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Abstract

In this work we obtain boundedness results for the, fractional integral operator
of the the bi-harmenic Schrédinger operator on weighted Lebesgue and BMO
type spaces in R? with d > 5. The techniques are based on some new estimates
involving the kérnel of the heat semigroup.

Keywords: Bi-Harmonic'Operator, Schrédinger Operator, Fractional Integral, BMO
Spaces

1 Introduction

Lets consider the bi-harmonic Schrédinger operator on R¢ with d > 5,

L= (-A)?+V2 (1)
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where the potential V' is non-negative, non-identically zero, and satisfies a reverse
Holder inequality for some ¢ > d/2. That means, there exists a constant C' such that

(5 /. V<y>qdy>l/qs|,f| | v @

for every ball B C R%.

We shall say that V' € RH, when V satisfies (2).

In the last years, the behaviour of some operators associated to (1) has been
studied in many works. For instance, in [6] the authors deal withhHardy spaces and
characterizations, giving boundedness results for a higher order Riesz(transform and
the fractional integral of (1) by making use of those caracterizationsIn [7] the authors
give boundedness results for a variety of operators related to (1) acting eniLipschitz-
type spaces.

Most of the techniques used for the study of the Schrddinger operator —A+ V
can also be used to develop the theory associatedito (1)€Some classical works in this
subject are [9], [10], [11], [15].

The aim of this article is to give boundedness results for the fractional integral
of (1), which we will write as £~%/%. In order t6 do that)we studied the heat kernel
of the bi-harmonic operator, among other kernels, obtaining, some useful estimates.
These estimates allowed us to categorize £~/ into the family of operators given in
[5] and in [14], respectively and use theresults stated in those articles. The estimates
for the kernels are presented in Section 3.

Next, we will state the central zesults of this work. Theorem 1 and Theorem 3 give
boundedness results for £~%/* which are analogous to the ones stated in Theorem 1.4
in [14] and Theorem 1 in [2], respectively. On the other hand, Theorem 2 deals with
the limit case p = g, in weighted Lebesguerand B M O-type spaces.

Theorem 1. The fraktional integral operater L£~°/* is bounded from BMOE to
BMO(;“‘B, for 0 < B <1 such that @+ < min{l, 0} and from BMO, to BMOy, if
a < min{l, ¢}.

Theorem 2. {he fractional integral operator L=/* is bounded from LY (w/ ) into
BMO,(w)y for every w such that w¥/ (=) ¢ A7

Theorem 3. Let0<a<d,§§p<ﬁ and w € RHy N Dy, where 1 < n <

1-2490 4 %, then the eperator L~/* is bounded from LP*(w) into BMngd/p(w).

2 Definitions and auxiliary results

In this section, we will give some important definitions and intermidiate results to
fully understand the theorems stated in the previous section.

As in the study of the theory associated to —A + V', we will use the well known
critical radius function

1
p(x):sup{r>0:rdz/3( )Vgl}, r € RY, (3)
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which, under our the assumption given in (2), it is easy to check 0 < p(z) < oo (see

[15]).
The following propositions will be useful for the results to come.
Proposition 4 (See Lemma 1.4 in [15]). There exist positive constants ¢y and ko such

that .
_ —ko _ k (JJr1

_ X x 0
ey plx) (1+' y) < ply) < copla) <1+' y') ,

p(x) p(z)
for all z,y € R,
Note that in the particular case where |x — y| < p(x), we have p(z) ~ p(y).
In the next lemma and in the rest of this article we shall denote § = 2=d/q. Notice
that, under the assumption ¢ > d/2 we have § > 0.
Lemma 5. Forr > 0 and x € R, there exist constants C and n > 0 suéh that

i) if r < p(z), )
/B(m[vw)]?dy < c(p(x)> it

[ wora < c (pg“x))"[pw—a

where 1 depends on the dimension d and the constant in (2).

i) if r > p(x),

The proof for part i) of the previous lemmasean be found in [6] (see Lemma 2.6),
whereas part ii) can be proved similarly asdbemma1.8,in [15], by making a few obvious
adaptations.

A function w defined on R? is called rapidly decaying if for every N > 0 there
exists a constant Cn such that

jw(x)| L O+ )5

Corollary 6. Let w fbe o rapidly decaying non-negative function, then there exist
constants C and ¢ >0\ such that

2w (x — — %(P?/wz))% if t < p*(a),
/Rd[V(y)] +(r —y)dy il (p?;))c i it D)

where wi(@) = t~¥*w(z/Vt).

A prooffor the case t < p*(z) can be found in [6] (see Lemma 2.7) and the other
case can be proved in the same way, using part ii) of Lemma 5. Note that, although the
result in the mentioned article was proved for the particular case where w(z) = |z|*/3,
it can be proved for any rapidly decaying function w as well.

We shall denote the kernels of the heat semi-groups e~ ** and e_t(_A)Z, ki(z,y)
and hy(w,y), respectively, and g (x,y) = ki(x,y) — hy(z,y), for t > 0 and z,y € R%. Tt
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is known (see [6]) that ¢; can be written as

gz, y) = /0 /Rdhs(x,z)[V(z)]zkt,s(z,y)dzds. (4)

The fractional integral operator of order o > 0, associated to £ can be expressed
in terms of its heat semigroup as

£—oz/4f-(x) — Am e_tﬁf(.%')ta/‘l%.

Also, we can write this operator in terms of the expression for the heat semigroup
e~ £ as follows

e = [ [ rtnrweta = [ Gl i@,

where - "
Ka(x7y) = / k:t(xvy)taﬂl?
0

Throughout this paper, we will focus on £3%* with a imithe range 0 < v < d.

Next, we will give some definitions for classes of weights. These weights w are non-
negative, locally integrable functions. Fhesfollowing classes depending on the critical
radius function p, were defined in [4].

Given p > 1, a weight w belongs to the class Ag"g, for some 6 > 0 if there exists a
constant C' such that

7 () W < o(5t)

for every ball B = B(z,T).
As for the €ase p = 1, a weight w belongs to the class A’f’e, for some 6 > 0 if there
exists a constant Csuch that

0
1 r
S < ) j
|B/B” = C(”mac)) e

forevery ball B = B(x,r). In this last inequality, the infimum is the essential infimum
with respect to the Lebesgue measure.
The elasses A§7 for p > 1 are defined as Ag = U Ag’e.
0>0
Given a critical radius function p, for ¢ > 1, RHY = Us>o Rqu’e, where RHg’e is
the class of weights w such that there exists a constant C such that

(B h) " <o (@ fy) (55)
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for every ball B = B(z, ).
Given a critical radius function p, for n > 1, Dff = Uezo D,‘;’@,
class of weights w such that there exists a constant C' such that

where D{;ﬂ is the

w(tB) < Ct™w(B) (1 + p(;)y,

for every ball B = B(x,r) and ¢ > 1.

Notice that in both classes of weights, if § = 0, we obtain the classic reverse Holder
RH, and doubling D, spaces, respectively. This gives us the inclusionssRH, C RHY
and D, C D,

For p > 1 and a weight w, LP>°°(w) is the space of measurable functiong f such that

et )<

Analogously, the weighted Lebesgue spaces LP(w) are defined as the set of measureable

functions f such that
f(x)
e = [ |52
The estimates for the fractional integral of £ are given,in certain BM O-type spaces,
which were first introduced in [3]. The so calledp3M O} (w) spaces, for v > 0 and a
weight w, are defined as the set of locally/integrable functions, f in R?, satisfying the
following conditions

[f]p,w = (Sup tP

t>0

p
dal < oo.

/B f - 15| <.CEBYB| Witk = F; /B /. (5)

and
/ A&Cw(B)BP, it R > plo), (6)
B

for everyball Bi= B(z, R), with x € R? and R > 0. If v = 0, we denote the space by
BMOg(w) and'if w = 15\we shall write BMO7.

3 Estimates for the kernels

In this section we give smoothness estimates, first for the function ¢; and then for the
kernel ki, as a consequence of the first one. These estimates are interesting in itself
and also will'allow us to show the main results in this work.

Regardless of the many technical steps contained in the proofs of these estimates,
we decided to include them, hoping it will help the reader. We start presenting some
known estimates of the size of h;, which is controlled exponentially. In fact (see section
5.2 in [8]), there exist constants C' and ¢ > 0, such that

clz—y|*/3

he(z,y)| < Ct=Wem 75 (7)
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As to ky, in [6] (see Theorem 2.5 there) the authors showed that for every N € N,
there exist constants C'y and ¢ > 0, where c¢ is independent of N, such that

(T

ki(x,y)| < Cnt~ e 473 +
kel ) 2@ T 2w

Also, in that same work (see Theorem 2.8 there), it is proved that there exist
constants C' and ¢ > 0 such that

% )26 _ cla—y|4/3
e
p(z)

ge(z,9)| < Ctd/4< ey o)

Next, we will give some smoothness estimates. By the Mean Value Theorem and
making use of size estimates for the derivatives of the bi-harmonic heat kernel, which
can be found in [13], we get the following smoothness estimate for hy.

Lemma 7. There exist constants C' and ¢ > 0,48uch that

d—1
_ T cle—y4/3
\he(z + hyy) — he(z,y)| < C|Rt= 5 (1 + '9”%”> & (10)

for every h,x,y € R? such that |h| < |z — y|/4.
Lemma 8. Given ¢, 0 < ¢ < min{1, 045 there_exist constants C and ¢ > 0, such that

h € R _cla—y|*/3
|qt<x,y+h>—qt<m,y)|sc(/j(«$) (e (1)

for every h,z,y € R? suéh that || < |z —y|/4, |h| < Cp(y), for some constant C > 0,
with ¢ independent of €.

Proof. We will ouly show the result in case |h| < p(x). Otherwise, the statement easily
follows from egtimates (7) and.(8)
Because of the simetry of ¢; and expression (4), we have

ey ) = @< [ [ b hz) = a2 VPR ) dds

— (/Ot/Q /}Rd + /t/: /]Rd> |hs(y + hy 2) — hs(y, 2)| [V(2)2ki—s(z, 7)dzds

= A+ B.
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We will start with A. Using (8), we can obtain another estimate for the integrand.
Then we will split the integral as shown below. For each N > 0,

t/2
Aoy [ ] ten - ha)l VP

—N _4/3
/t _ t _ _clz—x
x |1+ 4 i (t —s)" Ve =977 dzds
pPA(x) — p*(2)
|

t/2 t/2 t/2
x| [ o o
0 Japi<lz—y|<jz—yl/2 Jo [=—y|<dlh] o Js- 2

lz—y|<|z—yl/2

oy + By 2) — bl 2)] V()2 (1 n

_clz—= 4/3
X (t—s)"Y4e” =077 dzds

= A+ A+ As.

Now, applying (7), we have

\/E >_N d/a —<E=
Cnlh| [ 1+ == /4
vl '( 2()

Ay

IA

IA

_cm—y4/3

/3
t
oL
pt(y) YR
4. ez y|4/3 |z—y| l1—¢ )
s aTae T /3 \4/5 [V(Z)] dzds.
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For the first integral, by using Corollary 6, we get

P (v) cla—y| /3 _ 1-¢
/ s~ / PR PR Ve (|z yl) [V (2))?dzds
0 R4

SO

p*(y) _5\4/5% 20 g (13)
: CN/O o (p(y)> 5
= Cnp(y)~".

As to the second integral, also using Corollary 6, we have

t clzy4/3 _ 1—e
/ 51 / s~he A (|z4 yl) V(=
P IR Vs

<



ISSN 2451-7100
IMAL PREPRINT # 2023-0067 Publication date: October 23, 2023

again, obtaining the wanted bound by choosing N large enough.
Next, we will deal with As. Using (7), we get

N clz—y|4/3

A2 < CN 1+i t—d/4e—|317y/|3
a p?(z)
v _elz—yl /3 _elzmy—n*/3

o A I G Y A (O 7
0 =

lz—y|<|z—yl|/2

(16)

To bound the integral with the first term in (16), we make a changg,of variables,
separate the integration region into dyadic anulli and use Lemma 5, ob

) t/2 _asa _C|z_y|4/3
/ o—yi<an LV (?)] /0 s e AT dsdz

[z—y|<|z—yl|/2

< [ e vl

0
[z—y|<|z—yl|/2

<
- kz_%)/‘i’“llhkz (7
o0
< Z<4—k—l|h|)—d+4
k=0
& —k+1
<3 (4 Al
=\ )

N el —y (473
Vi ) a4,
p*(x)

ategy used in equation (15), we get to the required

vill deal with As. We know that |h| < J%l < J%l thereby, we can use
estimate for the kernel of the bilaplacian operator, given in Lemma (7),
obtaining

-N
Vi ) t_d/4e_M

vy 173
p*()

¢ Celzmu3 (y— 2|\ TE
X/ 8—5/4/ s_d/4€ S1/3 ( ) [V(z)]zdzds
o Rd Vs

A3 < Onlh[ (1 +
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Which is the same bound we found for A; in (12). Therefore, we have

€ cz—y4/3
Ay < Cy <—|h| ) /e
p(x)

Now we will move on to bound integral B. From using estimates (7), (8) and
splitting the integral, we get

t 1 cla— I4/3
B < CN/ |h|s_ﬁ4—_e 555 [V(2))?
t/2 JRd
-N
(14U Y0 )
p*x)  p?

(2)
t t
S o™ L.
t/2 J]z—y|<|z—y|/2 t/2 Jz—y|>|z—y|/2
= Bji + Bs. ‘

We will start with By. After a change of variab

_d+1 _cla—y|4/3
Bl S CN|h|t 4e t1/3

|z—x 4/3
s1/3

I
4 [V (2)]2dzds

p*(x) t
Lo L]
R4 p4(x) JRE

-N
€ _,SLEIEiiii
(1 + p{i)) s~ WA= 5T 15 [V (2)]dzds.

t integral, using Corollary 6, we get

ph(x) clz—alV/3 pl@) s ag\ 2
/ 3_71/ s~ W™ [V (2)]2dzds < / s~ ( \/§> ds
0 Rd 0 p(x) s (19)
< Cnp(z)"".

For t

A

As to the second integral, also using Corollary 6, we have

10
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= /p;z) (” e >_N+% I s g

< )t [ s s
Pi(@)

IN

Cp(z)~¢.

Here, we have chosen N large enough. From equations (18), (19) and (
the following estimate for B;

|h| > g ce=uli3 <|x—y|>1_a
B, < Oy 221 ) ¢4 ars
o N(p@c) Vi

Here, we have assumed p*(y) < t. In case t <
integral in the interval 0 < s < p*(y).
Finally, we will deal with Bs. Making use of equ
bound that we obtained for Bj.

(7), we can get to the same

34/

r—
+1

132 f; CZV|h¢t_g%le

Which means we ¢

Propositie

t
begin by proving the result for the case i‘/; < |h| < Vt. According
to Proposition 4, there exist constants C > 0 and ko > 0 such that

L (1

P2y +h) ~ p*(y) p2(z)  p*(y)

_ ko
T+kg

)

11
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thus,

k —N
Vi Vi Vi VENTR
e G ey <1 TRw T p2<y>>
NV AN
SC<1+p2(96)+/>2(y)> ’

where € = .
1+ ko
Using this last inequality and (8), we obtain

_clz—y
ke(z,y + h) — k()| < Ct=4e™ 78 .

Given that |h| ~ v/t in this case, we can easil

On the other hand, if |h| < i ; y|7 also

|kt(m7y + h) - kt(may)l S

If |h| > p(y), for L =

y+h) —k(z,y)| < |he(2,y+h) = halz,y)| + la(z,y + h) — g, y)]

e/2
IRl —aya —clz=utt W\ (vt —aya,~leul
C{‘/E t e + C 7 () t e

€ €/2
c <|4i|> /e s <1+ —2\/% >
Vit p?(x)

This last inequality combined with (21) give us the result.

IN

12
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At last, we need to show the result for w

t
<|h| < </; Using the semi-group

property, we get the following integral representation for the difference

‘kt(x7y + h) - kt(fE,y)‘ < /d kt/2(xa z)|kt/2<z7 Y+ h) - kt/2(27y)|dz
R

/ +/ =S + 5.
lz—y|<4|h| [z—y|>4|h|

First, we will bound S;. Using (8), we have

N

clo—y|d/3 d -
Sy < Ct~ e | t1/|3 (3) <1+ 2\/E> / daz
Vit p?* () |z—y|<4}h]

z—y € -N
- Vit p? (&)
]

As the result has already been proved for the casedh|'< T shall use it,

(22)

along with (8) to bound Ss, obtaining

h € _clz— 4/3
Sy < C kt/g(l‘,z) (t) t e t133 dz
|z—y|>4|h| \/z (23)
|| € a4 _cle—y|*/3 Vi n —d/4 _clz—z[%/3
S C % t (& t1/3 1+ Wm) t e 173 dz.
Rd

Where the last integral is finite.
From equations (22) and [(23), we'get

—N

h.
oy + 1) il )| <G

y clae—y|4/
t_d/4€_ : t17|34 > 14+ \/E
Vit

p*(x)
t
Finally, using the fact that |h| < i‘/g and following the same steps we used before,

we canshow N N
— —INE
t t t
(1+2\/> gc(1+;/+;[> .
p*(x) p*(x)  p*(y)
Which concludes, the proof of the result. O

4 Proof of Theorem 1

In order to prove the central results of this work, we will need to study some families
of fractional integral operators concerning a critical radius function, which were first
introduced in [1]. In that article, the authors define the spaces S(p, co,7), along with

13
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other spaces of singular integral operators, called S(p,s). For the purposes of this
article, it will be relevant to state the definition of the spaces mentioned first.

Given a critical radius function p and v, 0 < v < d, we say that a kernel K belongs
to S(p, 00,7) if it satisfies both of the following conditions.

i) For every N > 0 there exists a constant Cy such that

N
K(y) < — (1+'$p(;)y') , (24)

T -yl

for every x,y € R
ii) There exist constants C' and A > 0 such that

|K(z,y) = K(2,9)] < C

for every z,y,z € R? such that |z — 2| < |z —QZ.
On the other hand, we say that K belongs to Sp( tisfies equation (24)
and a stronger smoothness condition stated below.

|z =yl > -
K(z,y) — K(z,y)| <€ 14+ ——7= , 26
K (2,y) ~ K(zy) e (26)
for every x,v, z € R? such tha
Next, we shall state t ing | ad which will be used in the proof of

Theorem 1.
Lemma 10. For ever

ly — z|°
|z — y|d+e’

-M

IN

c<|y_Z|>€t_d/4e”ﬁ%4/3 <1+ Vi, ﬁ)
Vi p(x)  p3(y)
-N

< C —zet_5/4<1+u> /4
< Cly — 2| 7
ly — z|°
< o2
T oyl

14
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by choosing N = d + . Conversely, if |y — z| > v/, using (8) and the fact that
|z — y| = |z — z|, we have

—dja _ole=y?/3 _ele=z?/3
lke(,y) — ki(z,2)| < Ct=¥4e™ am 4 e arm |
le—y|4/3

< Ot W4em s
—N
C(m |>tdﬂ< W—M)
Vi Vi

o(tg) e () o

ly — z|°
|z — y|dte’

Here, we have chosen N = d + ¢ again. |
Proposition 11. K, belongs to So(p, o0, ).

Proof. This result can be proved using the same techniques as insthe proof of
Proposition 8 in [1], using estimate (8) and Lemma 10. O

Now, we are ready to prove Theorem 1.

Proof of Theorem 1. We will make use of Theoréimy,1.1 and Theorem 1.2 in [14], which
give us T'1-type conditions equivalent to fequations (5) and (6). In order to do that,
we need to prove that £-%/4 satisfies the hypothesis of those theorems.

First, notice that by Proposition 11 ‘and Theorem 4.2 in [6], along with the fact
that the kernel K, is symmetric (bysthe self-adjointnéss of £-°/*), we can assure that
L~%/* is an a-Schrodinger-Calderon-Zygmund operator with any regularity exponent
¢ such that 0 < e < min{1, §} (the definition for the families of operators previously
mentioned can be found.in [14]).

Now, it will be enotigh to show that there exist constants C; and Cs such that the
following inequalities hold.

B
(B)) s [ 1) - (e iy < o o)
g (A20) —p [ e - e tmy < o 29

for each ball B, = B(z,r), 290 € R? and 0 < r < 1p(zg). Notice that by
Proposition 11, K, satisfies (24), so £~%/*1 is well defined for 0 < a < d.

Although the proof is based on certain techniques used in [14], we will give all the
details for a better understanding for the reader, since non-trivial details concerning
the bi-harmonic Schrédinger operator may appear.

15
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We shall first show that for these balls

/kt(x,y)dcc—/ ki(z, z)dx
R R4

for every e such that 0 < ¢ < min{1, é}.
1
Set B = B(xg,r), where 0 < r < Ep(:vo) and y,z € B.

=¢ <P(;0)>s’ #)

We will begin analyzing the case vt < 2r. Since [pq hi(2,y)dz = [pu hy(z, z)dx
for all 7,y € RY (see the expression of h; in Section 2.2 in [13]), (9) and the fact
that p(y) =~ p(2) =~ p(zo), we have

/ kt(:z:,y)dx—/ ki(z, z)dx
R R

/Rd ki(z,y)dx — /Rd ht(x,y)da:M/Rd

/ e, )l da + / lgu(e, 2)|de
R4 Rd

29

N S ke 2L

< (3t)

IN

IN

clz—y|*/3

t= T TS 4y

16
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Finally, to deal with the case 2r < v/t < p(zg), we will split the domain of the
integral in three, as shown below

/kt(a:,y)dx—/ ki(z, z)dx
R4 Re

_ (/R kt(az,y)dx—/Rd ht(x,y)dx> - (/R kt(m,z)dm—/Rd ht(az,z)daz>‘

= /(qt(x,y)—Qt(l',Z))dx
Rd

S/ Y
|z—y|>Cp(y) 4|y—z|<|]z—y|<Cp(y) |z—y|<4|y—=z|

I+ 11+ I11].

To bound the first integral, using Lemma 10, we l%ve

< ke(a,y) — ky(a,2)lde < C
lz—y|>Cp(y)

Cr / S c(
le—y|>Cp(y) 1T — yl4Fe P

For the second one, we will use Lemm

IN

71| <

A
Q
=
i
|

ill use (9), obtaining

_clz—y 4/3
/ t—4/4e A3 dx
|z—y|<4|y—=|

_C r—2Zz 4/3
+ / e dy
lz—2|<5|y—z|

26

—dja S
le|<s s ! ¢ W&
5 z
=T

N
Q
<
—
8
=)
=
[\]
N
/\&
S
~
N~—
¥
[\~]
(=23
|
Q
N\
B
—
K3
=
N~—
~_
)
=21
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Hence, we have proved equation (29).
To conclude the proof we will bound the integrands from inequalities i) and ii).

L7 (y) — L7 (2) = /Ooo /Rd(kt(m,y) - kt(x,z))dxt“/‘*%

p4(z0) oo
B / +/ / (kt(.’L', y) - kt(;'(j7z))dxta/4@
0 p4(z0) R -

=I+1I

For the first integral, using equation (29) and integrating, we

e rp(wo)
i < o - / po/adt
p(zo) ) Jo t

1
For the second integral, notice r < B p(xo) Q\% in

equation (29), we have

at ves both inequalities (27) and (28).

O
of of Theorem 2
ce that, by estimate (8), the kernel K, of the fractional integral £~%/* is bounded
by the el of the classical fractional integral. This is
C
Ko(z,y) < —— (30)

= o —yldme

As a consequence, the operator £~/ is of weak type (1,d/d — a).

18
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The next proposition is similar to Proposicién 4.2.4 in [5]. However, the spaces of
functions involved there differ from the ones we are considering in this work. Even
though both proofs may look similar, they have some tecnichal differences.
Proposition 12. Let T be an operator of weak type (1,d/(d— «)) such that its kernel
K belongs to S(p,00,a), with 0 < a < d. Then T is bounded from LY (w%®) into
BMO,(w), for every weight w such that w/(d=a) ¢ AP,

Proof. Let B = B(zo,r) and B = B(z,, p(z0)) with 2o € R? and r < p(z,). We write
f=J i+ fa+ fs, with fi = fxep and f3 = fop)c-

Let 0 < a < d. Lets start estimating |7 f3(x)| uniformly for € B. When « € B and
y € (2B)°, it follows |x — y| ~ |z¢ — y| and also p(z) < Cp(x). Lets note, Bp= 2" B.
Then, from equation (24), Holder’s inequality with exponent d/a and considering 6
such that w7 € AL? we obtain

—N
|Tfs<x)lsc/(2 f%’i_a(mxo—yi) p

B)¢ |zo — p(zo)

IN

f
Clp(wo)™ /( e m_'y(fé)'wdy

1
T, N

IN

C(p(x0))™

1 1 a
< Cliffwlizee ) 55 | = w(y)™=dy
; 2N |Bk+1| B
00 9k+1 () 0(1—-g)
< C|f/w| dre 27N inf w <1+>
I/ P | =
< C|if Jw]| pasé i%waZ_k(N_g(l_o‘/d))
k=1
w(B
< CRR

where, the last inequality follows from taking N large enough.

Nowy we awill estimate |T fo(x)—cp|, where cg = T fa(x0) and = € B. We shall name
ko = sup{k : 2*r < 2p(wg)} and By, = 2¥B(xg, 7). Given that |z — z¢| < |y — x0|/2 for
every v € Band y € (2B)%, we will use the smoothness estimate in equation (25) and,
as done before, Holder’s inequality with exponent d/a and the fact that the weight w
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satisfies w7's € A’f’e for some 6 > 0. Then,

Th)-col < [ WK 0, - Ka)ldy

2B\2
<o | Wl
2i\28 |T0 — y|dmotA
ko 1
<Oy i | Wy
; (2Fr)d—atA Beis
ko 4 1 o
< Cllffwllpare ) o | 5 w(y)?
g ; 22\ |Bi+1l /3y,
ko 0(
<C oY 27FM(inf
o0
< C|f/w| pase i%waQ‘k’\
k=1
w(B)
< C [e3
= |B| ”f/w”Ld/ )’
where we have used the fact that (1+ 57, for every k < ko and 6 > 0.

Now, lets supose a > 0. From t
Kolmorogov’s inequality, yields

1
y)ldy = C|B|1—_a/d/23|f(y)|dy-

Then, from Hol i i xponent d/o and the fact that Wi € Al
follows

2r 00-3)
< C|lf fwllare (infw) (1+ _))

p(zo
< Clffwlpare (infw)

B
O%nf/wnma.

IN

which concludes the proof.
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Proof of Theorem 2. The result is a direct consequence of the weak type (1,d/d — «)
of £~/ Proposition 11 and Proposition 12.
O

6 Proof of Theorem 3

We start this section stating some results that will be usefull. Next proposition char-
actarizes, in the presence of a doubling weight, the space BM OE (w) reducing the set
of balls that in ineqality (6) must be verified to only critical balls.

Proposition 13 (See Corollary 1 in [2]). Given w € D,, for some n >, and v > 0,
a function f € L} .(RY) belongs to BMO}(w) if and only if both of thefollowing
conditions hold:

i) For every ball B = B(x, R), with x € R and R < p(x)

/B|f—fB|§Cw<B)|BW/d’ with, fB:r;T/Bf.

ii) For every x € RY,

[ 1< o Aaio)
B(@,p(z))

The following result gives some control of the average of a function in terms of its
weak Lebesgue semi-norm.
Proposition 14 (See Lemma 4.1 in [12]). \Let p > 1 jand w a weight in RH, . There
exists a constant C such that, if f-is_a locally. integrable function and B is a ball in
RY then,

fin bz o, .
B

We now give the proof of Theorem 3.

Proof of Theorem 5. First, we will'show that given f € L}  and B = B(zo,r), with
xo € Rd,
1

m/Bﬁ_aMﬂf)QBD§C|B\%_E[f]p’w. 31)
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In fact, from (30) and Proposition 14, we get

! —a/4 o 1
o e sl = oo [ [ Kawlrw)bas )y

5L
< — ———=—dydx
w(B) Jp Jop v — yld‘

1 dx
- _
w(B) Lo ] PR

(03

< C@ . |f(y)|dy

< CIBI¥# flpu-

To check that £~/*f belongs to BMOj ™~ d/p(w),
prove there exists a constant C' such that the following co

i) For every zo € R?,

1 / 4
—_— |La/t ) (32)
w(B(zo, p(z0))) B(z0,p(z0))
ii) For every ball B = B(xg,r) with r < p(z¢) a me constant Cp
(33)

f = f1+ f2, where f1 =
Notice
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Then |z — y| > Clxo — y|. Thus, from (8),

R4
/ e oyt dt| = ke(z,y) f (y)t/* dydt
0

(2B)©

R o —y|4/3
SC/ / £ f(y)| 4 dy
2B)C

R 1/3 iMm
—dta t
<o "t <— /3) | (9)ldydt
0 (2B)C lz -yl
B raen £ ()]
<o % —1dt/ Yy,
0 (2B)C lzo — vl

To bound the second integral, we split the integration region as fi

1
/(213)0 lzo — y|Mdy B Z/ oo — o1

2k+1B\2k B lzo — ¥l

where we have used Propositi
by choosing M large enough

R4

Cw(B)|B|4~ 7 [flpu-
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As to the second integral in equation (6), from inequality (8) and Proposition 14, we

have
[t nwertal< [ ke
R4 R+ J(@2B)C

> _aja_—clz=22 [ p(x) N a/d-1
<cf [ wane S (B2 e/ e
R4 J(2B)C \/E
_C/R4 /23)0 e e tl/a [o(2)]*N| f ()

o t1/3
< Clo(x 2N/ ‘ a- 2N_1
> [p( )] Ri 2B)C |Jj _y|4/3

<CR2N/ tM+a d— 2N_1d/
N R# (2B |x0—

< Cw(B )RQN———M 4‘1

— CulB) B T

)|dydt

|dydt

Given that p(z) ~ p(zo) = R, since x € B.
Next, we will prove (33). Let B = B(zo,r
where f; = fxop and set

split f as f = fi+fa,

1 (e
)+ 25 /B L/ (f) = Ci)
L a/A(f,)

/ et fo ()t at| +
0

/ e fa(y)t*/* " dt — Cp).
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Then, we only need to bound the second integral. Using Proposition 9, we obtain

Y. a/4d ey d a/adt
[, ent e //B ) — ko, DI F Wyt

<C/ / <|x $0|> t_d/4 | p )yt 12
2B)C t

" o s w
= / |f(y)‘/ e e A
(QB)C 7.4 t

" (‘T:u‘ )4/3 " d
_ C,r,é / |f(37)(‘1+6” dy/ 3%(d7a+6 )e—csiS
(2B)C |z -y 0 S
" o0 " d
< C’I‘é / |f(3,)(‘1+5" dy/ Sg(d—a—&-é )e—cs_s
(2B)¢ |z —yl 0 S

< C,r(;” |f(y)‘

——dy.
- /(QB)C |z — y|d—atd’ Y

Finally, by splitting the domain of the integral inteo’dyadie anulli as we did in
equation (34), we get

< C’w(B)r“id*%[f]p,w.

/ e—t[,f2 (y)ta/4_1dt _ CB

O
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