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FISHER-RIEMANN GEOMETRY FOR NONPARAMETRIC
PROBABILITY DENSITIES

HUGO AIMAR, ANÍBAL CHICCO RUIZ, AND IVANA GÓMEZ

Abstract. In this article we aim to obtain the Fisher Riemann geodesics for non-

parametric families of probability densities as a weak limit of the parametric case with

increasing number of parameters.

1. Introduction

The Fisher information of a random variable is a useful tool for the estimation of

parameters in parametric statistics. When the number of parameters describing the dis-

tributions of the random variables we are dealing with is larger than one, the Fisher

information induces a remarkable Riemannian structure on the set of parameters. A sim-

ple but illustrative case is provided by the one dimensional Gaussian family, see [CSS05].

Let U = R2
+ = {θ̄ = (θ1, θ2) : θ1 ∈ R, θ2 > 0} be the upper half plane of R2. With θ1

the mean and θ2 the variance, we have a one to one correspondence between U and the

two parametric family {X ∼ N(θ1, θ2)}. In other words, the random variables that have

normal distribution with mean θ1 and variance θ2. In this case the metric that the Fisher

information induces in U is that of the hyperbolic Poincaré geometry. Of course the

situation extends to any number of parameters and the geodesics that these Riemannian

metrics induce in the set of parameters can be thought as trajectories joining a density

(image) to another. In other words, we have a Fisher geodesic mass transport. This point

of view has been used in some applications to image processing (see [PR06]).

In this paper we aim to extend Fisher-Riemann geometry to non parametric sets of

densities and to explore the behaviour of the corresponding geodesics. The starting point

is the parametric case. Then by approximation of a general density by parametric ones

we are able to establish and solve the corresponding Gauss geodesic equations.

The paper is organized as follows. In Section 2 we introduce the well known facts

regarding Fisher information. Section 3 is devoted to introduce our particular discrete

setting and to obtain the precise form of the geodesic equations in this case. Section 4

contains the result that provides solutions for the geodesic equations both in the con-

tinuous and discrete cases. Section 5 contains main result of the paper regarding the

convergence of the parametric geodesics to the geodesics corresponding to a given non-

parametric density. In Section 6 we show examples and illustrations of the dynamics in

different situations.
1

IMAL PREPRINT # 2024-0068
ISSN 2451-7100 
Publication date: February 19, 2024

Prep
rin

t



2. The Fisher information

A basic approach to Fisher Information from the point of view of Information Theory

can be found in [CT06] and also [Nie22] for a recent account on Information Geometry.

We shall roughly follow the lines in [CT06] to describe and define the basic concepts. Let

U be an open set in Rn. We shall consider U as the set of parameters θ = (θ1, . . . , θn) for

a family DU = {φ(x, θ) : θ ∈ U} of probability densities in Rk with respect to Lebesgue

measure dx in Rk. When k = 2 a typical DU is given by

φ(x, θ) = φ(x, θ1, θ2, θ3) =
1

θ23
φ

(
(x1 − θ1, x2 − θ2)

θ3

)
with

´
R2 φdx = 1, φ ≥ 0 and U = {θ ∈ R3 : (θ1, θ2) ∈ R2, θ3 > 0}.

Given U , DU and a random variable X (or random vector) in Rk we may consider the

new random variable Y (ω, θ) = φ(X(ω), θ). The score is defined as a new random vector

in Rn given by the θ-gradient of log Y (ω, θ). Precisely,

S(ω, θ) = ∇θ log Y (ω, θ)

=

(
∂

∂θ1
log Y (ω, θ), . . . ,

∂

∂θn
log Y (ω, θ)

)
=

1

Y (ω, θ)

(
∂Y

∂θ1
(ω, θ), . . . ,

∂Y

∂θn
(ω, θ)

)
=

1

φ(X(ω), θ)

(
∂

∂θ1
φ(X(ω), θ), . . . ,

∂

∂θn
φ(X(ω), θ)

)
=

∇θφ(X(ω), θ)

φ(X(ω), θ)
.

Of course some simple analytic conditions on the family DU of densities are required in

order to have a well defined score for the random variables distributed by densities in

DU . First order smoothness in θ and non vanishing of the densities are the basic ones.

Lemma 2.1. The expected value of the score S(·, θ) with respect to φ(·, θ) vanishes.

Sketch of the proof. The expected value of S(·, θ) with respect to the probability measure

φ(x, θ)dx in Rk is given by the n-vector
ˆ

Rk

S(x, θ)φ(x, θ)dx =

ˆ
Rk

∇θφ(x, θ)

φ(x, θ)
φ(x, θ)dx

= ∇θ

(ˆ
Rk

φ(x, θ)dx

)
= ∇θ1

= 0̄ = (0, . . . , 0) ∈ Rn.

□
2
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From de above Lemma, the covariance matrix of the score S(·, θ) with respect to the

corresponding φ(·, θ) density in DU is given by the expected value of the n × n random

matrix S(ω, θ)ST (ω, θ), where T denotes transposition.

Lemma 2.2. The i, j entry of the n × n covariance matrix of the score S(ω, θ) with

respect to φ(·, θ) is given by

Jij(θ) =

ˆ
Rk

∂

∂θi
logφ(x, θ)

∂

∂θj
logφ(x, θ)φ(x, θ)dx.

Proof. Since the φ(·, θ)-mean of S(ω, θ) vanishes, we have that the φ(·, θ) covariance

matrix of φ(·, θ) is given by the expected value of S(ω, θ) · ST (ω, θ) with respect to

φ(·, θ), that isˆ
Rk

S(x, θ) · ST (x, θ)φ(x, θ)dx =

(ˆ
Rk

Si(x, θ)Sj(x, θ)φ(x, θ)dx

)
ij

=

(ˆ
Rk

∂

∂θi
logφ(x, θ)

∂

∂θj
logφ(x, θ)φ(x, θ)dx

)
ij

.

□

Notice that all the above considerations can be done in any positive σ-finite measure

space (X,µ) instead of (Rk, dx).

Definition 2.1. Let U be an open set in Rn. Let (X,µ) be a positive σ-finite measure

space. Let DU = {φ(·, θ) : φ(·, θ) : X → R+,
´
X
φ(x, θ)dµ(x) = 1, θ ∈ U} be a family

of densities parametrized on U . The Fisher Information Matrix is the n× n matrix

valued function J defined in U by

Jij(θ) =

ˆ
X

∂

∂θi
logφ(x, θ)

∂

∂θj
logφ(x, θ)φ(x, θ)dµ(x),

provided the smoothness and integrability required.

In our further analysis we shall be concerned with special cases of dimensionaly increas-

ing open sets U and their eventual convergence as n tends to infinity when the family

DU is drawn by projection of a general density.

Let us finish this section with the explicit computation of the matrix J in the case of

X finite and µ the counting measure when every density is parametrized by its values.

Let us precise the situation. Let X = {x1, . . . , xn, xn+1} be a finite set and µ =
∑n+1

i=1 δxi
,

with the unit mass at the point xi. Notice that if g : X → R+ is a density in the

sense that
´
X
g(x)dµ(x) = 1, we have that

∑n+1
i=1 g(xi) = 1. Hence every such g can

be parametrized by its n-first values g(x1), . . . , g(xn), since g(xn+1) can only be 1 −∑n
i=1 g(xi). Let us write this remark in terms of the above introduced notation. Set

U = {θ = (θ1, . . . , θn) ∈ Rn : θi > 0 for every i and
∑n

i=1 θi < 1}. Then the set D =

{g : X → R+; g non vanishing density with respect to µ} coincides with DU the set of all
3
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parametric densities φ(·, θ), θ ∈ U given by φ(xj, θ) = θj; j = 1, 2, . . . , n and φ(xn+1, θ) =

1−
∑n

j=1 θj.

Proposition 2.3. Let X = {x1, . . . , xn, xn+1} and U be the n-dimensional open simplex

{θ = (θ1, . . . , θn) ∈ Rn : θi > 0 for every i = 1, . . . , n and
∑n

i=1 θi < 1}. Let DU =

{φ(·, θ) : θ ∈ U}, where φ(·, θ) : X → R is given by φ(xj, θ) = θj for j = 1, . . . , n and

φ(xn+1, θ) = 1 −
∑n

j=1 θj. Then, the Fisher information matrix associated to DU is the

n× n matrix function defined in U by

J(θ) = J(θ1, . . . , θn) =
1

θn+1

¯̄1 +D
( 1

θj

)
,

where θn+1 = 1−
∑n

i=1 θi > 0, ¯̄1 is the n× n matrix with its n2 entries equal to one and

D
(

1
θj

)
is the n× n diagonal matrix

1
θ1

0 . . . 0

0 1
θ2

. . . 0
...

...
. . .

...

0 0 . . . 1
θn

 .

Proof. In order to compute the entries Jij(θ) of J(θ), let us start by the calculation of

the partial derivatives ∂
∂θj

logφ(x, θ) for every x ∈ X = {x1, . . . , xn, xn+1} and every

θ = (θ1, . . . , θn) ∈ U . Notice first that logφ(x, θ) can be written as

logφ(x, θ) =
n∑

i=1

log θi1{xi}(x) + log

(
1−

n∑
k=1

θk

)
1{xn+1}(x)

=
n+1∑
i=1

log θi1{xi}(x),

with θn+1 = θn+1(θ1, . . . , θn) = 1−
∑n

k=1 θk and, as usual 1E(x) the indicator function of

the set E ⊂ X. Hence, for j = 1, 2, . . . , n; ∂
∂θj

logφ(x, θ) = 1
θj
1{xj}(x) − 1

θn+1
1{xn+1}(x).

So that

Jjj(θ) =

ˆ
X

(
∂

∂θj
logφ(x, θ)

)2

φ(x, θ)dµ(x)

=

ˆ
X

(
1

θ2j
1{xj}(x) +

1

θ2n+1

1{xn+1}(x)

)
φ(x, θ)dµ(x)

=
n+1∑
l=1

(
1

θ2j
1{xj}(xl) +

1

θ2n+1

1{xn+1}(xl)

)
θl

=
1

θj
+

1

θn+1

.

On the other hand, for i ̸= j, i, j = 1, 2, . . . , n, we have

Jij(θ) =

ˆ
X

(
∂

∂θi
logφ(x, θ)

∂

∂θj
logφ(x, θ)

)
φ(x, θ)dµ(x)

4
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=

ˆ
X

(
1

θi
1{xi}(x)−

1

θn+1

1{xn+1}(x)

)(
1

θj
1{xj}(x)−

1

θn+1

1{xn+1}(x)

)
φ(x, θ)dµ(x)

=

ˆ
X

1

θ2n+1

1{xn+1}(x)φ(x, θ)dµ(x)

=
1

θn+1

.

In other words, for i, j = 1, 2, . . . , n we have

Jij(θ) =
δij
θj

+
1

θn+1

,

where δij the Kronecker notation for the identity matrix. In explicit n× n matrix form

J(θ) =


1
θ1
+ 1

θn+1

1
θn+1

· · · 1
θn+1

1
θn+1

1
θ2
+ 1

θn+1
· · · 1

θn+1

...
...

. . .
...

1
θn+1

1
θn+1

· · · 1
θn

+ 1
θn+1

 .

□

3. The Riemannian geometry in the simplex induced by J(θ) = θ−1
n+1

¯̄1+D(θ−1
j )

Let U be the open simplex U = {θ ∈ Rn : θi > 0, i = 1, . . . , n+ 1} with θn+1 =

1 −
∑n

i=1 θi, as before. Let J(θ) be the matrix function defined in U by the Fisher

Information obtained in Proposition 2.3. Explicitly,

J(θ) =
1

θn+1

¯̄1 +D
( 1

θj

)
.

Theorem 3.1. For each θ ∈ U the quadratic form in Rn × Rn given by ⟨v, w⟩J(θ) =∑n
i=1

∑n
j=1 viJij(θ)wj defines a scalar product in Rn. The couple (U, ⟨v, w⟩J(θ)) is a C ∞

Riemannian manifold of dimension n. Moreover, if θ : [0, 1] → U is a smooth curve in

U , θ(t) = (θ1(t), . . . , θn(t)), then, with θn+1(t) = 1−
∑n

i=1 θi(t), the arc length is given by

lJ(θ) =

ˆ 1

0

√〈
θ̇(t), θ̇(t)

〉
J(θ(t))

dt =

ˆ 1

0

√√√√n+1∑
j=1

(θ̇j(t))2

θj(t)
dt,

where θ̇(t) = (θ̇1(t), . . . , θ̇n(t)) is the velocity of θ at each time t ∈ [0, 1].

Proof. Since J(θ) is symmetric, we only need to show that it is also positive definite and

to provide an explicit formula for ⟨v, v⟩J(θ). Take v ∈ Rn, v ̸= 0, then

vTJ(θ)v = vT
(

1

θn+1

¯̄1 +D
( 1

θj

))
v

= vT
1

θn+1

¯̄1v + vTD
( 1

θj

)
v

5
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=
1

θn+1

(
n∑

i=1

vi

)2

+
n∑

i=1

v2i
θi
> 0.

In order to prove the formula for the length of the curve θ(t) we only have to observe

that 1
θn+1(t)

(∑n
i=1 θ̇i(t)

)2
+
∑n

i=1
θ̇2i (t)

θi(t)
= 1

θn+1(t)

(
θ̇n+1(t)

)2
+
∑n

i=1
θ̇2i (t)

θi(t)
=
∑n+1

i=1
θ̇2i (t)

θi(t)
. □

The following result is a direct consequence of Theorem 3.1.

Corollary 3.2. Set l(θ) to denote the standard length of the curve θ(t). Then

(i) l(θ) ≤ lJ(θ) for every θ;

(ii) for every compact subset V of U , there exists C > 0 depending only on V such that

lJ(θ) ≤ Cl(θ) for every θ contained in V .

We shall now find the geodesic ODE system for the Riemannian manifold (U, ⟨, ⟩J).
The following lemmas will be of help at writing the Christoffel symbols in our setting.

Lemma 3.3. Let A be the n × n real matrix given by A = ¯̄1 + D(ci), where D(ci)

is the diagonal n × n matrix with ci > 0, i = 1, 2, . . . , n. Then A−1 = (det A)−1K,

where Kii =
∏

j ̸=i cj +
∑

l ̸=i

(∏
m̸=l
m̸=i

cm

)
and Kij = −

∏
m̸=i
m̸=j

cm, for i ̸= j and detA =∏n
i=1 ci +

∑n
i=1

∏n
j ̸=i cj.

Proof. Let us first prove inductively that detA =
∏n

i=1 ci+
∑n

i=1

∏n
j ̸=i cj for ci ≥ 0. Case

n = 2 is simple: det

(
1 + c1 1

1 1 + c2

)
= (1 + c1)(1 + c2)− 1 = c1c2 + c1 + c2, as desired.

Consider the n×n matrix A = ¯̄1+D(c̄) and suppose that the formula holds for the case

of A of dimension (n− 1)× (n− 1). Hence

detA =
n∑

i=1

a1i(−1)1+iM1i = (1 + c1)M11 +
n∑

i=2

(−1)1+iM1i,

where M1i = det (A1i) and A1i is the (n − 1)-submatrix of A obtained by removing the

first row and the i-th column of A. Observe that A11 is a (n− 1)× (n− 1) matrix of type
¯̄1 +D(c̄), so that M11 =

∏n
i=2 ci +

∑n
i=2

∏
j ̸=i
j ̸=1

cj. Also, A12 is of type ¯̄1 +D(c̄), but with

diagonal (0, c3, . . . , cn), then again by inductive hypothesis, M12 =
∏

j ̸=1
j ̸=2

cj. On the other

hand, A13 is of type ¯̄1+D(c̄) up to one row permutation, with diagonal (0, c2, c4, . . . , cn),

obtaining M13 = −
∏

j ̸=1
j ̸=3

cj. In general, for i = 2, . . . , n, the submatrix A1i is of type

¯̄1 +D(c̄) with diagonal (0, c2, . . . , ci−1, ci+1, . . . , cn) up to i− 2 row permutations, which

gives M1i = (−1)i−2
∏

j ̸=i
j ̸=1

cj. Then

detA = (1 + c1)
( n∏
i=2

ci +
n∑

i=2

∏
j ̸=i
j ̸=1

cj

)
+

n∑
i=2

(−1)
∏
j ̸=i
j ̸=1

cj

6
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=
n∏

i=2

ci +
n∏

i=1

ci +
n∑

i=2

∏
j ̸=i

cj

=
n∏

i=1

ci +
n∑

i=1

∏
j ̸=i

cj.

Let us now prove that (detA)−1K is the inverse of A. Since both, A and K are

symmetric, we only need to compute KA. Take first i ̸= j, then

(KA)ij =
n∑

l=1

KilAlj

= KiiAij +KijAjj −
∑
l ̸=i
l ̸=j

(∏
m̸=i
m̸=l

cm

)

=
∏
p̸=i

cp +
∑
l ̸=i

(∏
m̸=l
m̸=i

cm

)
−
(∏
m̸=i
m̸=j

cm

)
(1 + cj)−

∑
l ̸=i
l ̸=j

(∏
m̸=i
m̸=l

cm

)

=
∏
p̸=i

cp +
[∑

l ̸=i
l ̸=j

∏
m̸=l
m̸=i

cm +
∏
m̸=j
m̸=i

cm

]
−
∏
m̸=i
m̸=j

cm −
∏
m̸=i

cm −
∑
l ̸=i
l ̸=j

(∏
m̸=i
m̸=l

cm

)
= 0.

On the other hand,

(KA)ii =
n∑

l=1

KilAli

= KiiAii +
∑
l ̸=i

Kil

=
(∏

j ̸=i

cj +
∑
l ̸=i

(∏
m̸=l
m̸=i

cm

))
(1 + ci)−

∑
l ̸=i

(∏
m̸=i
m̸=l

cm

)

=
∏
j ̸=i

cj +
∑
l ̸=i

(∏
m̸=l
m̸=i

cm

)
+
∏
j

cj +
∑
l ̸=i

(∏
m̸=l

cm

)
−
∑
l ̸=i

(∏
m̸=i
m̸=l

cm

)

=
∏
j

cj +
∑
l

(∏
m̸=l

cm

)
= detA,

for every i = 1, . . . , n. Then (detA)−1K is the inverse of A. □

Let us now apply the above lemma in order to obtain the inverse of the Riemannian

matrix J(θ) for θ ∈ U , which as usual we shall denote by J = (gij).

Lemma 3.4. For θ ∈ U , θ = (θ1, . . . , θn), set θn+1 = 1 −
∑n

i=1 θi. Then, the inverse of

the metric matrix J(θ), J−1(θ) = (gij(θ))i,j=1,...,n is given by gii = θi(1− θi), i = 1, . . . , n

and gij = −θiθj for i ̸= j. Or, in terms of the Kronecker delta, gij = θi(δij − θj).
7
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Proof. Since J(θ) = 1
θn+1

¯̄1 + D( 1
θj
), we have that θn+1J(θ) = ¯̄1 + D( θn+1

θj
) and we can

apply Lemma 3.3 with cj =
θn+1

θj
. Set M(θ) =

∏n+1
j=1

θn+1

θj
. Then, with A = θn+1J(θ), we

have

det A =M(θ) +
n∑

l=1

θl
θn+1

M(θ)

=M(θ)

(
1 +

1

θn+1

n∑
l=1

θl

)
=M(θ)

(
1 +

1− θn+1

θn+1

)
=
M(θ)

θn+1

.

On the other hand,

Kii =
∏
j ̸=i

θn+1

θj
+
∑
l ̸=i

(∏
m̸=l
m̸=i

θn+1

θm

)

=
θi
θn+1

M(θ) +
∑
l ̸=i

θl
θn+1

θi
θn+1

M(θ)

=
M(θ)

θn+1

(
θi +

θi
θn+1

∑
l ̸=i

θl

)

=
M(θ)

θn+1

θi

(
1 +

1− θn+1 − θi
θn+1

)
=
M(θ)

θn+1

θi

(
θn+1 + 1− θn+1 − θi

θn+1

)
=
M(θ)

θn+1

θi(1− θi)

θn+1

.

So that, if Aii denote the diagonal entries of A−1, we have that

Aii =
θi(1− θi)

θn+1

.

For i ̸= j we have from Lemma 3.3,

Kij = −
∏
m̸=i
m̸=j

θn+1

θm
= − θi

θn+1

θj
θn+1

M(θ).

Hence, Aij = − θiθj
θn+1

. So that gij = θn+1A
ij, then gii(θ) = θi(1 − θi) and gij = −θiθj

for i ̸= j. Which can be written as gij = θi(δij − θj) in terms of the Kronecker symbols

δij. □

The above lemmas allows us to find the explicit n × n ODE system for the geodesics

in U induced by J . Recall (see do Carmo [dC76]) that in general the geodesic system
8
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generated by J = (gij), i, j = 1, . . . , n is given by

d2θk
dt2

+
n∑

i=1

n∑
j=1

Γk
ij

dθi
dt

dθj
dt

= 0; k = 1, . . . , n,

where the Christoffel symbols Γk
ij are given by

Γk
ij =

n∑
l=1

Γijlg
lk,

with (glk)l,k=1,...,n = J−1, Γijl =
1
2
(gjl,i + gli,j − gij,l) and gjl,i =

∂
∂θi
gjl. In the next result

we obtain the Christoffel symbols and the geodesic system in our particular case.

Proposition 3.5. Let U = {θ = (θ1, . . . , θn) : 0 < θi < 1 for every i and 0 <
∑n

j=1 θj <

1}, θn+1 = 1 −
∑n

i=1 θi, J(θ) = 1
θn+1

¯̄1 + D( 1
θj
) and ⟨u, v⟩J(θ) = uTJ(θ)v. Then, for

k = 1, . . . , n, we have

(1) Γk
ij =

1
2

[
θk

θn+1
− 1

θi
δijδjk +

θk
θi
δij

]
; and

(2) the geodesic system is given by

2
d2θk
dt2

+
θk
θn+1

(
n∑

i=1

dθi
dt

)2

− 1

θk

(
dθk
dt

)2

+ θk

n∑
j=1

1

θj

(
dθj
dt

)2

= 0.

Proof. Let us start by computing the Christoffel symbols of the first kind Γijl =
1
2
(gjl,i +

gli,j − gij,l). Notice first that

gjl,i =
∂

∂θi
gjl

=
∂

∂θi

(
1

θn+1

+
δjl
θj

)
=

1

θ2n+1

− δjlδji
1

θ2i
.

Hence

Γijl =
1

2
(gjl,i + gli,j − gij,l)

=
1

2

(
1

θ2n+1

− δjlδji
1

θ2i
− δliδlj

1

θ2j
+ δijδil

1

θ2l

)
.

So that Γijl =
1
2

1
θ2n+1

, for (i, j, l) /∈ ∆ the diagonal of {1, 2, . . . , n}3 and Γiii =
1
2

(
1

θ2n+1
− 1

θ2i

)
for every i ∈ {1, . . . , n}. Let us now compute the Christoffel symbols of the second kind.

Recall that for i, j, k = 1, . . . , n, the Christoffel symbol of the second kind is given by

Γk
ij =

∑n
l=1 Γijlg

lk, where Γijl are the Christoffel symbols provided by J and (glk)l,k=1,...,n

is the inverse of J . From Lemma 3.4 we have glk = θl(δlk − θk). Hence

Γk
ij =

n∑
l=1

Γijlg
lk

9
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=
1

2

n∑
l=1

( 1

θ2n+1

− 1

θ2i
δjlδji −

1

θ2j
δliδlj +

1

θ2l
δijδil

)
θl(δlk − θk)

=
1

2

n∑
l=1

θl

[
1

θ2n+1

δlk −
1

θ2i
δjlδjiδlk −

1

θ2j
δliδljδlk

+
1

θ2l
δijδilδlk −

θk
θ2n+1

+
θk
θ2i
δjlδji

+
θk
θ2j
δliδlj −

θk
θ2l
δijδil

]

=
1

2

[
θk
θ2n+1

− 1

θ2i
δji

n∑
l=1

θlδjlδlk −
1

θ2j

n∑
l=1

θlδliδljδlk

+ δij

n∑
l=1

θl
θ2l
δilδlk −

θk(1− θn+1)

θ2n+1

+
θk
θ2i
δjiθj +

θk
θ2j

n∑
l=1

θlδliδlj

−θkδij
1

θi

]
,

then

2Γk
ij =

θk
θn+1

− 1

θi
δijδjk

− 1

θi
δijδjk +

1

θi
δijδik

+
θk
θi
δji +

θk
θi
δij −

θk
θi
δij

=
θk
θn+1

− 1

θi
δijδjk +

θk
θi
δij.

The geodesic ODE system is given by

2
d2θk
dt2

+
n∑

i=1

n∑
j=1

2Γk
ij

dθi
dt

dθj
dt

= 0; k = 1, . . . , n.

For fixed k, let us compute the quadratic form induced by the matrix (2Γk
ij)i,j=1,...,n on a

vector u = (ui)i=1,...,n for fixed k ∈ {1, . . . , n},

Q(u) = 2
n∑

i=1

n∑
j=1

Γk
ijuiuj

=
n∑

i=1

n∑
j=1

(
θk
θn+1

− 1

θi
δijδjk +

θk
θi
δij

)
uiuj

10
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=
θk
θn+1

( n∑
i=1

ui

)2
−

n∑
i=1

ui
θi

n∑
j=1

ujδijδjk+

+ θk

n∑
j=1

uj

(
n∑

i=1

ui
θi
δij

)

=
θk
θn+1

( n∑
i=1

ui

)2
− u2k
θk

+ θk

n∑
j=1

u2j
θj
.

So that, taking u = (dθi
dt
)i=1,...,n, we get

2
dθ2k
dt2

+
θk
θn+1

( n∑
i=1

dθi
dt

)2
− 1

θk

(dθk
dt

)2
+ θk

n∑
j=1

1

θj

(dθj
dt

)2
= 0,

for k = 1, . . . , n. □

Taking into account that a geodesic is a unit speed curve with respect to J(θ) that

satisfies the ODE system in (2) of Proposition 3.5, we are in position to stablish the main

result of this section.

Theorem 3.6. Let U and J as before. Then a J-geodesic in U is a solution of the

following second order decoupled system

2θk
d2θk
dt2

+ θ2k −
(
dθk
dt

)2

= 0; k = 1, 2, . . . , n.

Proof. From Theorem 3.1 we see that the unit speed condition
〈
θ̇(t), θ̇(t)

〉
J

= 1 is

equivalent to

1 =
n+1∑
j=1

1

θj

(dθj
dt

)2
=

1

θn+1

(dθn+1

dt

)2
+

n∑
j=1

1

θj

(dθj
dt

)2
=

1

θn+1

( d
dt

(
1−

n∑
j=1

θj
))2

+
n∑

j=1

1

θj

(dθj
dt

)2
=

1

θn+1

(
n∑

j=1

dθj
dt

)2

+
n∑

j=1

1

θj

(dθj
dt

)2
.

So that, by simple inspection of the ODE in (2) of Proposition 3.5 we get

2
d2θk
dt2

+ θk −
1

θk

(
dθk
dt

)2

= 0.

for every k = 1, . . . , n. In U this system is equivalent to 2θk
d2θk
dt2

+ θ2k −
(
dθk
dt

)2
= 0. In

simplified dot notation for derivatives, the geodesic system can be written as 2θkθ̈k+θ
2
k−

(θ̇k)
2 = 0. □
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4. Solutions of the ODE that preserve the unit speed geodesic condition

In this section we aim to give sufficient conditions in the initial position and velocity

θk(0) = θ0k and θ̇k(0) = v0k; k = 1, . . . , n, in order to obtain explicit solutions for the

problem 
2θkθ̈k + θ2k − (θ̇k)

2 = 0, k = 1, . . . , n;

θk(0) = θ0k;

θ̇k(0) = v0k;

with θk(t) satisfying the conservation formula

n+1∑
k=1

(θ̇(t))2

θk(t)
≡ 1, t > 0,

for the unit speed of the solution with respect to ⟨, ⟩J . We shall actually work in a much

more general setting including discrete and continuous cases at once. In the following

result we obtain explicit formulas for the solutions of the basic ODE.

Lemma 4.1. Let y0 > 0 and z0 ∈ R be given. Set α =
y20+z20
y0

= y0 +
z20
y0

and β = tan−1 z0
y0
.

Then, the function of t ∈ R given by

y(t) = α cos2
( t
2
− β

)
= y0 cos

2
( t
2

)
+
z20
y0

sin2
( t
2

)
+ z0 sin t,

is the unique solution of the initial value problem

(P )


2yÿ + y2 − (ẏ)2 = 0;

y(0) = y0;

ẏ(0) = z0.

Proof. Notice first that since y0 is positive, the first order associated system satisfies the

classical uniqueness results in some neighbourhood of (y0, z0). Let us start by proving

the identity

α cos2
(
t

2
− β

)
= y0 cos

2
( t
2

)
+
z20
y0

sin2
( t
2

)
+ z0 sin t.

Since β = tan−1 z0
y0

it is clear that cos2 β =
y20

y20+z20
and sin2 β =

z20
y20+z20

. Then

α cos2
(
t

2
− β

)
= α

(
cos

t

2
cos β + sin

t

2
sin β

)2

= α cos2 β

(
cos

t

2
+

sin β

cos β
sin

t

2

)2

=
y20 + z20
y0

y20
y20 + z20

(
cos2

t

2
+
(z0
y0

)2
sin2 t

2
+
z0
y0

sin t

)
12
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= y0 cos
2 t

2
+
z20
y0

sin2 t

2
+ z0 sin t.

Let us show that y(t) solves (P). Notice first that y(0) = α cos2 β =
y20+z20
y0

y20
y20+z20

= y0. From

the second formula for y(t) we see that ẏ(t) = −y0 sin t
2
cos t

2
+

z20
y0
cos t

2
sin t

2
+ z0 cos t.

Hence ẏ(0) = z0. Let us finally check that y(t) satisfies the ODE. From the first expression

for y(t) we see that ẏ(t) = −α cos
(
t
2
− β

)
sin
(
t
2
− β

)
. Let us compute ÿ,

ÿ(t) = −α
2

[
− sin2

( t
2
− β

)
+ cos2

( t
2
− β

)]
=
α

2

[
2 sin2

( t
2
− β

)
− 1

]
= α

[
sin2

( t
2
− β

)
− 1

2

]
.

Then

2yÿ + y2 − (ẏ)2 = 2α2 cos2
( t
2
− β

)[
sin2

( t
2
− β

)
− 1

2

]
+ α2 cos4

( t
2
− β

)
− α2 cos2

( t
2
− β

)
sin2

( t
2
− β

)
= α2 cos2

( t
2
− β

)[
2 sin2

( t
2
− β

)
− 1 + cos2

( t
2
− β

)
− sin2

( t
2
− β

)]
= 0,

for every t. □

The next statement, which contains the main result of this section, is proved in a

general measure space that contains both the discrete and continuous cases.

Theorem 4.2. Let (X,µ) be a positive σ-finite measure space. Let f0 : X → R+ be a

positive probability density with respect to µ, i.e.,
´
f0(x)dµ(x) = 1 and f0(x) > 0 for

every x ∈ X. Let g0 : X → R be an integrable function, i.e.,
´
X
|g0| dµ <∞ such that

(a)
´
X
g0(x)dµ(x) = 0;

(b)
´
X

g20(x)

f0(x)
dµ(x) = 1, i.e.

g20
f0

is a probability density with respect to µ.

Then, the function f : X × R → R given by

f(x, t) = α(x) cos2
( t
2
− β(x)

)
,

where α(x) =
f2
0 (x)+g20(x)

f0(x)
and β(x) = tan−1 g0(x)

f0(x)
satisfies the following properties;

(i) for every x ∈ X the function of t given by fx(t) = f(x, t) solves (P) with y0 = f0(x)

and z0 = g0(x) for each x ∈ X;

(ii)
´
X
f(x, t)dµ(x) = 1 for every t, i.e., f(·, t) is a probability density for every t ∈ R;

(iii)
´
X

(ḟ(x,t))2

f(x,t)
dµ(x) = 1 for every t, i.e. (ḟ(·,t))2

f(·,t) is a probability density for every t ∈ R.
13
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Proof. Property (i) follows from Lemma 4.1. Let us check (ii). From the formula f(x, t) =

f0(x) cos
2 t
2
+ (g0(x))2

f0(x)
sin2 t

2
+g0(x) sin t, (a), (b) and the fact the f0 is a probability density,

we obtain

ˆ
X

f(x, t)dµ(x) =

(ˆ
X

f0dµ

)
cos2

t

2
+

(ˆ
X

g20
f0
dµ

)
sin2 t

2
+

(ˆ
X

g0dµ

)
sin t

= cos2
(
t

2

)
+ sin2

(
t

2

)
= 1,

for every t. Let us finally check (iii). Notice that

(ḟ(x, t))2

f(x, t)
=

(
α(x) cos

(
t
2
− β(x)

)
sin
(
t
2
− β(x)

))2
α(x) cos2

(
t
2
− β(x)

) = α(x) sin2
(
t
2
− β(x)

)
.

Now. from (ii)

1 +

ˆ
X

(ḟ(x, t))2

f(x, t)
dµ(x) =

ˆ
X

(
f(x, t) +

(ḟ(x, t))2

f(x, t)

)
dµ(x)

=

ˆ
X

(
α(x) cos2

(
t
2
− β(x)

)
+ α(x) sin2

(
t
2
− β(x)

))
dµ(x)

=

ˆ
X

α(x)dµ(x)

=

ˆ
X

(
f0(x) +

(g0(x))
2

f0(x)

)
dµ(x)

= 2;

so that
´
X

(ḟ(x,t))2

f(x,t)
dµ(x) = 1, for every t ∈ R. □

Let us observe at this point that in the setting of Section 3 we are dealing with a

geometric structure in U = {θ ∈ Rn : θi > 0, i = 1, . . . , n + 1} which can be identified

with the set of all probability densities f in the space (X,µ) with X = {1, 2, . . . , n + 1}
and µ the counting measure. In fact, θ → fθ, with fθ(i) = θi is a density, since

´
X
fθdµ =∑n+1

i=1 θi = 1. In this sense, the Fisher-Riemann geometry in U translates into a geometry

in the set of positive densities in (X,µ). A geodesic curve of densities will be of the form

f(i, t) = θi(t), i ∈ X, with 2θiθ̈i + θ2i − (θ̇i)
2 = 0. More explicitly Theorem 4.2 gives the

analytical form of f(i, t) for i = 1, . . . , n+ 1,

f(i, t) =
f 2
0 (i) + g20(i)

f0(i)
cos2

( t
2
− tan−1 g0(i)

f0(i)

)
,

when
∑n+1

i=1 f0(i) = 1;
∑n+1

i=1 g0(i) = 0 and
∑n

i=1
g20(i)

f0(i)
= 1.
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On the other hand, Theorem 4.2 contains also continuous cases of non vanishing den-

sities in some subset Ω of Rn. In fact,

f(x, t) =
f 2
0 (x) + g20(x)

f0(x)
cos2

( t
2
− tan−1 g0(x)

f0(x)

)
is a Fisher-Riemann geodesic trajectory in the set of probability densities in Ω provided

that f0 and
g20
f0

are densities in Ω and
´
Ω
g0dx = 0.

5. Fisher geodesic transport of m-dimensional densities and the

convergence of their dyadic pixelations

The generality of the basic measure space (X,µ) in Theorem 4.2 allows its application

to the approximation of the geodesic curves corresponding to continuous (parametric)

densities by geodesic curves corresponding to discrete (finite dimensional) settings.

Let Q = [0, 1)m be the unit cube in Rm. Let us consider the nested dyadic partitions

of Q that we proceed to describe. For an integer j ≥ 0 and k ∈ K(j)
.
= {(k1, . . . , km) ∈

Zm : ki = 0, 1, . . . , 2j − 1; i = 1, . . . ,m}, set

Qj
k =

m∏
i=1

[ki2
−j, (ki + 1)2−j), Dj = {Qj

k : k ∈ K(j)} and D =
⋃
j≥0

Dj.

Notice that Q0
0 = Q is the unique element of D0. Observe also that Qj

k ∩ Qj
k′ = ∅ for

k ̸= k′, Q =
⋃

k∈K(j)Q
j
k, and each Qj

k is the disjoint union of 2m cubes Qj+1
k′ ∈ Dj+1.

Let us consider now a sequence of discrete (finite) probability spaces (Xj, µj), j ≥ 0,

that converges weakly to (Q, dx). For j ≥ 0, set Xj = {k2−j : k ∈ K(j)} and µj is 2
−mj

times the counting measure in Xj. Observe that each xk = k2−j is the lower left corner

of Qj
k. Given a positive density f0 : Q → R+,

´
Q
f0(x)dx = 1, for each j ≥ 0 define

f j
0 : Xj → R+ by

f j
0 (xk)

.
=

1

|Qj
k|

ˆ
Qj

k

f0(y)dy =

 
Qj

k

f0dy, (5.1)

where we use the notation
ffl
E
ψ for the mean value of ψ on E. Note that |Qj

k| = 2−mj for

all k ∈ K(j). Then ˆ
Xj

f j
0dµj = 2−mj

∑
k∈K(j)

1

|Qj
k|

ˆ
Qj

k

f0(y)dy

=
∑

k∈K(j)

ˆ
Qj

k

f0(y)dy

=

ˆ
Q

f0(y)dy

= 1,

and each f j
0 is a probability density in the space (Xj, µj).
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Notice also that if g0 : Q→ R is integrable,
´
Q
g0(x)dx = 0 and we define gj0 : Xj → R

as we did with f j
0 , we also have that

´
Xj
gj0 dµj = 0, for every j ≥ 0, since

ˆ
Xj

gj0 dµj =

ˆ
Q

g0 dy.

Of course, the “unit speed” initial condition in the j-th level of approximation is not

guaranteed by the “unit speed” continuous initial condition
´
Q

g0(x)2

f0(x)
dx = 1. The next

result contains a simple situation in which the finite dimensional geodesics converge to

the corresponding geodesics in a non parametric family of continuous densities.

Theorem 5.1. Let f0 be a positive measurable function in the cube Q such that
´
Q
f0 dx =

1 and f0 ≥ δ almost everywhere for some positive δ. Let g0 be an integrable real function

defined in the cube Q that satisfies

a)
´
Q
g0 dx = 0 and

b)
´
Q

g20
f0
dx = 1.

For each j ≥ 0 let us consider the real functions f j
0 and gj0 with domain in Xj defined as

in (5.1). For j large, set g̃j0 : Xj → R given by g̃j0 = α
− 1

2
j gj0, where αj =

´
Xj

(gj0)
2

fj
0

dµj > 0.

Then

i)
´
Xj
f j
0dµj = 1;

ii)
´
Xj
g̃j0dµj = 0;

iii)
´
Xj

(g̃j0)
2

fj
0

dµj = 1;

iv) the sequence for Fisher-Riemann discrete density geodesics with initial conditions f j
0

and g̃j0, given by

f j(·, t) = (f j
0 )

2 + (g̃j0)
2

f j
0

cos2

(
t

2
− tan−1 g̃

j
0

f j
0

)
for each t ∈ R, “converges weakly”, as j → ∞, to the continuous density geodesic

with initial conditions f0 and g0 given by

f(x, t) =
f0(x)

2 + g0(x)
2

f0(x)
cos2

(
t

2
− tan−1 g0(x)

f0(x)

)
,

where x ∈ Q. More precisely, for every t and every φ compactly supported and

continuous in Q, we have∣∣∣∣∣
ˆ
Xj

f j(y, t)φ(y)dµj(y)−
ˆ
Q

f(y, t)φ(y)dy

∣∣∣∣∣→ 0

for j → ∞.

Proof. First observe that, since g0 satisfies b), it can not be zero almost everywhere.

Hence, for j large enough, (gj0)
2 is positive in some set of positive measure and then

αj =
´
Xj

(gj0)
2

fj
0

dµj > 0.
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Item i) was proved before the statement of the theorem. To prove item ii), notice that´
Xj
g̃j0 dµj = α

−1/2
j

´
Xj
gj0 dµj = 0. Item iii) follows from the definition of αj,

ˆ
Xj

(g̃j0)
2

f j
0

dµj =
1

αj

ˆ
Xj

(gj0)
2

f j
0

dµj = 1.

Let us finally prove iv). Recall that, from Theorem 4.2 and Lemma 4.1, we have

f(x, t) = f0(x) cos
2

(
t

2

)
+
g0(x)

2

f0(x)
sin2

(
t

2

)
+ g0(x) sin(t)

for each x ∈ Q and t ∈ R, and

f j(xk, t) = f j
0 (xk) cos

2

(
t

2

)
+
g̃j0(xk)

2

f j
0 (xk)

sin2

(
t

2

)
+ g̃j0(xk) sin(t)

for each xk ∈ Xj = {k2−j : k ∈ K(j)}. So that, we only have to prove that for every

compactly supported and continuous φ in Q, we have

lim
j→∞

∣∣∣∣∣
ˆ
Xj

f j
0 (y)φ(y)dµj(y)−

ˆ
Q

f0(y)φ(y)dy

∣∣∣∣∣ = 0, (5.2)

lim
j→∞

∣∣∣∣∣
ˆ
Xj

g̃j0(y)φ(y)dµj(y)−
ˆ
Q

g0(y)φ(y)dy

∣∣∣∣∣ = 0, (5.3)

lim
j→∞

∣∣∣∣∣
ˆ
Xj

g̃j0(y)
2

f j
0 (y)

φ(y)dµj(y)−
ˆ
Q

g0(y)
2

f0(y)
φ(y)dy

∣∣∣∣∣ = 0. (5.4)

In order to prove (5.2), let us first compute the two integrals involved,

A =

ˆ
Xj

f j
0 (y)φ(y)dµj(y)

=
∑

k∈K(j)

f j
0 (xk)φ(xk)2

−mj

=
∑

k∈K(j)

(
2−mj

|Qj
k|

ˆ
Qj

k

f0(y)dy

)
φ(xk)

=
∑

k∈K(j)

ˆ
Qj

k

f0(y)φ(xk)dy,

and

B =

ˆ
Q

f0(y)φ(y)d(y) =
∑

k∈K(j)

ˆ
Qj

k

f0(y)φ(y)dy.

Hence,

|A−B| ≤
∑

k∈K(j)

ˆ
Qj

k

f0(y)|φ(xk)− φ(y)|dy

and (5.2) follows from the uniform continuity of φ in Q and the integrability of f0 in Q.
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Proof of (5.3):∣∣∣∣∣
ˆ
Xj

g̃j0φdµj −
ˆ
Q

g0φdy

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
Xj

(g̃j0 − gj0)φdµj

∣∣∣∣∣+
∣∣∣∣∣
ˆ
Xj

gj0φdµj −
ˆ
Q

g0φdy

∣∣∣∣∣
= I + II.

For the second term II, we may argue as in (5.2) since |g0| ∈ L1(Q). Let us estimate I.

I ≤
ˆ
Xj

|α−1/2
j gj0 − gj0||φ|dµj

≤ |α−1/2
j − 1| ∥φ∥∞

ˆ
Xj

|gj0|dµj

≤ |α−1/2
j − 1| ∥φ∥∞∥g0∥1,

which tends to zero as j → ∞, since

αj =

ˆ
Xj

(gj0)
2

f j
0

dµj −→
j→∞

ˆ
Q

g20
f0
dy = 1. (5.5)

In fact, since f j
0 (xk) =

ffl
Qj

k
f0 and gj0(xk) =

ffl
Qj

k
g0, (the average value in Qkj of f0 and

g0, respectively) the functions ψj : Q → R+ given by ψj
.
=
∑

k∈K(j)
gj0(xk)

2

fj
0 (xk)

1Qj
k
, converges

pointwise to
g20
f0

in Q, due to Lebesgue differentiation theorem through dyadic cubes. Also,

f0 ≥ δ > 0 in Q and g0 ∈ L2(Q) implies that

ψj(x) ≤
1

δ

∑
k∈K(j)

(
1

|Qj
k|

ˆ
Qj

k

g0 dy

)2

1Qj
k
(x) ≤ 1

δ
∥g0∥2L2(Q)

∑
k∈K(j)

1

|Qj
k|
1Qj

k
(x)

for all x ∈ Q, and the Lebesgue dominated convergence theorem finishes the proof of our

claim (5.5), since αj =
´
Q
ψj dy →

´
Q

g20
f0
dy = 1 as j → ∞.

Proof of (5.4):∣∣∣∣∣
ˆ
Xj

(g̃j0)
2

f j
0

φdµj −
ˆ
Q

g20
f0
φdy

∣∣∣∣∣ ≤
∣∣∣∣∣
ˆ
Xj

(g̃j0)
2 − (gj0)

2

f j
0

φdµj

∣∣∣∣∣+
∣∣∣∣∣
ˆ
Xj

(gj0)
2

f j
0

φdµj −
ˆ
Q

g20
f0
φdy

∣∣∣∣∣
≤ Ij + IIj.

Let us first estimate Ij,

Ij ≤

∣∣∣∣∣
(

1

αj

− 1

) ˆ
Xj

(gj0)
2

f j
0

φdµj

∣∣∣∣∣
≤ ∥φ∥∞

∣∣∣∣ 1αj

− 1

∣∣∣∣ˆ
Xj

(gj0)
2

f j
0

φdµj

=≤ ∥φ∥∞|1− αj|,
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which from (5.5) tends to zero when j tends to infinity. Let us finally estimate IIj.

IIj ≤

∣∣∣∣∣∣
∑

k∈K(j)

gj0(xk)
2

f j
0 (xk)

φ(xk)|Qj
k| −

ˆ
Q

g20
f0
φdy

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ˆ
Q

 ∑
k∈K(j)

gj0(xk)
2

f j
0 (xk)

φ(xk)1Qj
k
− g20
f0
φ

 dy

∣∣∣∣∣∣ .
Now, from the continuity of φ and, again, from the dyadic version of the differentiation

Lebesgue theorem, we see that the function we are integrating on Q tends to zero as j

tends to infinity almost everywhere. But, since φ is bounded, g ∈ L2(Q) and f0 ≥ δ > 0,

we can apply the dominated convergence Lebesgue theorem to finish the proof of the

theorem. □

6. Examples and graphics

In this section, using Octave, we compute the explicit solutions of the geodesics of

densities in some simple but illustrative situations.

Let us first start by the discrete case when U = {θ0 = (θ1, . . . , θn) : 0 < θi < 1, i =

1, . . . n, and θn+1 = 1 −
∑n

i=1 θi > 0}. In order to adapt our situation to the setting

of Theorem 4.2 let us take X = {x1, . . . , xn+1} and µ the counting measure on X. Let

f0 : X → R+ be given by f0(xi) = θ0i , with θ
0
i > 0, i = 1, . . . , n+1 and θ01+ · · ·+θ0n+1 = 1.

This f0 identifies one and only one point θ0 = (θ01, . . . , θ
0
n) in U . This will be the initial

point of the geodesic in U . Following with the notation of Theorem 4.2, we have to choose

an initial velocity given by g0 : X → R, g0(xi) = v0i , satisfying two conditions:

(a) v01 + · · ·+ v0n+1 = 0, and

(b)
(v01)

2

θ01
+ · · ·+ (v0n+1)

2

θ0n+1
= 1.

For a fixed θ0, this is equivalent to choose a v0 = (v01, . . . , v
0
n) in the (n− 1)-dimensional

ellipsoid given by
n∑

i=1

(v0i )
2

θ0i
+

(v01 + · · ·+ v0n)
2

θ0n+1

= 1, (6.1)

which is the “unit ball” for the Fisher-Rao metric. Hence, given θ0 and v0, the geodesic

in U is the curve θ(t) = (θ1(t), . . . , θn(t)) given by

θi(t) = θ0i cos
2

(
t

2

)
+

(v0i )
2

θ0i
sin2

(
t

2

)
+ v0i sin t

for i = 1, . . . , n.

Consider the simplest case n = 2 with initial point θ0 = (1
3
, 1
3
) which implies θ3 = 1

3
.

Equation (6.1) describe the ellipse in the plane of the of the variables v01 and v02, given by

(v01)
2 + (v02)

2 + v01v
0
2 =

1

6
.
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Figure 1. Several trajectories from (13 ,
1
3 ) for different initial velocities. Here we consider

t ∈ [0, π
2 ].

Figure 2. τ =
11π
6

Figure 3. τ ∈
( 11π6 , 2π)

Figure 4. τ ∈
( 3π2 , 11π

6 )

Figure 1 shows some of these curves starting at the point θ0 = (1
3
, 1
3
) for different initial

velocities in the ellipse parametrized, with parameter τ ∈ R, by

v01(τ) =

√
2

6

(
−
√
3 cos τ + sin τ

)
,

v02(τ) =

√
2

6

(√
3 cos τ + sin τ

)
.

Note that all trajectories are ellipses, except when v0 or −v0 points to the vertices of

the simplex, in which cases the trajectories are straight lines.

In figures 2, 3 and 4 we draw some complete trajectories for different values of v0.

For the case n = 3, in Figure 5 we draw several trajectories in U = {(θ1, θ2, θ3) : 0 <
θi < 1, i = 1, 2, 3; θ1+θ2+θ3 > 1}, all with initial point θ0 = [0.25, 0.25, 0.25] and different

initial velocities.

Let us now show the dynamic of the Fisher transport of the uniform density in the

interval [0, 1] to some more concentrated distribution. The space (X,µ) is now ([0, 1], dx),
20
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Figure 5. 3-dimensional trajectories

where dx denotes the Lebesgue measure. Take f0(x) ≡ 1, the uniform density and

g0 : [0, 1] → R be such that
´
[0,1]

g0dx = 0 and
g20(x)

f0(x)
= g20(x) = 41[0,1/4](x). It is

clear that we can choose several functions g0 satisfying above conditions. We illustrate

the dynamics of f(x, t) for t ∈ [0, π] in two simple cases of g0. Taking first g0,1(x) =

2
(
1[0,1/8](x)− 1(1/8,1/4](x)

)
and then g0,2(x) = 2(1[0,1/16](x)−1(1/16,1/8](x)+1(1/8,3/16](x)−

1(3/16,1/4](x)) we obtain the frames depicted in Figure 6 and 7.

It is clear that the density trajectory generated by the Riemann Fisher geometry de-

pends strongly on the function g0 even when f0 and
g20
f0

are fixed. This situation can be

observed in even more clearly in the two dimensional case. In this situation X = [0, 1]2,

dµ = dxdy is the area measure in the unit square. Take now f0(x, y) ≡ 1 the uniform

density and g0(x, y) a function in [0, 1]2 such that
˜
g0dxdy = 0 and

g20
f0

= 161[0,1/4]2(x, y).

In Figure 8, Figure 9 and Figure 10, we depict the situation for three different choices of

g0:

g01(x, y) = 4
(
1[0,1/4]×[0,1/8](x, y)− 1[0,1/4]×[1/8,1/4](x, y)

)
g02(x, y) = 4

(
1[0,1/8]×[0,1/8]

⋃
[1/8,1/4]×[1/8,1/4](x, y)− 1[1/8,1/4]×[0,1/8]

⋃
[0,1/8]×[1/8,1/4](x, y)

)
g03(x, y) = 4

(
1E(x, y)− 1[0,1]2\E(x, y)

)
21
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Figure 6. g0,1

with

E =
⋃

k1=0,1,2,3
k2=0,1,2,3
k1+k2 even

Qk1,k2 ,

and Qk1,k2 = [0, 1
16
]2 + (k1, k2).

We may also have a global view of this Fisher-Riemann transport by looking at the

dynamics of mean and variance. See Figure 11, page 26.
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Figure 7. g0,2
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Figure 8. g01
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Figure 9. g02

Affiliation 1. Instituto de Matemática Aplicada del Litoral “Dra. Eleonor Harboure”,

UNL, CONICET.

Address.CCT CONICET Santa Fe, Predio “Dr. Alberto Cassano”, Colectora Ruta Nac. 168 km 0,

Paraje El Pozo, S3007ABA Santa Fe, Argentina.

E-mail address. haimar@santafe-conicet.gov.ar; ivanagomez@santafe-conicet.gov.ar

Affiliation 2. Facultad de Ingenieŕıa Qúımica, UNL, CONICET.
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Figure 10. g03

Figure 11. Mean (left) and variance (right) of the trajectories in the 2-dimensional case.

The blue curve is obtained with initial velocity g01 while the red curve is obtained for

both g02 and g03.
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