the second integral, also using Corollary 6, we have

∫ t

ρ4(y)

s−
ε
4

∫
Rd

s−
d
4 e

− c|z−y|4/3

s1/3

(
|z − y|

4
√
s

)1−ε

[V (z)]2dzds

≤ CN

∫ t

ρ4(y)

s−
ε
4−

d
4

(
4
√
s

ρ(y)

)C

[ρ(y)]d−4ds

≤ CN

(
4
√
t

ρ(y)

)C

[ρ(y)]d−4

∫ ∞

ρ4(y)

s−
ε
4−

d
4 ds

≤ CNρ(y)−ε

(
1 +

√
t

ρ2(y)

)C
2

.

(14)

Combining results from (12), (13) and (14), yields

A1 ≤ CN

(
|h|
ρ(y)

)ε(
1 +

√
t

ρ2(x)

)−N+C
2

t−d/4e
− c|x−y|4/3

t1/3 .

Here, we have assumed ρ4(y) ≤ t. In case t < ρ4(y) it is enough to bound the
integral in the interval 0 < s ≤ ρ4(y).

If |x− y| ≤ ρ(x), by Proposition 4, we have ρ(x) ≃ ρ(y), so we get to the estimate
by choosing N large enough. Otherwise, if |x− y| > ρ(x), also using Proposition 4, we
have

A1 ≤ CN

(
|h|
ρ(x)

)ε(
1 +

√
t

ρ2(x)

)−N+C
2
(
1 +

|x− y|
ρ(x)

)k0ε

t−d/4e
− c|x−y|4/3

t1/3

≤ CN

(
|h|
ρ(x)

)ε(
1 +

√
t

ρ2(x)

)−N+C
2
(
|x− y|
ρ(x)

)k0ε

t−d/4e
− c|x−y|4/3

t1/3

≤ CN

(
|h|
ρ(x)

)ε(
1 +

√
t

ρ2(x)

)C
2 +

k0ε
2 −N ( |x− y|

4
√
t

)k0ε

t−d/4e
− c|x−y|4/3

t1/3

≤ CN

(
|h|
ρ(x)

)ε(
1 +

√
t

ρ2(x)

)C
2 +

k0ε
2 −N

t−d/4e
− c|x−y|4/3

t1/3 .

(15)

8
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again, obtaining the wanted bound by choosing N large enough.
Next, we will deal with A2. Using (7), we get

A2 ≤ CN

(
1 +

√
t

ρ2(x)

)−N

t−d/4e
− c|x−y|4/3

s1/3

×
∫ t/2

0

∫
|z−y|≤4|h|

|z−y|≤|x−y|/2

s−d/4(e
− c|z−y|4/3

s1/3 + e
− c|z−y−h|4/3

s1/3 )[V (z)]2dzds.

(16)

To bound the integral with the first term in (16), we make a change of variables,
separate the integration region into dyadic anulli and use Lemma 5, obtaining∫

|z−y|≤4|h|
|z−y|≤|x−y|/2

[V (z)]2
∫ t/2

0

s−d/4e
− c|z−y|4/3

s1/3 dsdz

≤
∫

|z−y|≤4|h|
|z−y|≤|x−y|/2

|z − y|−d+4[V (z)]2
∫ ∞

0

u
3
4d−4e−ududz

≤
∞∑
k=0

∫
4−k−1|h|<|z−y|/4≤4−k|h|

|z − y|−d+4[V (z)]2dz

≤
∞∑
k=0

(4−k−1|h|)−d+4

∫
|z−y|/4≤4−k|h|

[V (z)]2dz

≤
∞∑
k=0

(
4−k+1|h|
ρ(y)

)2δ

= C

(
|h|
ρ(y)

)2δ

.

(17)

Given that δ > 0, this last series converges.
Note that if |z − y| ≤ 4|h|, then |z − y − h| ≤ 5|h|, so we can bound the integral

with the second term in (16) in the same way as the first one.
From equations (16) and (17), we get

A2 ≤ CN

(
|h|
ρ(y)

)2δ (
1 +

√
t

ρ2(x)

)−N

t−d/4e
− c|x−y|4/3

s1/3 .

Once again, replying the strategy used in equation (15), we get to the required
estimate.

Now, we will deal with A3. We know that |h| ≤ |x−y|
4 ≤ |z−y|

2 thereby, we can use
the smoothness estimate for the kernel of the bilaplacian operator, given in Lemma (7),
obtaining

A3 ≤ CN |h|ε
(
1 +

√
t

ρ2(x)

)−N

t−d/4e
− c|x−y|4/3

s1/3

×
∫ t

0

s−ε/4

∫
Rd

s−d/4e
− c|z−y|4/3

s1/3

(
|y − z|

4
√
s

)1−ε

[V (z)]2dzds.

9
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Which is the same bound we found for A1 in (12). Therefore, we have

A3 ≤ CN

(
|h|
ρ(x)

)ε

t−d/4e
− c|x−y|4/3

t1/3 .

Now we will move on to bound integral B. From using estimates (7), (8) and
splitting the integral, we get

B ≤ CN

∫ t

t/2

∫
Rd

|h|s−
d+1
4 e

− c|z−ξ|4/3

s1/3 [V (z)]2

×
(
1 +

√
t− s

ρ2(x)
+

√
t− s

ρ2(z)

)−N

(t− s)−d/4e
− c|z−x|4/3

(t−s)1/3 dzds

=

∫ t

t/2

∫
|z−y|≤|x−y|/2

+

∫ t

t/2

∫
|z−y|>|x−y|/2

= B1 +B2.

We will start with B1. After a change of variables,

B1 ≤ CN |h|t−
d+1
4 e

− c|x−y|4/3

t1/3

×
∫ t

0

(
1 +

√
s

ρ2(x)

)−N ∫
Rd

s−d/4e
− c|z−x|4/3

s1/3 [V (z)]2dzds

≤ CN |h|εt−d/4e
− c|x−y|4/3

t1/3

(
|x− y|

4
√
t

)1−ε

×
∫ t

0

∫
Rd

(
1 +

√
s

ρ2(x)

)−N

s−d/4− ε
4 e

− c|z−x|4/3

s1/3 [V (z)]2dzds

≤ CN |h|εt−d/4e
− c|x−y|4/3

t1/3

(
|x− y|

4
√
t

)1−ε

×

(∫ ρ4(x)

0

∫
Rd

+

∫ t

ρ4(x)

∫
Rd

)
(
1 +

√
s

ρ2(x)

)−N

s−d/4− ε
4 e

− c|z−x|4/3

s1/3 [V (z)]2dzds.

(18)

For the first integral, using Corollary 6, we get

∫ ρ4(x)

0

s−
ε
4

∫
Rd

s−d/4e
− c|z−x|4/3

s1/3 [V (z)]2dzds ≤
∫ ρ4(x)

0

s−
ε
4

(
4
√
s

ρ(x)

)2δ
ds

s

≤ CNρ(x)−ε.

(19)

As to the second integral, also using Corollary 6, we have
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∫ t

ρ4(x)

(
1 +

√
s

ρ2(x)

)−N

s−
ε
4

∫
Rd

s−d/4e
− c|z−x|4/3

s1/3 [V (z)]2dzds

≤
∫ t

ρ4(x)

(
1 +

√
s

ρ2(x)

)−N+C
2

s−
ε
4−

d
4 [ρ(x)]d−4ds

≤ [ρ(x)]d−4

∫ ∞

ρ4(x)

s−
ε
4−

d
4 ds

≤ Cρ(x)−ε.

(20)

Here, we have chosen N large enough. From equations (18), (19) and (20), we reach
the following estimate for B1

B1 ≤ CN

(
|h|
ρ(x)

)ε

t−d/4e
− c|x−y|4/3

t1/3

(
|x− y|

4
√
t

)1−ε

≤ CN

(
|h|
ρ(x)

)ε

t−d/4e
− c|x−y|4/3

t1/3 .

Here, we have assumed ρ4(y) ≤ t. In case t < ρ4(y) it is enough to bound the
integral in the interval 0 < s ≤ ρ4(y).

Finally, we will deal with B2. Making use of equation (7), we can get to the same
bound that we obtained for B1.

B2 ≤ CN |h|t−
d+1
4 e

− c|x−y|4/3

t1/3

×
∫ t

0

(
1 +

√
s

ρ2(x)

)−N ∫
Rd

s−d/4e
− c|z−x|4/3

s1/3 [V (z)]2dzds.

Which means we can bound B2 just as we bounded B1.

Proposition 9. Given ε, 0 < ε < min{1, δ} and M > 0, there exist constants C and
c > 0 such that for |h| < 4

√
t, we have

|kt(x, y + h)− kt(x, y)| ≤ C

(
|h|
4
√
t

)ε

t−d/4e
− c|x−y|4/3

t1/3

(
1 +

√
t

ρ2(x)
+

√
t

ρ2(y)

)−M

,

where c is independent of ε and M .

Proof. We shall begin by proving the result for the case
4

√
t

2
≤ |h| < 4

√
t. According

to Proposition 4, there exist constants C > 0 and k0 > 0 such that

1

ρ2(y + h)
≥ C

ρ2(y)

(
1 +

√
t

ρ2(x)
+

√
t

ρ2(y)

)− k0
1+k0

,
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thus,

(
1 +

√
t

ρ2(x)
+

√
t

ρ2(y + h)

)−N

≤ C

1 +

√
t

ρ2(x)
+

√
t

ρ2(y)

(
1 +

√
t

ρ2(x)
+

√
t

ρ2(y)

) k0
1+k0

−N

≤ C

(
1 +

√
t

ρ2(x)
+

√
t

ρ2(y)

)−Nε

,

where ε =
1

1 + k0
.

Using this last inequality and (8), we obtain

|kt(x, y + h)− kt(x, y)| ≤ Ct−d/4e
− c|x−y|4/3

t1/3

(
1 +

√
t

ρ2(x)
+

√
t

ρ2(y)

)−Nε

.

Given that |h| ≃ 4
√
t in this case, we can easily reach the result.

On the other hand, if |h| ≤ |x− y|
4

, also using (8) we get

|kt(x, y + h)− kt(x, y)| ≤ Ct−d/4e
− c|x−y|4/3

t1/3

(
1 +

√
t

ρ2(x)
+

√
t

ρ2(y)

)−M

. (21)

If |h| > ρ(y), for L = M − ε
2 ,

|kt(x, y + h)− kt(x, y)| ≤ Ct−d/4e
− c|x−y|4/3

t1/3

(
1 +

√
t

ρ2(x)
+

√
t

ρ2(y)

)−L(
ρ(y)

4
√
t

)ε

≤ C

(
|h|
4
√
t

)ε

t−d/4e
− c|x−y|4/3

t1/3

(
1 +

√
t

ρ2(x)
+

√
t

ρ2(y)

)−L

.

On the contrary, if |h| ≤ ρ(y), using equation (7) and Lemma 8,

|kt(x, y + h)− kt(x, y)| ≤ |ht(x, y + h)− ht(x, y)|+ |qt(x, y + h)− qt(x, y)|

≤ C
|h|
4
√
t
t−d/4e

− c|x−y|4/3

t1/3 + C

(
|h|
4
√
t

)ε( √
t

ρ2(x)

)ε/2

t−d/4e
− c|x−y|4/3

t1/3

≤ C

(
|h|
4
√
t

)ε

t−d/4e
− c|x−y|4/3

t1/3

(
1 +

√
t

ρ2(x)

)ε/2

.

This last inequality combined with (21) give us the result.
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At last, we need to show the result for
|x− y|

4
< |h| ≤ 4

√
t

2
. Using the semi-group

property, we get the following integral representation for the difference

|kt(x, y + h)− kt(x, y)| ≤
∫
Rd

kt/2(x, z)|kt/2(z, y + h)− kt/2(z, y)|dz

=

∫
|z−y|≤4|h|

+

∫
|z−y|>4|h|

= S1 + S2.

First, we will bound S1. Using (8), we have

S1 ≤ Ct−d/4e
− c|x−y|4/3

t1/3

(
1
4
√
t

)d(
1 +

√
t

ρ2(x)

)−N ∫
|z−y|≤4|h|

dz

≤ Ct−d/4e
− c|x−y|4/3

t1/3

(
|h|
4
√
t

)ε(
1 +

√
t

ρ2(x)

)−N

.

(22)

As the result has already been proved for the case |h| < |z − y|
4

, we shall use it,

along with (8) to bound S2, obtaining

S2 ≤ C

∫
|z−y|>4|h|

kt/2(x, z)

(
|h|
4
√
t

)ε

t−d/4e
− c|z−y|4/3

t1/3 dz

≤ C

(
|h|
4
√
t

)ε

t−d/4e
− c|x−y|4/3

t1/3

(
1 +

√
t

ρ2(x)

)−N ∫
Rd

t−d/4e
− c|x−z|4/3

t1/3 dz.

(23)

Where the last integral is finite.
From equations (22) and (23), we get

|kt(x, y + h)− kt(x, y)| ≤ C

(
|h|
4
√
t

)ε

t−d/4e
− c|x−y|4/3

t1/3

(
1 +

√
t

ρ2(x)

)−N

.

Finally, using the fact that |h| ≤ 4

√
t

2
and following the same steps we used before,

we can show (
1 +

√
t

ρ2(x)

)−N

≤ C

(
1 +

√
t

ρ2(x)
+

√
t

ρ2(y)

)−Nε

.

Which concludes the proof of the result.

4 Proof of Theorem 1

In order to prove the central results of this work, we will need to study some families
of fractional integral operators concerning a critical radius function, which were first
introduced in [1]. In that article, the authors define the spaces S(ρ,∞, γ), along with
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other spaces of singular integral operators, called S(ρ, s). For the purposes of this
article, it will be relevant to state the definition of the spaces mentioned first.

Given a critical radius function ρ and γ, 0 ≤ γ < d, we say that a kernel K belongs
to S(ρ,∞, γ) if it satisfies both of the following conditions.

i) For every N > 0 there exists a constant CN such that

|K(x, y)| ≤ CN

|x− y|d−γ

(
1 +

|x− y|
ρ(x)

)−N

, (24)

for every x, y ∈ Rd.
ii) There exist constants C and λ > 0 such that

|K(x, y)−K(z, y)| ≤ C
|x− z|λ

|x− y|d−γ+λ
, (25)

for every x, y, z ∈ Rd such that |x− z| ≤ |x− y|/2.
On the other hand, we say that K belongs to S0(ρ,∞, γ) if it satisfies equation (24)
and a stronger smoothness condition stated below.

iii) For M > 0 and 0 < λ < 1 there exists a constant C such that

|K(x, y)−K(z, y)| ≤ C
|x− z|λ

|x− y|d−γ+λ

(
1 +

|x− y|
ρ(x)

)−M

, (26)

for every x, y, z ∈ Rd such that |x− z| ≤ |x− y|/2.

Next, we shall state the following lemma, which will be used in the proof of
Theorem 1.
Lemma 10. For every 0 < ε < min{1, δ}, there exists a constant Cε such that

|kt(x, y)− kt(x, z)| ≤ Cε
|y − z|ε

|x− y|d+ε
,

for x, y, z ∈ Rd such that |x− y| > 2|y − z|.

Proof. If |y − z| ≤ 4
√
t, using Proposition 9 we get

|kt(x, y)− kt(x, z)| ≤ C

(
|y − z|

4
√
t

)ε

t−d/4e
− c|x−y|4/3

t1/3

(
1 +

√
t

ρ2(x)
+

√
t

ρ2(y)

)−M

≤ C|y − z|εt−ε/4

(
1 +

|x− y|
4
√
t

)−N

t−d/4

≤ C
|y − z|ε

|x− y|d+ε
,
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by choosing N = d + ε. Conversely, if |y − z| > 4
√
t, using (8) and the fact that

|x− y| ≃ |x− z|, we have

|kt(x, y)− kt(x, z)| ≤ Ct−d/4[e
−c

|x−y|4/3

t1/3 + e
−c

|x−z|4/3

t1/3 ]

≤ Ct−d/4e
−c

|x−y|4/3

t1/3

≤ C

(
|y − z|

4
√
t

)ε

t−d/4

(
1 +

|x− y|
4
√
t

)−N

≤ C

(
|y − z|

4
√
t

)ε

t−d/4

(
|x− y|

4
√
t

)−(d+ε)

= C
|y − z|ε

|x− y|d+ε
.

Here, we have chosen N = d+ ε again.

Proposition 11. Kα belongs to S0(ρ,∞, α).

Proof. This result can be proved using the same techniques as in the proof of
Proposition 8 in [1], using estimate (8) and Lemma 10.

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. We will make use of Theorem 1.1 and Theorem 1.2 in [14], which
give us T1-type conditions equivalent to equations (5) and (6). In order to do that,
we need to prove that L−α/4 satisfies the hypothesis of those theorems.

First, notice that by Proposition 11 and Theorem 4.2 in [6], along with the fact
that the kernel Kα is symmetric (by the self-adjointness of L−α/4), we can assure that
L−α/4 is an α-Schrödinger-Calderón-Zygmund operator with any regularity exponent
ε such that 0 < ε < min{1, δ} (the definition for the families of operators previously
mentioned can be found in [14]).

Now, it will be enough to show that there exist constants C1 and C2 such that the
following inequalities hold.(

ρ(x0)

r

)β
1

|B|1+α
d

∫
B

|L−α/41(y)− (L−α/41)B |dy ≤ C1, (27)

log

(
ρ(x0)

r

)
1

|B|1+α
d

∫
B

|L−α/41(y)− (L−α/41)B |dy ≤ C2, (28)

for each ball B = B(x0, r), x0 ∈ Rd and 0 < r ≤ 1
2ρ(x0). Notice that by

Proposition 11, Kα satisfies (24), so L−α/41 is well defined for 0 < α < d.
Although the proof is based on certain techniques used in [14], we will give all the

details for a better understanding for the reader, since non-trivial details concerning
the bi-harmonic Schrödinger operator may appear.
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We shall first show that for these balls∣∣∣∣∫
Rd

kt(x, y)dx−
∫
Rd

kt(x, z)dx

∣∣∣∣ ≤ C

(
r

ρ(x0)

)ε

, (29)

for every ε such that 0 < ε < min{1, δ}.
Set B = B(x0, r), where 0 < r ≤ 1

2
ρ(x0) and y, z ∈ B.

We will begin analyzing the case 4
√
t ≤ 2r. Since

∫
Rd ht(x, y)dx =

∫
Rd ht(x, z)dx

for all x, y ∈ Rd (see the expression of ht in Section 2.2 in [13]), using (9) and the fact
that ρ(y) ≃ ρ(z) ≃ ρ(x0), we have∣∣∣∣∫

Rd

kt(x, y)dx−
∫
Rd

kt(x, z)dx

∣∣∣∣
≤
∣∣∣∣∫

Rd

kt(x, y)dx−
∫
Rd

ht(x, y)dx

∣∣∣∣+ ∣∣∣∣∫
Rd

kt(x, z)dx−
∫
Rd

ht(x, z)dx

∣∣∣∣
≤
∫
Rd

|qt(x, y)|dx+

∫
Rd

|qt(x, z)|dx

≤ C

(
4
√
t

ρ(x0)

)2δ ∫
Rd

(
t−d/4e

− c|x−y|4/3

t1/3 + t−d/4e
− c|x−z|4/3

t1/3

)
dx

≤ C

(
4
√
t

ρ(x0)

)2δ

≤ C

(
r

ρ(x0)

)2δ

.

On the other hand, if 4
√
t > 2r and 4

√
t > ρ(x0), using Proposition 9, we get∣∣∣∣∫

Rd

kt(x, y)dx−
∫
Rd

kt(x, z)dx

∣∣∣∣ ≤
∫
Rd

|kt(x, y)− kt(x, z)|dx

≤ C

(
|y − z|

4
√
t

)ε ∫
Rd

t−d/4e
− c|x−y|4/3

t1/3 dx

≤ C

(
|y − z|

4
√
t

)ε

≤ C

(
r

ρ(x0)

)ε

.
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Finally, to deal with the case 2r < 4
√
t ≤ ρ(x0), we will split the domain of the

integral in three, as shown below∣∣∣∣∫
Rd

kt(x, y)dx−
∫
Rd

kt(x, z)dx

∣∣∣∣
=

∣∣∣∣(∫
Rd

kt(x, y)dx−
∫
Rd

ht(x, y)dx

)
−
(∫

Rd

kt(x, z)dx−
∫
Rd

ht(x, z)dx

)∣∣∣∣
=

∣∣∣∣∫
Rd

(qt(x, y)− qt(x, z))dx

∣∣∣∣
=

∣∣∣∣∣
∫
|x−y|>Cρ(y)

+

∫
4|y−z|<|x−y|≤Cρ(y)

+

∫
|x−y|≤4|y−z|

∣∣∣∣∣
= |I + II + III|.

To bound the first integral, using Lemma 10, we have

|I| ≤
∫
|x−y|>Cρ(y)

|kt(x, y)− kt(x, z)|dx ≤ C

∫
|x−y|>Cρ(y)

|y − z|ε

|x− y|d+ε
dx

≤ Crε
∫
|x−y|>Cρ(y)

dx

|x− y|d+ε
= C

(
r

ρ(y)

)ε

≤ C

(
r

ρ(x0)

)ε

.

For the second one, we will use Lemma 8, getting

|II| ≤ C

∫
4|y−z|<|x−y|≤Cρ(y)

(
|y − z|
ρ(y)

)ε

t−d/4e
−c

|x−y|4/3

t1/3 dx

≤ C

(
|y − z|
ρ(y)

)ε ∫
4|y−z|<|x−y|≤Cρ(y)

t−d/4e
−c

|x−y|4/3

t1/3 dx ≤ C

(
r

ρ(x0)

)ε

.

Lastly, to bound the third integral, we will use (9), obtaining

|III| ≤ C

(
4
√
t

ρ(x0)

)2δ
(∫

|x−y|≤4|y−z|
t−d/4e

− c|x−y|4/3

t1/3 dx

+

∫
|x−z|≤5|y−z|

t−d/4e
− c|x−z|4/3

t1/3 dx

)

≤ C

(
4
√
t

ρ(x0)

)2δ ∫
|ξ|≤5

|y−z|
4√t

t−d/4e
− c|ξ|4/3

t1/3 dξ

≤ C

(
4
√
t

ρ(x0)

)2δ ( |y − z|
4
√
t

)d

≤ C
rd

[ρ(x0)]2d(
4
√
t)d−2δ

≤ C

(
r

ρ(x0)

)2δ

.
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Hence, we have proved equation (29).
To conclude the proof we will bound the integrands from inequalities i) and ii).

L−α/41(y)− L−α/41(z) =

∫ ∞

0

∫
Rd

(kt(x, y)− kt(x, z))dx t
α/4 dt

t

=

(∫ ρ4(x0)

0

+

∫ ∞

ρ4(x0)

)∫
Rd

(kt(x, y)− kt(x, z))dx t
α/4 dt

t

= I + II.

For the first integral, using equation (29) and integrating, we get

|I| ≤ C

(
r

ρ(x0)

)ε ∫ ρ4(x0)

0

tα/4
dt

t
= C

(
r

ρ(x0)

)ε

ρα(x0).

For the second integral, notice r ≤ 1

2
ρ(x0) ≤

1

2
4
√
t in this region. Therefore, using

equation (29), we have∣∣∣∣∫
Rd

kt(x, y)dx−
∫
Rd

kt(x, z)dx

∣∣∣∣ ≤ C

(
r
4
√
t

)ε

.

Making use of this last inequality and then integrating, we obtain

|II| ≤
∫ ∞

ρ4(x0)

tα/4
dt

t
= Crε

∫ ∞

ρ4(x0)

t
α−ε
4

dt

t
= C

(
r

ρ(x0)

)ε

ρα(x0).

So, we have proved that, for every 0 < ε < min{1, δ}, we have

|L−α/41(y)− L−α/41(z)| ≤ C

(
r

ρ(x0)

)ε

ρα(x0).

This last estimate proves both inequalities (27) and (28).

5 Proof of Theorem 2

Notice that, by estimate (8), the kernel Kα of the fractional integral L−α/4 is bounded
by the kernel of the classical fractional integral. This is

Kα(x, y) ≤
C

|x− y|d−α
. (30)

As a consequence, the operator L−α/4 is of weak type (1, d/d− α).
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The next proposition is similar to Proposición 4.2.4 in [5]. However, the spaces of
functions involved there differ from the ones we are considering in this work. Even
though both proofs may look similar, they have some tecnichal differences.
Proposition 12. Let T be an operator of weak type (1, d/(d−α)) such that its kernel
K belongs to S(ρ,∞, α), with 0 < α < d. Then T is bounded from Ld/α(wd/α) into
BMOρ(w), for every weight w such that wd/(d−α) ∈ Aρ

1.

Proof. Let B = B(x0, r) and B̃ = B(xo, ρ(x0)) with x0 ∈ Rd and r ≤ ρ(x0). We write
f = f1 + f2 + f3, with f1 = fχ2B and f3 = f(2B̃)C .

Let 0 ≤ α < d. Lets start estimating |Tf3(x)| uniformly for x ∈ B. When x ∈ B and
y ∈ (2B̃)C , it follows |x− y| ≃ |x0 − y| and also ρ(x) ≤ Cρ(x0). Lets note B̃k = 2kB̃.
Then, from equation (24), Hölder’s inequality with exponent d/α and considering θ

such that w
d

d−α ∈ Aρ,θ
1 , we obtain

|Tf3(x)| ≤ C

∫
(2B̃)C

|f(y)|
|x0 − y|d−α

(
1 +

|x0 − y|
ρ(x0)

)−N

dy

≤ C(ρ(x0))
N

∫
(2B̃)C

|f(y)|
|x0 − y|d−α+N

dy

≤ C(ρ(x0))
N

∞∑
k=1

1

(2kρ(x0))d−α+N

∫
B̃k+1

|f(y)|dy

≤ C∥f/w∥Ld/α

∞∑
k=1

1

2kN

(
1

|B̃k+1|

∫
B̃k+1

w(y)
d

d−α dy

) d−α
d

≤ C∥f/w∥Ld/α

∞∑
k=1

2−kN

(
inf
B̃k+1

w

)(
1 +

2k+1ρ(x0)

ρ(x0)

)θ(1−α
d )

≤ C∥f/w∥Ld/α inf
B

w

∞∑
k=1

2−k(N−θ(1−α/d))

≤ C
w(B)

|B|
∥f/w∥Ld/α ,

where the last inequality follows from taking N large enough.
Now, we will estimate |Tf2(x)−cB |, where cB = Tf2(x0) and x ∈ B. We shall name

k0 = sup{k : 2kr < 2ρ(x0)} and Bk = 2kB(x0, r). Given that |x−x0| < |y−x0|/2 for
every x ∈ B and y ∈ (2B)C , we will use the smoothness estimate in equation (25) and,
as done before, Hölder’s inequality with exponent d/α and the fact that the weight w
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satisfies w
d

d−α ∈ Aρ,θ
1 for some θ > 0. Then,

|Tf2(x)− cB | ≤
∫
2B̃\2B

|f(y)||K(x0, y)−K(x, y)|dy

≤ Crλ
∫
2B̃\2B

|f(y)|
|x0 − y|d−α+λ

dy

≤ Crλ
k0∑
k=1

1

(2kr)d−α+λ

∫
Bk+1

|f(y)|dy

≤ C∥f/w∥Ld/α

k0∑
k=1

1

2kλ

(
1

|Bk+1|

∫
Bk+1

w(y)
d

d−α dy

) d−α
d

≤ C∥f/w∥Ld/α

k0∑
k=1

2−kλ

(
inf
Bk+1

w

)(
1 +

2k+1r

ρ(x0)

)θ(1−α
d )

≤ C∥f/w∥Ld/α inf
B

w

∞∑
k=1

2−kλ

≤ C
w(B)

|B|
∥f/w∥Ld/α ,

where we have used the fact that (1+2k+1r/ρ(x0))
σ ≤ 5σ, for every k ≤ k0 and θ > 0.

Now, lets supose α > 0. From the (1, d/(d− α)) weak type of the operator T and
Kolmorogov’s inequality, yields

1

|B|

∫
B

|Tf1(y)|dy ≤ C
|B|1− d−α

d

|B|

∫
2B

|f(y)|dy = C
1

|B|1−α/d

∫
2B

|f(y)|dy.

Then, from Hölder’s inequality with exponent d/α and the fact that w
d

d−α ∈ Aρ
1,

follows

1

|B|

∫
B

|Tf1(y)|dy ≤ C∥f/w∥Ld/α

(
1

|2B|

∫
2B

w(y)
d

d−α dy

)1−α/d

≤ C∥f/w∥Ld/α

(
inf
2B

w
)(

1 +
2r

ρ(x0)

)θ(1−α
d )

≤ C∥f/w∥Ld/α

(
inf
B

w
)

≤ C
w(B)

|B|
∥f/w∥Ld/α .

which concludes the proof.
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Proof of Theorem 2. The result is a direct consequence of the weak type (1, d/d− α)
of L−α/4, Proposition 11 and Proposition 12.

6 Proof of Theorem 3

We start this section stating some results that will be usefull. Next proposition char-
actarizes, in the presence of a doubling weight, the space BMOβ

ρ (w) reducing the set
of balls that in ineqality (6) must be verified to only critical balls.
Proposition 13 (See Corollary 1 in [2]). Given w ∈ Dη for some η ≥ 1, and γ ≥ 0,
a function f ∈ L1

loc(Rd) belongs to BMOγ
ρ (w) if and only if both of the following

conditions hold:

i) For every ball B = B(x,R), with x ∈ Rd and R < ρ(x)∫
B

|f − fB | ≤ Cw(B)|B|γ/d, with fB =
1

|B|

∫
B

f.

ii) For every x ∈ Rd, ∫
B(x,ρ(x))

|f | ≤ Cw(B(x, ρ(x)))|ρ(x)|γ .

The following result gives some control of the average of a function in terms of its
weak Lebesgue semi-norm.
Proposition 14 (See Lemma 4.1 in [12]). Let p > 1 and w a weight in RHp′ . There
exists a constant C such that, if f is a locally integrable function and B is a ball in
Rd then, ∫

B

|f | ≤ Cw(B)|B|−1/p[f ]p,w.

We now give the proof of Theorem 3.

Proof of Theorem 3. First, we will show that given f ∈ L1
loc and B = B(x0, r), with

x0 ∈ Rd,
1

w(B)

∫
B

L−α/4(|fχ2B |) ≤ C|B|
α
d − 1

p [f ]p,w. (31)
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In fact, from (30) and Proposition 14, we get

1

w(B)

∫
B

L−α/4(|fχ2B |) =
1

w(B)

∫
B

∫
Rd

Kα(x, y)|f(y)|χ2B(y)dydx

≤ 1

w(B)

∫
B

∫
2B

|f(y)|
|x− y|d−α

dydx

=
1

w(B)

∫
2B

|f(y)|
∫
B

dx

|x− y|d−α
dy

≤ C
rα

w(B)

∫
2B

|f(y)|dy

≤ C|B|
α
d − 1

p [f ]p,w.

To check that L−α/4f belongs to BMO
α−d/p
ρ (w), by using Proposition 13, we shall

prove there exists a constant C such that the following conditions hold

i) For every x0 ∈ Rd,

1

w(B(x0, ρ(x0)))

∫
B(x0,ρ(x0))

|L−α/4f | ≤ C|B(x0, ρ(x0))|
α
d − 1

p [f ]p,w. (32)

ii) For every ball B = B(x0, r) with r < ρ(x0) and some constant CB

1

w(B)

∫
B

|L−α/4f(x)− CB |dx ≤ C|B|
α
d − 1

p [f ]p,w. (33)

In order to prove (32), given f and B(x0, R), with R = ρ(x0), we split the function as
f = f1 + f2, where f1 = fχ2B . We only need to show that the condition holds for f2.
Notice

L−α/4f2(x) =

∫ R4

0

e−tLf2(x)t
α/4 dt

t
+

∫ ∞

R4

e−tLf2(x)t
α/4 dt

t
.

If x ∈ B, y ∈ (2B)C ,

|x0 − y| ≤ |x− x0|+ |x− y| ≤ r + |x− y| ≤ 2|x− y|.
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Then |x− y| ≥ C|x0 − y|. Thus, from (8),∣∣∣∣∣
∫ R4

0

e−tLf2(y)t
α/4−1dt

∣∣∣∣∣ =
∣∣∣∣∣
∫ R4

0

∫
(2B)C

kt(x, y)f(y)t
α/4−1dydt

∣∣∣∣∣
≤ C

∫ R4

0

∫
(2B)C

t−d/4e
−c

|x−y|4/3

t1/3 |f(y)|tα/4−1dydt

≤ C

∫ R4

0

t
−d+α

4 −1

∫
(2B)C

(
t1/3

|x− y|4/3

) 3
4M

|f(y)|dydt

≤ C

∫ R4

0

t
−d+α+M

4 −1dt

∫
(2B)C

|f(y)|
|x0 − y|M

dy.

To bound the second integral, we split the integration region as follows∫
(2B)C

|f(y)|
|x0 − y|M

dy =

∞∑
k=1

∫
2k+1B\2kB

|f(y)|
|x0 − y|M

dy

≤ 1

RM

∞∑
k=1

1

2kM

∫
2k+1B

|f(y)|dy

≤ CR−M− d
p [f ]p,w

∞∑
k=1

w(2k+1B)2−k( d
p+M)

≤ Cw(B)R−M− d
p [f ]p,w

∞∑
k=1

2−k( d
p+M−dη),

(34)

where we have used Proposition 14 and the fact that w ∈ Dη. That last series converges
by choosing M large enough. Finally,∣∣∣∣∣

∫ R4

0

e−tLf2(y)t
α/4−1dt

∣∣∣∣∣ ≤ Cw(B)R−M− d
p [f ]p,w

∫ R4

0

t
−d+α+M

4 −1dt

= Cw(B)|B|
α
d − 1

p−1[f ]p,w.
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As to the second integral in equation (6), from inequality (8) and Proposition 14, we
have ∣∣∣∣∫ ∞

R4

e−tL f2(y) t
α/4−1dt

∣∣∣ ≤ ∫ ∞

R4

∫
(2B)C

kt(x, y)|f(y)|tα/4−1dydt

≤ C

∫ ∞

R4

∫
(2B)C

t−d/4e
−c

|x−y|4/3

t1/3

(
ρ(x)

4
√
t

)2N

|f(y)|tα/4−1dydt

= C

∫ ∞

R4

∫
(2B)C

t
α−d−2N

4 −1e
−c

|x−y|4/3

t1/3 [ρ(x)]2N |f(y)|dydt

≤ C[ρ(x)]2N
∫ ∞

R4

t
α−d−2N

4 −1

∫
(2B)C

(
t1/3

|x− y|4/3

) 3
4M

|f(y)|dydt

≤ CR2N

∫ ∞

R4

t
M+α−d−2N

4 −1dt

∫
(2B)C

|f(y)|
|x0 − y|M

dy

≤ Cw(B)R2N− d
p−M [f ]p,wR

M+α−d−2N

= Cw(B)|B|
α
d − 1

p−1[f ]p,w.

Given that ρ(x) ≃ ρ(x0) = R, since x ∈ B.
Next, we will prove (33). Let B = B(x0, r) with r < ρ(x0). We split f as f = f1+f2,

where f1 = fχ2B and set

CB =

∫ ∞

R4

e−tLf2(x0)t
α/2−1dt.

From equation (31), we have

1

w(B)

∫
B

|Lα/4(f)− CB | ≤
1

w(B)

∫
B

Lα/4(|f1|) +
1

w(B)

∫
B

|Lα/4(f2)− CB |

≤ C|B|
α
d − 1

p [f ]p,w +
1

w(B)

∫
B

|Lα/4(f2)− CB |.

Also,

|Lα/4f2(x)− CB | =

∣∣∣∣∣
∫ r4

0

e−tLf2(x)t
α/4−1dt

∣∣∣∣∣+
∣∣∣∣∫ ∞

r4
e−tLf2(y)t

α/4−1dt− CB

∣∣∣∣ .
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Then, we only need to bound the second integral. Using Proposition 9, we obtain∣∣∣∣∫ ∞

r4
e−tLf2(y) tα/4

dt

t
− CB

∣∣∣∣ ≤ ∫ ∞

r4

∫
(2B)C

|kt(x, y)− kt(x0, y)||f(y)|dytα/4
dt

t

≤ C

∫ ∞

r4

∫
(2B)C

(
|x− x0|

4
√
t

)δ′′

t−d/4e
−c

|x−y|4/3

t1/3 |f(y)|dytα/4 dt
t

≤ Crδ
′′
∫
(2B)C

|f(y)|
∫ ∞

r4
t−

d−α+δ′′
4 e

−c
|x−y|4/3

t1/3
dt

t
dy

= Crδ
′′
∫
(2B)C

|f(y)|
|x− y|d−α+δ′′

dy

∫ ( |x−y|
r )

4/3

0

s
3
4 (d−α+δ′′)e−cs ds

s

≤ Crδ
′′
∫
(2B)C

|f(y)|
|x− y|d−α+δ′′

dy

∫ ∞

0

s
3
4 (d−α+δ′′)e−cs ds

s

≤ Crδ
′′
∫
(2B)C

|f(y)|
|x− y|d−α+δ′′

dy.

Finally, by splitting the domain of the integral into dyadic anulli as we did in
equation (34), we get∣∣∣∣∫ ∞

r4
e−tLf2(y)t

α/4−1dt− CB

∣∣∣∣ ≤ Cw(B)rα−d− d
p [f ]p,w.
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