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FISHER-RIEMANN GEOMETRY FOR NONPARAMETRIC
PROBABILITY DENSITIES

HUGO AIMAR, ANIBAL CHICCO RUIZ, AND IVANA GOMEZ

ABSTRACT. In this article we aim to obtain the Fisher Riemann geodesics for non-
parametric families of probability densities as a weak limit of the parametric case with

increasing number of parameters.

1. INTRODUCTION

The Fisher information of a random variable issa useful tool for the estimation of
parameters in parametric statistics. When the number of parameters deseribing the dis-
tributions of the random variables we are dealingewith is, larger than one, the Fisher
information induces a remarkable Riemannian stracture on théset of parameters. A sim-
ple but illustrative case is provided by the one dimensional Gaussian family, see [CSS05].
Let U = R = {0 = (61,0,) : 6, € R, 0> 0} Be, the upper half plane of R With 6,
the mean and 6y the variance, we havéxa one to one correspondence between U and the
two parametric family {X ~ N(6y,65)}. Tmother words, the random variables that have
normal distribution with meand@; and varianee @,. In this case the metric that the Fisher
information induces in U is [that of thefhyperbolic Poincaré geometry. Of course the
situation extends to any number of parameters and the geodesics that these Riemannian
metrics inducegin, the set of parameters can be thought as trajectories joining a density
(image) t0 another. In otherwords, we have a Fisher geodesic mass transport. This point
of view has been used in some applications to image processing (see [PRO6]).

In this paper we aim to extend Fisher-Riemann geometry to non parametric sets of
densities and te explore the behaviour of the corresponding geodesics. The starting point
is the parametric ease. Then by approximation of a general density by parametric ones
we are able to establish and solve the corresponding Gauss geodesic equations.

The paper is organized as follows. In Section 2 we introduce the well known facts
regarding Fisher information. Section 3 is devoted to introduce our particular discrete
setting and to obtain the precise form of the geodesic equations in this case. Section 4
contains the result that provides solutions for the geodesic equations both in the con-
tinuous and discrete cases. Section 5 contains main result of the paper regarding the
convergence of the parametric geodesics to the geodesics corresponding to a given non-
parametric density. In Section 6 we show examples and illustrations of the dynamics in

different situations.
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2. THE FISHER INFORMATION

A basic approach to Fisher Information from the point of view of Information Theory
can be found in [CTO06] and also [Nie22] for a recent account on Information Geometry.
We shall roughly follow the lines in [CT06] to describe and define the basic concepts. Let
U be an open set in R". We shall consider U as the set of parameters 6 = (64, ...,0,) for
a family Dy = {p(z,0) : 0 € U} of probability densities in R* with respect to Lebesgue
measure dr in R¥. When k = 2 a typical Dy is given by

1 x1— 01,00 — 6
QO<I,9) = SO(I’91782,93) = @so (( 1 103 2 2))
3

with [0, pdz =1, ¢ > 0and U = {0 € R* : (61,0,) € R*,05 > 0}.
Given U, Dy and a random variable X (or random vector) inR%we mayieonsider the
new random variable Y (w, 8) = (X (w), ). The score is defirled as anew random vector

in R™ given by the #-gradient of log Y (w, #). Precisely,
S(w,0) = VylogY(w,0)

= (i logY(w,0),..., N log YV (w, 9))

00, 90,
1 oY oY

- e MG o (X().0))
_ VoKX (w)0)
(X (), 0)
Of course somessimple analytic conditions on the family Dy of densities are required in
order to llave a well defined score for the random variables distributed by densities in

Dy . Eirst order smoothness in@ and non vanishing of the densities are the basic ones.
Lemma 2.1 The expected value of the score S(-,0) with respect to ¢(-,0) vanishes.

Sketch of the preaf. The expected value of S(-, ) with respect to the probability measure
o(z,0)dz in R* is given by the n-vector

V@‘P(xa 9)
S(x,0)p(x,0)dr = _—
Rk ( )go( ) Rk <P(l'79)

= Vs </R oz, 9)@:)

=Vl
—0=1(0,...,0) €R",

o(x, 0)dx
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From de above Lemma, the covariance matrix of the score S(+,0) with respect to the
corresponding ¢(+,#) density in Dy is given by the expected value of the n x n random

matrix S(w,0)ST (w, #), where T denotes transposition.

Lemma 2.2. The i,j entry of the n x n covariance matriz of the score S(w,0) with

respect to (-, 0) is given by

0 0
Ts(6) = [ - toxola )35 log ol D)l )
i j

Proof. Since the ¢(-,0)-mean of S(w,#) vanishes, we have that the ¢(-,6) covariance
matrix of ¢(-,0) is given by the expected value of S(w,0) - ST (wy)awith respect to
(-, 0), that is
/ S(z,0) - ST (x,0)p(x,0)dr = (/ SAx,H)Sﬂx,@)go(m,@)dx)
Rk Rk

zJ

0 J

ij
U

Notice that all the above considerations can be 'done in any positive o-finite measure
space (X, ) instead of (R¥, dz).

Definition 2.1. Let U be an open set'im\R". Let (X, 1) be a positive o-finite measure
space. Let Dy = {¢(-,0) : o( 0)mmX — R, [p(z,0)du(z) = 1,0 € U} be a family
of densities parametrized on U. ThedFisher Information Matrix is the n X n matrix
valued function J definedgin U by
0] 0
Jii(0) = /X 20, log ¢(x, 9)8—%loggp(x,9)go(:v,9)du(x),

provided the smoothness andiintegrability required.

In our furthef analysis we shall be concerned with special cases of dimensionaly increas-
ing open sets U and their eventual convergence as n tends to infinity when the family
Dy is drawn by projection of a general density.

Let us finish this section with the explicit computation of the matrix J in the case of
X finite and g the counting measure when every density is parametrized by its values.
Let us precise the situation. Let X = {xy,..., 2, z,11} be a finite set and p = Z?Ill Oy
with the unit mass at the point x;. Notice that if ¢ : X — R*' is a density in the
sense that [, g(z)du(z) = 1, we have that S g(x;) = 1. Hence every such g can
be parametrized by its n-first values g(z1),...,9(x,), since g(x,.1) can only be 1 —
Yoy g(x;). Let us write this remark in terms of the above introduced notation. Set
U={0=(0,....,0,) € R" : 0, > 0 for every i and Y ., 60; < 1}. Then the set D =

{9 : X = R™; g non vanishing density with respect to u} coincides with Dy the set of all
3
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parametric densities ¢(-,6), 8 € U given by (z;,0) =0;;j =1,2,...,nand p(r,41,0) =
1=>77 05

Proposition 2.3. Let X = {xy,..., 2y, xp1} and U be the n-dimensional open simplex
{0 = (64,...,0,) € R" : 0; > 0 foreveryi = 1,....,n and Y ,6; < 1}. Let Dy =
{p(-,8) : 0 € U}, where ¢(-,0) : X — R is given by o(x;,0) = 6; for j =1,...,n and
P(Tni1,0) =1 =377 0;. Then, the Fisher information matriz associated to Dy is the

n X n matriz function defined in U by

1 1
JO) = J(0,...,0,) = 1+D< )
9n+1 9]
where 0,11 =1 — Z?:l 0; >0, 1 is the n x n matriz with its n? entries equal to one and

D(i) 1s the n X n diagonal matrix

‘9.7
1
Lo
1
0 %
0 0 .. b

On
Proof. In order to compute the entries J;;(0) of J(#)plet us start by the calculation of
the partial derivatives %log o(x,0) forfevery e X' = {z1,...,2,, 2,11} and every
J
0 =(0y,...,0,) € U. Notice first thatlogy(z, §) can be written as

log p(z,0) Zlog@ Tz (z)+ log (1 — Z%) Lani1} (@)

k=1
n+1

— Z log Gill{xi}(x)
i=1

with 0, =0, 101y ... 0 h=1—>"1_, 0 and as usual 1g(z) the indicator function of
the set £ C X. Hence, for 7= 1,2,...,n; aa log (x,0) = ,]l{xj}(x) AT ().
So that

n+1

L0) = [ (5 toxete 9))2¢<x,e>du<x>
- [ (Frest + gt @) ete oyt

n+1
n+1 1
- Z (92]1{%} xl 9 ]l{xn+1}(xl)) 01
B 1 L2
ej Qn—i—l.

On the other hand, for i # j, 4,5 = 1,2,...,n, we have

1506) = [ (5 08000035 1080(0.6) ) ol )
4
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1 1 1 1
= g L (@) = 13 (@2) ) { 51 (@) = gL,y (2) ) oz, O)dp(z)
X i n+1 J n+1
1
= [ e () Oduta)
X Yn+1
1
en—i-l ‘
In other words, for 7,7 =1,2,...,n we have
0ij 1
( ) 9]' 9n+1
where d;; the Kronecker notation for the identity matrix. In explicit nX%n matrix form
1 1 1 1
E —I— m 97L+1 T 9n+1
1 1, 1 e 1
J(Q) _ On+1 02 Ont1 On1
1 1 N 1
97z+1 9n+1 Gn 9n+1

g

3. THE RIEMANNIAN GEOMETRY IN THE _SIMPLEX INDUCED BY J(f) = Q;iﬁ +D(0j‘1)

Let U be the open simplex U = {#/€ R" : 0; > 0,7 = 1,...,n+ 1} with 6,4, =
1 — 3", 0;, as before. Let J(#) be thewumatrix function defined in U by the Fisher

Information obtained in Proposition 2:3. Explicitly,

1) = 9n1+11 +D(0ij).

Theorem 3«linkor each. 6 € U the quadratic form in R™ x R™ given by (U,w>J(9) =
Doic1 2y Vidij(O)wy defines,a scalar product in R™. The couple (U, (v, W) ) 15 @ €
Riem@nnian mandfold of dimemsion n. Moreover, if 0 : [0,1] — U is a smooth curve in
U, 0(t) =(61(#),-..,0,(t)), then, with 0,,1(t) =1—=>""_ 0:(t), the arc length is given by

li(6) = /01 \/<9(t)’9(t)>J<e<t>>dt - /o1 nzj

where O(t) = (61(t),...,0,(t)) is the velocity of @ at each time t € [0, 1].

(0,(1))?

0;(t)

dt,

Proof. Since J(0) is symmetric, we only need to show that it is also positive definite and

to provide an explicit formula for (v, v) J0)- Take v € R", v # 0, then

1 = 1
T _.T
v J(@)v = (0n+11+D(0»>)U

J

= 1
lv+o'D (—) v
n+1 6)j

5

UT
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2 n o
o (Zvl> +;%>O

In order to prove the formula for the length of the curve 8(t) we only have to observe
no 2 no 02(1) 1 - 2 no 62(1) ntl 62(t)
that (t) (Z z(t)> + 2 0:(0) — Onr1(D) (0”+1(t)) + D e 0. > it o

The following result is a direct consequence of Theorem 3.1.

Corollary 3.2. Set [(0) to denote the standard length of the curve 6(t). Then

(1) 1(0) < 1;(0) for every 6;
(i1) for every compact subset V' of U, there exists C' > 0 depending onlgpon V' such that

1;(0) < CU(B) for every O contained in V.

We shall now find the geodesic ODE system for the Riemannianymanifoldu(T, (,) ;).

The following lemmas will be of help at writing thesChristeffel symbols in our setting.

Lemma 3.3. Let A be the n x n real matriz given OghA = Int+ D(c;), where D(c;)

is the diagonal n x n matriz with ¢; > 0, i = 1,2,... , nuwThen A~ = (det A)™!

where Ky = [[,.¢; + Zl#(nmﬂ cm) and K;; "= —[[mxi Cmarfor it # j and det A =
m#i m#j

[Tioi i+ 2 Hj;ﬁi Gy

Proof. Let us first prove inductively that det A = [T, ¢; + >0, T[] ¢j for ¢; > 0. Case
1
1+ ¢
Consider the n x n matrix, A =1 4 D(c) ‘and suppeose that the formula holds for the case

1+4+c¢
n = 2 is simple: det ( ) ! > = (1+ )1+ cy) — 1 =cie0+ ¢1 + o, as desired.

of A of dimension (n =1) x (n'=1). Hence

det A= Zali(—l)HiMu = (1 + Cl)Mu + Z(—l)LHMM,

=2

where Myp= dét (A,;) and A;; is the (n — 1)-submatrix of A obtained by removing the

first row and the i-th column of A. Observe that Ay; is a (n —1) X (n — 1) matrix of type

1+ D(e), so thathdly; = [, ¢; + S0, [T ¢;- Also, Ay is of type 1+ D(E), but with
G£1

diagonal (0,cs, ..., ¢,), then again by inductive hypothesis, My = [[j#1 ¢;. On the other
42

hand, A3 is of type 1+ D() up to one row permutation, with diagonal (0, s, ca, ..., ¢),
obtaining M3 = —[[j#1¢;. In general, for i = 2,... n, the submatrix A;; is of type
j#3

1+ D(¢) with diagonal (0,c¢a,...,¢i1,Cit1,--.,C,) up to i — 2 row permutations, which
gives My; = (=1)"2[ ] ¢;. Then
A

det A= (1+c) (ch—i—ZHcJ) Z Hc]

1=2 j#i =2 Ve
J#1 J#1
6
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n n n
= H ¢+ H ¢+ H C;j
1=2 =1 1=2 j#i
n n
=[Ie+> 11«
i=1 i=1 j#i

Let us now prove that (det A)~'K is the inverse of A. Since both, A and K are
symmetric, we only need to compute K A. Take first i # j, then

= Z KAy
=1

7
1 CEbw( COI() SRLREDS wit1 N
pFi l#i m;ﬁl m;ﬁz l;éz‘ m#i
mi m#j I#j, m#l
Tles [T en+ o] - HIT A (I o)
l#7 m#i m#i mj l#7 m#l
=0.
On the other hand,
= KAy
=1
= Kii Ay + Z K
)
s (e > (T )0+ e - 21T en)
jF#i l#1 m;él l#i m#i
m#i m##l
0o+ (I ) + ch > (Ien) -3 (T en)
i I£i m#l j 1#i  m#l £ mti
m#i m#l
- H G+ (H cm>
l m#l
= detA,
for every i = 1,...,n. Then (detA) 'K is the inverse of A. d

Let us now apply the above lemma in order to obtain the inverse of the Riemannian
matrix J(#) for § € U, which as usual we shall denote by J = (g;;).

Lemma 3.4. For0 € U, 0 = (04,....0,), set 0,y =1—3 " 6;. Then, the inverse of
the metric matriz J(0), J1(0) = (§9(0))ij=1..n s gwen by ¢" = 0;(1—6;), i =1,...,n

,,,,,

and g = —0,0; fori # j. Or, in terms of the Kronecker delta, g = 0;(6;; — 0;).
7
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Proof. Since J(0) = -1+ D(eij), we have that 6,,,.J(f) = 1+ D(QT(;;”) and we can

Ont1
apply Lemma 3.3 with ¢; = % Set M (0) = []"" %L, Then, with A = 6,,.1J(0), we
J 0; J=1 9,
have
"9
det A=M(0)+ Y ; LM ()
=1 n+1

On the other hand,

6n—|—1 en—l-l

So the al entries of A~!, we have that
i 0L —6)
0n+1

For i # j we have from Lemma 3.3,

Ky =TT %t = - % Bge)

m;éz em en-‘rl en—f—l

m#j
Hence, AV = —2%. So that g = 0,41A", then g"(6) = 6;(1 — 0;) and g7 = —0,0
for ¢ # j. Which can be written as g” = 6;(d;; — 6;) in terms of the Kronecker symbols
5ij- [

The above lemmas allows us to find the explicit n x n ODE system for the geodesics

in U induced by J. Recall (see do Carmo [dC76]) that in general the geodesic system
8
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generated by J = (¢g;;), 4,7 = 1,...,n is given by

20, = — do; do;
— k=220 —0. k=1,...
prE +Z;; Uil e Th

where the Christoffel symbols Ffj are given by

n

k __ Ik

F’Lj - Z Fijlg )
=1

with (¢"%) k=1, =J Ty = %(gﬂ,i + qiij — giju) and gji; = %gﬂ. In the next result

ticular case.

<0<
V), Then, for

we obtain the Chrlstoffel symbols and the geodesic system in our

Proposition 3.5. Let U = {0 = (91, oo b,) 0 < 6; <1 for every
1}, Oy = 1 =300, J(O) = 1+ D(+ -) and (u,

n+1

k=1,...,n, we have
(1) F;Cj = % [93’;1 — 15@]6]k + 513] and ‘

(2) the geodesic system is given by

2
2d ek O "L db;
dt2 enﬂ —~ dt

Proof. Let us start by computing the

Gii.; — Gij1)- Notice first that

\ O ‘
1 1
— 005
IR
Hence
, for (i,7,1) ¢ A the diagonal of {1,2,...,n}3 and T';;; = (921 i)

z]l - 2 (g]l A + glz,] - gij,l)
So that Pijl 2 92 92

1 ( 1
—_—— 5-1(5-i — 01i01j— + 050 ) )
0721+1 JEZg 92 392 J 02
for every 1 € {1,.. n} Let us now compute the Christoffel symbols of the second kind.
Recall that for 7,7,k = 1,...,n, the Christoffel symbol of the second kind is given by
= >, Tiig"™, where I';; are the Christoffel symbols provided by J and ('), x=1...

is the inverse of J. From Lemma 3.4 we have ¢g'* = 6,(5;, — 0). Hence

=Y Tig"
=1
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Iy 11 1
== @T— @%%—eﬁmm p00a) 00w = 0,)

1 1
= Z 0, |:_5lk — 0710501 — 5115lg5lk

202, 6 02
O, O
5@ 0O — —50410j;
92 J 9721+1 02 Jtv3
0 0
ot ;%@]

S W
0_2k _ ﬁéﬁ Z 916jl5lk 2 Z 6l5l15l]6lk‘
n+1 Q _ J =1

+5u2 5zl5lk 10;—97;1)
n+1

+ 925119 + 5 Zeléh%

J =1
1
—91@5@'5} ,

T2

then

The geode E system is given by

de =  d6; db;
or © k=1,....n
e +ZZ i ar - R Leen

i=1 j_

For fixed k, let us compute the quadratic form induced by the matrix (ZFfj)i,j:L‘_.,n on a

vector u = (u;)i=1,.n for fixed k € {1,...,n},

.....
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0 n 9 n . n
_ 7k (Zuz) _Zz_ijz:;ujéijéjk_‘_

0
ntl My i=1

j=1 !

i=1

So that, taking u = (‘fzj)i:l

() () g

1= j=

.....

fork=1,...,n. O

Taking into account that a geodesic is a unit speed cur

satisfies the ODE system in (2) of Proposition 3.5, we are in tion to s

result of this section.
Theorem 3.6. Let U and J as before. Then%sz U is a solution of the

following second order decoupled system

d20k ae
Proof. From Theorem 3.1 we the peed condition <0(t),0(t)>J =1is
equivalent to
| (dej)2
‘= g, \ dt
1 /d o 2 =1 dojN?
(S S ()
On i1 (dt< Z 5) +Z 0, \ dt
7j=1 J=1
2
1 "~ db); "\ 1 /dfj\?
L (Ee) - Say
So that, by simple inspection of the ODE in (2) of Proposition 3.5 we get
420y, 1 (do\°
2— 460, —— | — | =0.
az TG, < dt >
for every K = 1,...,n. In U this system is equivalent to 26, d:t%’“ + 62 — (%)2 = 0. In
simplified dot notation for derivatives, the geodesic system can be written as 260y, + 07 —
(6)% = 0. O

11



ISSN 2451-7100
IMAL PREPRINT # 2024-0068 Publication date: February 19, 2024

4. SOLUTIONS OF THE ODE THAT PRESERVE THE UNIT SPEED GEODESIC CONDITION

In this section we aim to give sufficient conditions in the initial position and velocity
0,(0) = 69 and 6,(0) = v0; k = 1,...,n, in order to obtain explicit solutions for the
problem
20,0, + 02— (0,)2=0, k=1,...,n;
0x(0) = 0y
01(0) = vf;

with 0, (t) satisfying the conservation formula

n+1 H't 2
;(Gi(i; 1, t>0,

for the unit speed of the solution with respect to (,) ;. We shall actually work'in"a much

more general setting including discrete and continuous cases at once. “Im, the following

result we obtain explicit formulas for the solutions of the,basic:ODE.

Lemma 4.1. Let yo > 0 and zy € R be given. Seba = ;Z =10 + 41 and B = tan~! fol
Then, the function of t € R given by

y(t) = 04(:052<§ — B)

o (1 28 t .
= 1o COS (—) +— sin ( ) + 2psint,
2 Yo 2

1s the unique solution of the initial value problem
2yl Ay — (9)° =0;
(P) y(0) = wo;

Proof. Notice fitst that since yq is positive, the first order associated system satisfies the

classical uniqueness results in some neighbourhood of (yo, z9). Let us start by proving

the identity
t t t
acos? [ = — ) = yo cos? (—) + —= 4 sin ( ) + zgsint.
2 2 Yo 2

Since 8 = tan™! ;—g it is clear that cos? 3 = 2+ > and sin® f = 2+ >. Then
9 (1 3 t B+ s t . 3 2
acos’ | = — = a | cos = cos sin — sin
2 2 2
2

9 smﬁ t

= (CoS Ccos — + —
& ( 2 COSB )

2 2 2
+z t Z20\2 . ot 29 .

_ YT 2y0 5 (COS2—+(—O> 81n2——|——081nt)
Yo Yotz 2\ 2 Yo

12
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t 22
= ypcos® = + 2

sin23+zsint
2 Yo g 0T

Let us show that y(t) solves (P). Notice first that y(0) = a cos? § = yg%gyggig = 7. From

the second formula for y(t) we see that y(t) = —yosin % cos 5 + Z—(ECOS Lsinf + zcost.
Hence §(0) = zo. Let us finally check that y(¢) satisfies the ODE. From the first expression
for y(t) we see that §(t) = —acos(t — ) sin(Z — ). Let us compute ,

i) = =5 [ st (5= ) o5 )
“5 - -1
“afwe(t-5) 1]

Then

2uij + y* — (§)* = 20” cos <— — B) {sm (% — 5) — %]

et () - ot (B) i Ty )
- e () [t Mg (£ —5) (£ 5

=0,
for every t. O

The next statement, avhich eontains the main“result of this section, is proved in a

general measure spaceithat contains.both the discrete and continuous cases.

Theorem 4.2. Let (X, 1) be a positive o-finite measure space. Let fo : X — R be a
positite probability density with respect to p, i.e., [ fo(x)du(z) =1 and fo(xz) > 0 for
every v € X. det gy : X — R be an integrable function, i.e., fX lgo| dp < 00 such that
(@) [x 90(2 ) =0;

(b) fX x) d,u =1, i.e. ?—i 15 a probability density with respect to .

Then, the functwn f: X xR —= R given by

f(z,t) = a(z) cos® (% — ﬁ(x)),

where a(x) = W and B(r) = tan™! %—g; satisfies the following properties;

(i) for every x € X the function of t given by f.(t) = f(x,t) solves (P) with yo = fo(x)
and zy = go(x) for each x € X;
(i) [ f( (z, t d,u x) =1 for every t, i.e., f(-,1) is a probability density for everyt € R;

(111) fX 7 It) (x) =1 for every t, i.e. % is a probability density for every t € R.
13
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Proof. Property (i) follows from Lemma 4.1. Let us check (ii). From the formula f(x,t) =

fo(x) cos® £+ % sin® L+ go(z)sint, (a), (b) and the fact the fy is a probability density,

we obtain

/Xf(x,t)du(:v) = (/ fodu) Cos ; + (/X g—Zdu> sin? % + (/X godu) sint
Lt e
= CO0s (§> + sin (5)

Now. from (i)

(f(z,1))? _ (f (. )
1 +/deﬂ<$) = /X (f(x,t) + f—t> dp()

- | atin
P ar R
so that [& (’;(Z” tt dp(z) = Lpfor every t € R. O

Let us ebserve at this point that in the setting of Section 3 we are dealing with a
geometric structure in U = {# € R" : §; > 0,7 = 1,...,n + 1} which can be identified
with the set ofiall probability densities f in the space (X, ) with X = {1,2,...,n+ 1}
and 4 the counting measure. In fact, 0 — fo, with fo(i) = 0; is a density, since [y fodp =
Z"H f; = 1. In this sense, the Fisher-Riemann geometry in U translates into a geometry
in the set of positive densities in (X, u). A geodesic curve of densities will be of the form
f(i,t) = 6,(t), i € X, with 26,6; + 62 — (6;)> = 0. More explicitly Theorem 4.2 gives the
analytical form of f(i,¢) fori=1,...,n+1,

Ih <i;0_l(—i§]0(i) COSQ(E — tan—? 90@))7

f(i7t) = 2 fO(Z)
when Znﬂ foli) =1, Zn+11 g9o(i) = 0 and Zz 1 fo(
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On the other hand, Theorem 4.2 contains also continuous cases of non vanishing den-
sities in some subset €2 of R™. In fact,
Flat) = f5(x) + g3 (2) cosQ<£—tan_1 M)
fo(@) 2 Jfo(@)
is a Fisher-Riemann geodesic trajectory in the set of probability densities in {2 provided
that fy and g}—é are densities in Q and [, godz = 0.

5. FISHER GEODESIC TRANSPORT OF m-DIMENSIONAL DENSITIES AND THE
CONVERGENCE OF THEIR DYADIC PIXELATIONS

The generality of the basic measure space (X, i) in Theorem 4.2 allows its application
to the approximation of the geodesic curves corresponding to continuousy(parametric)
densities by geodesic curves corresponding to discrete (finite dimensional) settings.

Let @ = [0,1)™ be the unit cube in R™. Let us donsidex the nested'dyadic partitions
of @ that we proceed to describe. For an integer j > Qtand k &/C(5) = {(k1,..., kn) €
Z":k;=0,1,...,27 = 1;i=1,...,m}, set

QL =TTk, (ki +1)27), D = (0} - K&k()} ata D =DV
i=1 j=>0

Notice that QY = @ is the unique elefent of D Observe also that QL N QJ, = ( for
k £k, Q= Uyex() Ql, and each Q] is the disjoint tnion of 2™ cubes QL € DI+,

Let us consider now a sequeniee of discrete (finite) probability spaces (X, p15), 7 > 0,
that converges weakly to (Q,di). For j 210, set X, = {k277 : k € K(j)} and p; is 27™
times the counting meagure in X;. Observe that each x, = k277 is the lower left corner
of Q. Givensappositive density fo s @ — R*, fQ fo(x)dx = 1, for each j > 0 define
£l X; #R* by

fg(xk) 70 fo(y)dy fody, (5.1)
IQ | Ja Qi

where we use the notation fE 1 for the mean value of ¢ on E. Note that |Qf<| = 27" for
all k € £(j). Then

P 1
/Xjfodﬂj 2 Z |QJ| Qkfo()

ke (j

= Z foy)dy

kek(j) ¥ i
=/h@@
Q
=1,

and each fg is a probability density in the space (X, 1;).
15
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Notice also that if gy : @ — R is mtegrable fQ go(z)dz = 0 and we define 90 X; —R
as we did with fo, we also have that fXj g dp; = 0, for every j > 0, since

/ gédujz/gody-
X, 0

J

Of course, the “unit speed” initial condition in the j-th level of approximation is not
guaranteed by the “unit speed” continuous initial condition f o d:c = 1. The next
result contains a simple situation in which the finite dimensional geodesms converge to

the corresponding geodesics in a non parametric family of continuous densities.

Theorem 5.1. Let fy be a positive measurable function in the cube @ sueh that fQ fodx =
1 and fo > 0 almost everywhere for some positive §. Let gy be an integrable real function
defined in the cube Q) that satisfies

a) ngO dx =0 and

b) Jo F 9By = 1.

For each 7 > 0 let us consider the real functions fg amd gg with domain in X, defined as

-

2

n (5.1). For j large, set G : X,; = R given by % = q, gg, where o; = fX 90) 0 dp; > 0.

Then

i) ij gdﬂj =1
i) Iy, Gy = 0
P & 2
i) fXj (gjﬁ’) i=1;

iv) the sequence for Fisher-Riemannsdiscrete density geodesics with initial conditions fg

& - (fg)2f+(’§g)2 cos” (3 — tan™! :‘7_6>
0

for each t € R, “converges, weakly”, as j — 00, to the continuous density geodesic

and gé, given by

with initialdeonditions fo and go given by

_ @)+ go(2)* ot 1 go(@)
oty ===710) (2 t fo<x>)’

where x € Q. More precisely, for every t and every ¢ compactly supported and

continuous in (), we have

/ f(y, ) (y)dp;(y / [y, t)p(y)dy

Proof. First observe that, since gy satisfies b), it can not be zero almost everywhere.

—0

for j — oo.

Hence, for j large enough, (93)2 is positive in some set of positive measure and then
fX (go dp; > 0.

16
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Item i) was proved before the statement of the theorem. To prove item i), notice that

fXj G dpy = ozj_l/z fXj g4 dp; = 0. Ttem iii) follows from the definition of oy,

~j\2 1 J\2
X fg ;i X fé

J

Let us finally prove iv). Recall that, from Theorem 4.2 and Lemma 4.1, we have

F(@,t) = folw) cos? (%) + 9]?0(2; sin? <%> + go(x) sin(?)

for each x € @ and t € R, and

I (zx, t) = fi (1) cos® (E) + Msirﬂ (é) + Pz
h

2 £ () %

(
for each zx € X; = {k277 : k € K(j)}. So that, we only ove every
compactly supported and continuous ¢ in @), we h@
lim / R W)e(y)dp;(y) — / M (5.2)
lim / ' goUe(y)dy| =0, (5.3)
J—=o | ) x.

. (y)°
b Foluy 7

= 0. (5.4)

In order to prove (5.2), integrals involved,

and

B= [ foewdy)= > [ fow)e)dy.

Q kek () ? O
Hence,
A=BI< Y | fole(r) — o(y)ldy
kek(j) Pk

and (5.2) follows from the uniform continuity of ¢ in @ and the integrability of fj in Q.
17
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Proof of (5.3):

/ Gowedy; — / gopdy| < / (@ — gb)edu;| +
X Q X

=I+1I.

/ Rpdu; — / gopdy
Xj Q

For the second term 17, we may argue as in (5.2) since |go| € L'(Q). Let us estimate I.
e s
1< [ 107 - dlleldns
X

<" =1] lolleo | |gdldu;

Xj
~1/2
< o = 1] llelleollgols.
which tends to zero as j — o0, since ‘
72
a; = / (90].) dp; —> (5.5)
X; fO j—00
In fact, since f3(zy) fQ] fo and g} (zi) = £, e average value in Qy; of fy and
o, respectively) the functions ; : Q — & ZkeK(J) gjfg mx")) ]lQJ, converges
k

pointwise to % in ), due to Lebesgue d iati heorem through dyadic cubes. Also,

fo>d>01in Q and gy € L*(Q) ims

||gO||L2(Q) Z |QJ| Q]
©)

kek(

N2 (0)\2

(9)? %
+ / —dp; — dy
Xj fé 90 /J’J fO (10

Let us first estimate [,

1 (95)°
(O‘j 1> /X fo oo

(99)°
~= S pdp;
/Xj fO ’

1
— -1
Q

=< [lllocll = oy,
18
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which from (5.5) tends to zero when j tends to infinity. Let us finally estimate 11;.

gj )2 ) 92
I11; < Ms@(ﬂfk)@il - f—osody
keK(5) fo (@) QJO
J 2 2
Go\x g
Q keK(H) f() ('xk> fO

Now, from the continuity of ¢ and, again, from the dyadic version of the differentiation
Lebesgue theorem, we see that the function we are integrating on @) tends to zero as j
tends to infinity almost everywhere. But, since ¢ is bounded, g € LA(Q)and fo > § > 0,
we can apply the dominated convergence Lebesgue theorem to finish the proof of the

theorem. O

6. EXAMPLES AND GRAPHICS

In this section, using Octave, we compute the explicit solutions of the geodesics of
densities in some simple but illustrative situations!

Let us first start by the discrete case when U=y = (A1,.%.,6,) : 0 < 6; < 1,i =
l,...n, and 0,47 = 1 — 3" 6, > 0}. Ingorder toadapt our situation to the setting
of Theorem 4.2 let us take X = {x1,.. 2,1} and p the counting measure on X. Let
fo: X — RT be given by fo(z;) = 67, with¢? > 0,i)=1,....,n+1and 0)+---+65,, = 1.
This f, identifies one and only efi@point 0% =.(69;...,60°) in U. This will be the initial
point of the geodesic in U. Followingawith the notation of Theorem 4.2, we have to choose
an initial velocity given by go : X R, go(z;) = 0¥, satisfying two conditions:

(a) o) + - +2°, , =0y and
(b) w+...+M:1,

0 o
For afixed 0°, this is equivalent to choose a v = (v?,...,2?) in the (n — 1)-dimensional
ellipsoid given by
@) (4 )
iy o, (6.1)
2w,

which is the “unit ball” for the Fisher-Rao metric. Hence, given §° and 1", the geodesic
in U is the curve 0(t) = (01(t),...,0,(t)) given by

t (v))? . t )
. 0 2 i 2 0
0;(t) = 0; cos (2) + 0 sin 5 + v, sint

fori=1,...,n.

Consider the simplest case n = 2 with initial point §° = (3, 1) which implies 05 =

1
5
Equation (6.1) describe the ellipse in the plane of the of the variables v{ and v9, given by

1
()7 + 08)7 +fog = ¢
19
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(. 42)

Figure 1 e curves starting at the point #° = (3, 1) for different initial

veloci ized, with parameter 7 € R, by

W(r) = == (—\/§COST + sinT) ,
V(1) = == (\/§cos7'+sin7') :

Note that all trajectories are ellipses, except when v° or —v" points to the vertices of
the simplex, in which cases the trajectories are straight lines.

In figures 2, 3 and 4 we draw some complete trajectories for different values of v°.

For the case n = 3, in Figure 5 we draw several trajectories in U = {(01,65,05) : 0 <
0; < 1,i=1,2,3;0,+0,+03 > 1}, all with initial point §° = [0.25,0.25,0.25] and different
initial velocities.

Let us now show the dynamic of the Fisher transport of the uniform density in the

interval [0, 1] to some more concentrated distribution. The space (X, u) is now ([0, 1], dz),
20
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Figure 5. 3-dimensiona ctories

where dx denotes the Lebesgue_measure

(2
?‘823 = go(x) = 415014 (). It is
clear that we can choose severa Cti ing above conditions. We illustrate

x) = 1, the uniform density and

the function gg even when fy and ?—é are fixed. This situation can be

n more clearly in the two dimensional case. In this situation X = [0, 1]?,

ea measure in the unit square. Take now fy(x,y) = 1 the uniform
. . . 2

density and go(z, y) a function in [0, 1]* such that [[ godzdy = 0 and £ = 16 Ljo,1/42(z, y).

In Figure 8, Figure 9 and Figure 10, we depict the situation for three different choices of

do-

goi(z,y) =4 (]1[0,1/4]x[o,1/8] (z,y) — Lj0,1/4)x[1/8,1/4] (z, y))
902(33» y) =4 (]1[0,1/8]x[0,1/8]U[1/8,1/4]x[1/8,1/4] (93; ?J) - ]1[1/8,1/4]><[0,1/8]U[O,1/8]><[1/8,1/4] (1177 y))

go3(z,y) =4 (1p(z,y) — Lp2\p(z,y))
21
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Figure 6. go1

with
E = U le,k2>

k1=0,1,2,3
k2=0,1,2,3
k1+ko even

and Qk1,k2 = [07 %]2 + (kl, k2)
We may also have a global view of this Fisher-Riemann transport by looking at the

dynamics of mean and variance. See Figure 11, page 26.

22
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Figure 11. Mean (left) and variance (right) of the trajectories in the 2-dimensional case.

The blue curve is obtained with initial velocity go; while the red curve is obtained for

both gg2 and gos.
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