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ON THE EVOLUTION OF TOPOLOGICAL CONNECTIVITY BY
THRESHOLDING OF AFFINITIES. AN APPLICATION TO PUBLIC

TRANSPORT

HUGO AIMAR, CARLOS EXEQUIEL ARIAS, AND IVANA GÓMEZ

Abstract. In this paper we use the neighborhood topology generated by affinities be-
tween pairs of points in a set, in orden to explore the underlying dynamics of connectivity
by thresholding of the affinity. We apply the method to the connectivity provided by
the public transport system in Buenos Aires.

1. Introduction

The number of connected components of a space is a topological concept which provides
some interesting information on the interactions between the points of the set. On the
other hand, the evolution of the number of connected components by thresholding of
affinities between points or parts of a set, can be taken as a benchmark of the system under
analysis. Roughly speaking an affinity can be thought as the reciprocal of a distance.
Nevertheless the mathematical notion of metric or distance on a set is very precise and
in applications, frequently, we find non metrizable affinities. Before introducing the
definitions, let us consider the weighted undirected affinity graph to which we shall apply
our results.

Approximately one third of the total population of Argentina is concentrated around
Buenos Aires City. The acronym AMBA (Área Metropolitana Buenos Aires) is used to
name these 41 cities with a total population of 17 million people. The public transporta-
tion of people between these 41 districts has a unified system of electronic tickets, for
buses, trains, subways. The acronym of this system is SUBE (Sistema Único de Boleto
Electrónico) Unified System for Electronic Tickets. The global public data provided by
SUBE, regarding the number of daily transactions, gives a transportation affinity matrix
between any pair of the 41 cities in AMBA. As we shall see this affinity is far from being
related to the geographic distance of any couple of districts. In [AAGM22] the authors
introduce in this setting the diffusive metrics of Coifman and Lafon [CL06] defined by
the spectrum of the Laplace operator in the weighted undirected graph of the 41 cities
as vertices and a measure given by the SUBE data of the affinity of any two cities in
AMBA. We shall consider three of the these matrices corresponding to 2020 in three
diferent moments of the evolution of COVID-19 in Argentina: March, April and June
and we shall compare their connection dynamics by thresholding of the affinities.

The aim of this paper is to construct non necessarily metrizable topologies on data sets
with affinities and to study the evolution of the number of connected components after
thresholding of the affinities. Once the theoretical aspects of the proposal are achieved
in sections 2 and 3, in Section 4 we apply the results to the SUBE matrices introduced
above.

2020 Mathematics Subject Classification. Primary. 54H30. Secondary 05C40.
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2. Affinities and induced topologies on abstract sets

Given a metric on a set X, a topology is immediately determined on X as the family
of all open subsets of X, i.e. the sets G ⊆ X such that for every x ∈ G there exists a
positive r for which the metric ball centered at x with radious r is contained in G. The
notion of affinity is, in some heuristic sense, reciprocal to the notion of metric. In fact,
two points in the abstract metric space X, which could be two vertices of a metric graph,
can be considered to have high affinity if they are close in the metric sense. Let us give
the precise definition of what we shall call an affinity on an abstract set.

Definition 2.1. Let X be a set. A positive real valued function A defined on the product
set X ×X is said to be an affinity on X if

(1) A is symmetric; A(x1, x2) = A(x2, x1) for every x1, x2 ∈ X; and
(2) A(x, x) = +∞ for every x ∈ X.

We shall also say that (X,A) is an affinity space.

In [AG18] two of the authors show that a natural metric determined by the affinity A
can be defined on X if and only if the affinity A satisfies a transitivity property. This
transitivity property reflects an heuristic idea, which is not always true in some interesting
models as we shall see in our application in the last section.

This heuristic idea, which sometimes is not valid in concrete situations, is the following:
A(x1, x2) large and A(x2, x3) large implies that A(x1, x3) is large. Or more quantitatively
A(x1, x2) > λ > 0 and A(x2, x3) > λ, then A(x1, x3) > λ/2. Actually the precise result
is that under some extra transitivity condition in A there exists a metric d on X related
to A by A(x1, x2) = φ(d(x1, x2)) with φ(0) = +∞, φ(∞) = 0 and φ decreasing. (See
[AG18]).

The aim of this section is to construct a topology associated to a given non transi-
tive affinity without going through metric structures on the given set. The main tool is
the construction of a topology on X by neighborhood systems defined on X. See Kel-
ley [Kel62]. Let us recall that a topology on X is a subfamily τ of subsets of X that
contains both ∅ and X and is closed under finite intersections and arbitrary unions. With
P(X) we denote, as usual, the set of all subsets of X.

Proposition 2.1. Let X be a set and let N : X → P(P(X)) be a function that to each
x assigns a nonempty family Nx of subsets of X satisfying the following properties,

(i) if U ∈ Nx, then x ∈ U ;
(ii) if U and V belong to Nx, then U ∩ V ∈ Nx;
(iii) if U ∈ Nx and V ⊃ U , then V ∈ Nx.

Then the family

τ = {U : U ∈ Nx for every x ∈ U}
is a topology in X.

Proof. Trivially ∅ and X, both belong to τ , since, by (iii) X ∈ Nx for every x ∈ X. If U
and V ∈ τ , then, by (ii), U ∪ V ∈ τ . From (iii) it follows also that ∪α∈ΓUα ∈ τ if each
Uα belongs to τ . □

Connectivity is a topological property. As such it can be defined precisely in any
topological space (X, τ).

Definition 2.2. Let (X, τ) be a topological space, i.e. a set X with a topology τ . We
say that (X, τ) is connected if X can not be decomposed as the union of two nonempty
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and disjoint open sets. In other words (X, τ) is connected if do not exist U and V in τ
with

(C1) U ̸= ∅, V ̸= ∅;
(C2) U ∩ V = ∅; and,
(C3) U ∪ V = X.

Given a subset S of X when (X, τ) is a topological space, the inherited topology in S is
given by τS = {U∩S : U ∈ τ}. We say that a subset S of X is connected if the topological
space (S, τS) is connected with the above definition. This can also be rephrased with no
reference to the hereditary topology as follows. If (X, τ) is a topological space, a set
S ⊂ X is connected if and only if do not exist two open sets U and V in τ such that
S ⊂ U ∪ V , U ∩ V = ∅, U ∩ S ̸= ∅ and V ∩ S ̸= ∅.

Lemma 2.2. Let (X, τ) be a topological space and let {Kα : α ∈ Λ} be a family of
connected sets in X, such that

⋂
α∈Λ Kα ̸= ∅. Then

⋃
α∈Λ Kα is connected.

Proof. Take x ∈
⋂

α∈Λ Kα. If K =
⋃

α∈Λ Kα were not connected, we would have U and V
open and disjoint members of τ such that U ∩K ̸= ∅, V ∩K ̸= ∅ and K ⊂ U ∪ V . Since
x ∈ K and U ∩ V = ∅, then x belongs to one and only one of them. Assume that x ∈ U ,
so x /∈ V . Since V ∩K ̸= ∅ then V ∩Kα ̸= ∅ for some α ∈ Λ. Hence, Kα ⊂ K ⊂ U ∪ V ,
but x ∈ U ∩Kα, so that U ∩Kα ̸= ∅. This implies that Kα is not connected. □

For a given topological space (X, τ) and a given point x ∈ X the family Cx = {S ⊂
X : x ∈ S and S is connected} is nonempty. From Lemma 2.2, we have that C(x) =⋃

{C is connected and x∈C}C is connected for every x ∈ X. C(x) is named the connected

component of (X, τ) containing x. The whole space is connected if and only if there is
one and only one connected component. The number of connected components of (X, τ)
shall be an important parameter for our later analysis. We denote it by κ(X, τ) or κ
when the topological context is clear.

Let us now use Proposition 2.1 in order to construct a topology on X starting from an
affinity in X.

Proposition 2.3. Let (X,A) be an affinity space. For α > 0 and x ∈ X, set E(x, α) =
{y ∈ X : A(x, y) > α}. Let N be the function that to each x ∈ X assigns the family

Nx = {U ⊂ X : E(x, α) ⊂ U for some α > 0}
of parts of X. Then, the function N satisfies (i), (ii) and (iii) in Proposition 2.1. Hence
the family

τA =
{
U ⊂ X : there is a function α : U → R+ such that E(x, α(x)) ⊂ U for every x ∈ U

}
,

is a topology on X.

Proof. It is clear from Proposition 2.1 that we only need to check that N satisfies (i),
(ii) and (iii). Since A(x, x) = +∞, we have that x ∈ E(x, α) for every α > 0. Hence if
U ∈ Nx, we have that x ∈ U because E(x, α) ⊂ U for some α > 0. This proves (i). Take
now U and V two sets in Nx, then, there exists αU and αV two positive real numbers
with E(x, αU) ⊂ U and E(x, αV ) ⊂ V . Hence, with α = max{αU , αV } we have that
E(x, α) ⊂ U ∩ V and U ∩ V ∈ Nx. So (ii) is proved. Property (iii) is immediate. □

Some examples are in order. Notice first that A1 ≡ +∞ is an affinity in any set X,
then the induced topology τA1 is the trivial {∅, X}. Hence, the topologies provided by
Proposition 2.3 need not to be metrizable. On the other extreme case, if A2(x, x) = +∞
and A2(x1, x2) = 1 for x1 ̸= x2, since {x} = E(x, 2) for every x ∈ X, then {x} is open
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(belongs to τA2) for every x ∈ X. So that τA2 = P(X). Notice also that while (X, τA1) is
connected, (X, τA2) is totally disconnected in the sense that the only connected subsets of
X are those that contain only one point. It is easy to check that when (X, d) is a metric
space, then A(x1, x2) = d−1(x1, x2) is an affinity on X and the topology τA is the metric
topology in X. Our example A1 above shows that not every affinity induced topology is
metrizable.

3. Thresholding of affinities

Let (X,A) be a given affinity space. For λ positive define the thresholding of A at λ,
by

Aλ(x, y) =

{
+∞ for A(x, y) > λ

A(x, y) for A(x, y) ≤ λ.

Some elementary properties of the family of affinity spaces (X,Aλ) are contained in the
next statement.

Proposition 3.1.

(a) For each λ > 0, (X,Aλ) is an affinity space;
(b) for 0 < λ1 < λ2, A

λ1(x, y) ≥ Aλ2(x, y) ≥ A(x, y).

In this way, given an affinity A on the set X, we produce a one parameter family of
affinities Aλ on X for λ > 0. Applying Proposition 2.3 for each λ > 0 we obtain a
corresponding topology τλ on X determined by the affinity space (X,Aλ). Let us denote
with τA the topology induced on X by A. With the notation introduced in Section 2, for
each topological space (X, τ), κ(X, τ) = #{C : C is a connected component of (X, τ)},
where # denotes the cardinal. With the above family of topologies on X given by the
thresholding of A, we obtain a function κ : R+ → [1,#(X)] given by κ(λ) = κ(X, τλ).
Set also κA = κ(X, τA).

Proposition 3.2. With the above notation, the following properties hold

(a) if 0 < λ1 < λ2, then τλ1 ⊆ τλ2 ⊆ τA;
(b) κ(λ) is nondecreasing and bounded above by κA;
(c) when X is finite, for λ large enough, we have that τλ = τA and κ(λ) = κA.

Proof. (a) Take 0 < λ1 < λ2, U ∈ τλ1 and x ∈ U . Then, there exists α > 0 such
that Eλ1(x, α) = {y ∈ X : Aλ1(x, y) > α} ⊂ U . On the other hand, since from (b)
in Proposition 3.1, Aλ1(x, y) ≥ Aλ2(x, y), we have that Eλ2(x, α) ⊆ Eλ1(x, α). So that
Eλ2(x, α) ⊂ U and U ∈ τλ2 . The same argument shows that τλ2 ⊆ τA for every λ2 > 0.
(b) Take again 0 < λ1 < λ2. Then, since τλ1 ⊆ τλ2 , every τλ2 connected set is also τλ1

connected. In fact, if K is τλ2 connected, then K can not be written as K = (K ∩
U) ∪ (K ∩ V ) with U, V ∈ τλ2 , U ∩ V = ∅ and K ∩ U ̸= ∅ ̸= K ∩ V . Since every U
in τλ1 is also in τλ2 , then K can not be τλ2 connected. Take now C2(x) the connected
component in τλ2 containing x ∈ X, hence C2(x) is also τλ1 connected and contains x.
Thus C1(x) =

⋃
{C:τλ1 connected and x∈C}C ⊇ C2(x). Then we have a function assigning to

each τλ2 connected component C2 a τλ1 connected component C1 which is onto. Hence
κ(λ2) ≥ κ(λ1). The same argument shows that κ(λ) ≤ κA for every λ > 0. (c) Notice
that, being {A(x, y) : A(x, y) < ∞} a finite set of positive real numbers, it has a maximum
M . Hence, for λ > M we get Aλ = A. So that τλ = τA and κ(λ) = κA. □

Let A be a given affinity on a finite set X = {1, 2, . . . , n}. In this case A can be
seen as an n× n symmetric matrix with positives entries such that Aii = +∞ for every
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i = 1, . . . , n. Of course Aij can take the value +∞ in several other pairs (i, j) outside the
diagonal as far as the symmetry is preserved. We proceed to construct a simple graph
GA associated to A as follows. Take V = X as the set of vertices and EA = {{i, j} : Aij =
Aji = +∞} as the set of edges; GA = (V , EA).
The adjacency matrix of this graph is Aij = 1 if {i, j} ∈ EA and Aij = 0 when

{i, j} /∈ EA. In other words, A has ones where A takes the value +∞ and A has zeros
where A has finite numbers.

Given a simple graph G = (V , E) the idea of a path joining two vertices i, j is simple
and well known. We say that there is a path joining i and j if there exist an integer
k > 1 and a sequence i = i1, i2, . . . , ik = j of vertices in V such that {il, il+1} belongs to
E for every l = 1, . . . , k− 1. A subset V ′

of V is said to be path connected with respect
to G if for every pair i and j of vertices in V ′

there exists a path in V ′
joining i and j. A

path connected component is a maximal path connected subset of V . In other words

V∗ is a path connected component if V∗ is path connected and if Ṽ ⫌ V∗, then Ṽ is not
path connected.

In order to use Python algorithms, such as number connected components, the fol-
lowing result will be useful.

Proposition 3.3. Let A be a given affinity on the set X = {1, 2, . . . , n} and let GA be
the induced simple graph. Then

(i) a subset X̃ of X is connected in the sense of Definition 2.2 with respect to the

neighborhood topology τA in X if and only in X̃ is path connected with respect to
GA;

(ii) the number of topological connected components in (X, τA) coincides with the number
of path connected components with respect to GA.

Proof. Notice first that (ii) follows from (i). On the other hand, to prove (i) we only need
to show that the entry Aij = 1 if and only if any τA open set containing i also contains
j. But Aij = 1 if and only if Aij = +∞. Take U a τA open set such that i ∈ U . Then
there exists α > 0 such that E(i, α) ⊂ U . Since E(i, α) = {k : Aik > α} and Aij = +∞
we have that j ∈ E(i, α) ⊂ U . So that j ∈ U . On the other hand, if j belongs to any
open set containing i, then j ∈ E(i, α) for every α > 0. This implies Aij = +∞ and
Aij = 1. □

Before introducing, in the next section, the application of the above analysis, let us
illustrate some simple examples in the real line in order to get some insight regarding
the relation between the shape of the curve κ(λ) as a function of the threshold pa-
rameter and the distribution of the data points. The four examples are subsets of real
numbers and the affinity is the metric one, that is A(x, y) = 1

|x−y| . For the first ex-

ample, see Figure 1, consider the set X1 = {f1(i) = log2 i : i = 1, 2, . . . , 20}. For the
second, we take the set X2 =

{
f2(i) =

√
i− 1 : i = 1, 2, . . . , 20

}
, for the third X3 ={

f3(i) = 20
(
1− 1

i

)
: i = 1, 2, . . . , 20

}
and for the last one we take X4 = {f4(i) = 20

(
1−(

5
6

)i−1)
: i = 1, 2, . . . , 20 }. Let us notice that the concave shapes of κ(λ) correspond to

convergence of the generating sequences as in cases X3 and X4.

4. Application to the public transport in Buenos Aires

In Figure 2, we show schematically the relative geographic locations of the 41 cities in
AMBA. The numbers in each one of the districts will be used as the indices i = 1, . . . , 41
that identify the vertices of the graph and the affinities that we shall consider.
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fm κ(Xm, τA) for m = 1, 2, 3, 4

Figure 1. κ(λ) (on the right) for different distribution data points (on the left).

The normalized affinity matrices that we shall consider correspond to three different
days of 2020 at the beginning of the circulation of COVID-19 in Argentina. The first
A1, corresponds to March 4th 2020 before the detection of the spread of COVID-19,
with the public transport system working normally. The second, A2, corresponds to
April 8th 2020, with the beginning of the circulation restrictions imposed by the health
administration. The third, A3, is constructed with the data corresponding to June 3rd
2020, when the circulation restrictions started to weaken. In all these cases we shall apply
the algorithm introduced in the previous sections and we shall obtain the corresponding
functions κ(λ) that describe the evolution of the number of connected components as a
function of the threshold parameter λ in the three situations described.

The matrix A1, corresponding to March 2020, is the 41×41 normalized matrix with A1
ij

measuring the intensity (number of passengers) going from city i to city j and viceversa
6
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Figure 2. Map of the 41 cities of AMBA

by March 4th 2020, is given by Figure 3. The matrix A2, Figure 5, is constructed in
the same way with the data corresponding to April 8th 2020. The third A3, Figure 7,
is based on the SUBE data by June 3rd 2020. Figure 4, Figure 6 and Figure 8 show the
shapes of the connectivity curves κi(λ), i = 1, 2, 3. The drastic changes of the number
of passengers between the three different dates, as could be expected do not have a great
infect in the shapes of these three connectivity dynamics.

Among the four distributions of data points shown in Figure 1 the one that better fits
the shapes of κi is that of X3. See Figure 9.
Let us finally observe that if we use affinities built only on geographic data, the behavior

of the curves κ(λ) instead of concave look roughly convex. In Figure 10 the affinity
between districts i and j is determined by the length of the shared boundaries. In
Figure 11, the affinity Aij = 1

dij
, with dij the Euclidean distance of the geographical

centers of districts i and j.

Figure 3. Unnormalized affinity matrix A1 corresponding to March 2020
7
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Figure 4. Connectivity curve κ1(λ) for affinity matrix A1 (March)

Figure 5. Unnormalized affinity matrix A2 corresponding to April 2020

Figure 6. Connectivity curve κ2(λ) for affinity matrix A2 (April)
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Figure 10. Connected components for matrix Aij = lij where lij the
length of the boundaries shared by the districts i and j of AMBA.

Figure 11. Connected components for matrix Aij =
1
dij

where dij is the

Euclidean distance between the geographical centers of the districts i y j
in AMBA.
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