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WEAKLY POROUS SETS AND 4; MUCKENHOUPT WEIGHTS IN
SPACES OF HOMOGENEOUS TYPE

HUGO AIMAR, IVANA GOMEZ, AND IGNACIO GOMEZ VARGAS

ABSTRACT. In this work we characterize the sets E C X for which there is some
a > 0 such that the function d(-, E)™“ belongs to the Muckenhoupt class A;
where (X, d, p) is a space of homogeneous type, extending a recent result
by Carlos Mudarra in metric spaces endowed with doubling measures. In par
generalizations of the notions of weakly porous sets and doubling of the maxim.
function are given and it is shown that these concepts have a natural con i
the A; condition of some negative power of its distance function. The
here is based on Whitney-type covering lemmas built on balls of a
distance equivalent to the initial quasi-distance d and prﬁed by
Carlos Segovia in “A well-behaved quasi-distance for s
Trabajos de Matematica 32, Instituto Argentino de Matem4

Sometimes, the extension of a particul C armonic analysis from
a test for the robustness of the
are useful to deal with models
A non-metric quasi-metric space
arnack’s inequality for degenerate
problems, the above are not the

analytic techniques involved. Sometimes tf
provided by problems in PDE. Seegf

parabolic equations. Neverthe
only reasons to focus o 4
reason is the fact that i i-digtance d on X, any symmetric function p on

some specific required geometric property.

In the context of general spaces of homogeneous type, the classes of Muckenhoupt
weights A, ar&@idely studied for their various applications in singular integral theory,
harmonic analysi§§PDE, and other related topics. Classical examples of non-trivial A,
weights in R™ consist of powers of distance functions of the sort |z|%, for —n < a <
n(p—1) and 1 < p < co. Motivated by the study of regularity of PDE solutions with
adequate boundary conditions, in [!, (], sufficient requirements on a real number « and
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a closed subset E of an Ahlfors metric measure space (X,d, u) were found in order to
satisfy the condition d(z, E)* € A1(X,d, p).

More recently, in the articles [/, 15] by T. Anderson, J. Lehrback, C. Mudarra, and A.
Vahékangas, a complete characterization of subsets E C X for which d(x, E)~® belongs
to the A; class for some « > 0 has been found, first in R", and then for measure metric
spaces (X,d, u) satisfying the doubling condition. One of the necessary conditions on
the set E for this to be the case, besides some doubling condition on the maximal hole
function pg g to be introduced in the next pages, was therein termed as weak porosity.
Roughly speaking, a weakly porous set £ C X is a set such that all d-balls B in X
contain a finite quantity of sub-balls By, ..., By which do not ifitersect £ and whose
measures sum at least a fixed proportion of the number p(B). Int , one can think
of E as a set that is “full of pores everywhere” with respect to b quasi-distance

any existing measure [, |0]. For some previous results rela
here, see [17, 7].

The proof of such equivalence in the Euclidean
on the classical dyadic partitions of cubes in R"
measure metric space with a doubling measure
due to Christ [7], as well as some refineme
work, we intend to extend the same result o
type (X,d, ). The rich theory of spacgs ous type provides us with a broad
set of tools to better face the probl [ icular, we shall make use of the
main result in [! /] and a Whitne

The main result to be proved in
doubling condition of the so-ca

the “dyadic cubes”
). In the present

equivalence of weak porosity plus the
e function” for a set F, introduced by
pton for some negative power of d(-, E) in
general spaces of homo . fatement is presented next, while the precise

and pq g is doubling;
0 such that d(-, E)~* € A1(X,d, ).

S recall that in [13], an equivalent quasi-distance in any quasi-metric space is
uch a way that the balls are open sets.

per is organized as follows. Section 2 is devoted to introduce the basic def-
results that we shall use later in the paper, including the quasi-distance
built by Macfas and Segovia, the Whitney type covering lemma, and the definition of A
Muckenhoupt weights. In Section 3 we introduce the generalization to spaces of homoge-
neous type of the notions of weak porosity and the doubling of the maximal hole function
and we prove their invariance under changes of equivalent quasi-distances. The proof
that the Aj-Muckenhoupt condition of d(-, )~ for some positive « implies the doubling
property of the maximal hole function and the weak porosity of E is given in Section 4.
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Finally, Section 5 is devoted to the proof of the sufficiency of the weak porosity and the
doubling of the maximal hole function on a set E to get that d(-, E)~* € A1(X,d, u) for
some o > 0.

2. BASIC ANALYTIC AND GEOMETRIC ASPECTS OF SPACES OF HOMOGENEOUS TYPE

Given a non-empty set X, we say that a function d : X x X — [0, 00) is a quasi-distance
in X if there is some constant K such that for every z,y,z € X we have
i. d(z,y) =0 if and only if x = y;
ii. d(z,y) = d(y, x);
iti. d(z,z) < K[d(z,y) + d(y, 2)].

necessarily greater than or equal to one, as long as X is not a one-point set,
a triangular constant for d. For any quasi-distance d, we denote

K4 :=min{K > 1: d satisfies property 4ii with const,

so K is then the least possible triangular constant f‘g If
that d is a metric. In any case, we refer to the pair (
Notice that if Y € X with Y # (), then the restriction
on Y with K4« < K4. Any quasi-distance d on a set
uniform structure Uy = {U € P(X x X) : there e

enter x and radius r. As
it is well known, the d-balls do not need t sfor general quasi-metric spaces.

It is worthy to mention at this poi i ity approach to the topology
defined in X by a quasi-distancefd in'y oObtain a distance p such that d
and d := p°® are equivalent, for . in tool is a lemma of metrization
of uniform spaces with co P ‘ inaBuke-Frink [J]. See also [10]. In

In the current con etric space for which the d-balls are open,
a space of J i i , 1), where p is a Borel measure such that

Conside v the space LIOC(X d, ) defined as the set of all measurable functions
that de mT |d>|du < oo for every z € X and every r > 0. We say that

! (X,d, ) and w is nonnegative. The specific weights we are
interested in are 1Mtroduced in the following definition that generalizes the well-known
Muckenhoupt classes in Euclidean settings.

Definition 2.1. Given a weight w in X, we will say that w belongs to the Muckenhoupt
class A1(X,d, p) if there is a constant C' > 0 such that

1 / ‘
wW(Bi(z.1) wyduy < Cless inf, xrwy7V5L‘€X7r>0_ 1
1(Ba(z,7)) J By(ar) (y)du(y) yeBy(z,r)W(Y) (1)
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The best possible constant for which the above inequality is valid is denoted as
(W] A,y (X.dyp)» OF simply [w]4, .

Proposition 2.2. Let E C X be a non-empty set, then

(i) for every 8 € R, the function d(-,E)? : X — [0,00) is measurable. Here,
d(w, E) = infeep d(w, €); B
(ii) if E denotes the closure of E, then E = {xz € X : d(z, E) = 0}.

Proof. To prove (i), notice that when 6 = 0, d(-, E)? is constant. On the other hand,
for & # 0, the upper or the lower level sets of d(-, E)? can be gwritten as a union of
balls. Since we are assuming that the d-balls are open sets, those s are open and
hence measurable. To prove (ii), take * € X \ E, then there is s > 0 such that
By(z,7) C X \ E, which means d(z, E) > r > 0. Consequently, d(z implies that
r € E. Besides, if x € E, By(x,7) N E # () for every r >

r > 0, there is some e, € E such that d(x,e,) < r. Then, d, O
Item (i) of Proposition 2.2 gives us a little pe;’f min the functions
d(-, E)~®, which we want to characterize as element, ), are always
measurable, whereas (i) will be used repeatedly i
A very common technique while working in us type is the con-

struction of special quasi-distances, which
problems that would otherwise be difficult to
collection (X) = {d : X x X —
9(X) # 0 whenever X # () as the f

ed by this, consider the
is a quasi-distance in X'}. Note
#y and d(z,z) = 0 is always
ion ~ on J(X) requiring that d’ ~ d”
such that the inequalities

>~ Cle(‘T’ y)7

hold for every x and
induce the same t
quasi-distances d|
d are_sii ea

t to see that equivalent quasi-distances
X. AsWreviously discussed, we are interested in
e will also require that the balls associated with
ed by this, we consider the set

(X):d~dand Bj(z,r) is open for every » € X, r > 0}.

,d) admits a doubling constant A ; for the measure x depend-
2 and A. From now on, we write Ay = A to differentiate between doubling
defined for other quasi-distances.

ext result provides estimates for the triangular constants in terms of the equiv-

Proposition 2.3. Ifciw d is a quasi-distance in X and 0 < ¢1 < co < 00 are constants
such that

ard(z,y) < d(z,y) < cad(x,y), Yo,y € X, (2)

then
C_l < _KJ < 97 (3)
C9 Kd C1
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Proof. Fixed some points x,y, z € X, we have

d(w,z) < cad(z, 2) < c2Bqld(w,y) + d(y, 2)] < z—jKd[cZ(wxy) +d(y,2)].

This says K; < CQCl—le. The remaining inequality follows by interchanging d and d in
the previous estimates. U

Proposition 2.4. Given a > 0 and d € d(X,d), we have that d(-, E)~® € A1(X,d, j)
if and only if d(-, E)~* € A1(X,d, n), for any non-empty set E C X.

c1 < cp <00
. Given

Proof. Notice that it is enough to prove one of the implications. Let 0
be such that c1d(z,y) < d(x,y) < cod(x,y) and suppose d(-, E)~* € A;(
y € X and r > 0, we have

1 N
M(Bj(y7 T)) /Bg(y,r) d(x, E) du( )

~ w(B;

with 2771 < &2 < 2™, O
The particular quasi- Section 5 to prove one of the implications
of Theorem is du { , 2]. As the next theorem states, such
a quasi-dis e constructed for a given quasi-metric space and possesses
e will be of great help to prove our main result. Before

for each r > 0, 0
Bgy(a™r). Finally, define V(r) = ;2 ,U(r,n). The Macias-Segovia quasi-distance
on X induced by d is the function § : X x X — [0, 00) given by

d(z,y) :=1inf{r > 0: (z,y) € V(r)}.
The fact that ¢ is indeed a quasi-distance is contained in the next result.

Theorem 2.6. The function d(-,-) satisfies the following properties.
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(i) 0 is a quasi-distance with Ks < 3K§'. Furthermore, for every x,y € X, we have
d(z,y) < d(z,y) < 3KG6(x,y).
(ii) For every x € X and r >0,
Bs(z,r) ={y € X : (z,y) € V(r)}.

Consequently, 0-balls are open sets and § € (X, d).
(iii) There exists a constant 5 = B(Ky) € (0,1) such that for every x € X, r > 0,
0 <t <2Ksr and y € Bs(x,r) there is a point z € Bs(x,r) with

Bs(z, ft) C Bs(y,t) N Bs(x, ). (4)

(iv) The class {(Bs(z,7),0,pn) : © € X,r > 0} is a unifor of spaces of
homogeneous type. More precisely, for every x € X , and p*
are the restrictions of § and p to Bs = Bs(x,r), } )

a space of homogeneous type admitting Ks as a ] stant as
well as some doubling constant Ag« = f‘Ad, t of x and r
Proof. Ttems (i) and (iv) as well as the fact that X :(x,y) € V(r)} are
merely restatements of Lemma 2.6 and Corollari . . We now prove the
remaining assertion in (ii). Note that {y € (x,y) €
U(r,n)}. Taking W,, := Bgy(a"r)oU(r,n — 1 (x,y) € Q}

denote the z-slice of a set 2 € P(X x X

sserted in item (i) can not be found in [! 1], but it
heorem 2.7 therein. Indeed, there it is shown that
y € Bs(z,r) and 0 < t < 2Kyr the inclusion

a’7P
B(S (Z, 3—}_(3t> C Bg(y,t) N Bg(l‘,r)

an choose 8 = (3K3)™'By = (3K3)a®7P for (1) to be valid for every
O

Let us recall that equivalent quasi-distances induce the same topologies on the set X.
So that the expression A is an open set in X is not ambiguous and we use it regardless
of the quasi-distance.

To end this section, we state a basic Whitney-type covering lemma that follows directly
from [12, Lemma 2.9] and that will be of great help in Section 5.
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Lemma 2.7. Let Q be an open, proper, and bounded subset of Y, for some space of
homogeneous type (Y,d',v), and suppose K > 0 is any quasi-triangular constant for d'.
Then, there exists a family of d'-balls { Ba (x;, ;) Yicr, indezed by a countable set I, such
that

(a) By(zi,r;) N By (zj,r5) =0, whenever i # j;

(b) Uie] Bd/(xi, 4K7’"L) = Q,’

(c) 4Kr; < d'(z,X \ Q) < 12K3r;, Vo € By (2, 4Kr;), i € I;

(d) For each i € I, there exists some y; € Y \ Q such that d'(z;,y;) < 12K>r;.

3. WEAKLY POROUS SETS AND MAXIMAL HOLES

The next two definitions introduce the concepts of maximal holes and
subsets in the setting of spaces of homogeneous type. Along this section, we
as before that (X, d, ) is a space of homogeneous type such that d-

porous

Definition 3.1. Given a non-empty set £ C X and some ball B,
set A(z,r;d, E) = {0 < s < 2Ky r : there exists y € cht
E}. The maximal E-free hole function is then defined

)"

pa,p(Ba(x,r)) = sup A(z, r;
In case A(z,r;d, E) = 0, we set pg g(Bq(z,r)) = 0.

of existing pores
i-distance d, but having a
¢,e from reaching large
or even infinite values and allows one to ¢Ou ing notion of doubling of this
function with respect to the ball radius.

The maximal E-free hole function gives the suprem
in a given ball By(x,r), relative to the set M

Definition 3.2. Following [ a pd.r is doubling if there exists
a constant Cy g > 0 such that

pa,e(Ba(z,2r))

ement follows directly from the Definition 3.1. O

Lemma 3.4.NLet ' be a non-empty set in X and let B = By(y,r) be some ball. If pg
is doubling and \E # (), then there exists a constant Cy > 0 independent of B such
that

d(z, E) < Copa.p(B), for everyx € B\ E.

Proof. First, notice that if we were to have pg p(B) = 0, this would mean that d(z, E) =
0 for every x € B. To see this start by taking such a point z € B. Since balls are open in
X, there is some 0 < sg < 2Kgr such that By(z,s) C B for every s < sg. If pg g(B) =0,
then s ¢ A(y,r;d, E) and there should exist es; € E such that es; € By(x,s) for each
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0 < s < sp, which would imply d(z, E) = 0 for every z € B. So in this case B\ E = ()
and there is nothing to prove.

If pg.p(B) > 0, we have that B\ E # (). Fixed some z in B\ F and setting t = d(z, E),
we have that 0 < t < 2K4r, where the upper bound follows from the fact that BN E #
(. On the other hand, given z € By(z,t), we have d(y, z) < Ky[d(y,z) + d(z,z)] <
Ki(1 4 2K4)r. This means that Bg(x,t) C By(y, K4[l + 2Kg4]r) \ E and consequently
t € A(zo, K4[1 + 2Ky4)r;d, E). From this, we get

d(x, E) =t < pa,p(Ba(y, Ka[l + 2K4]r)) < Ci'gpa,p(B),
for every x € B\ E, with m such that 2"~ < K4(2K;+1) <2

quasi-distances.

Lemma 3.5. Suppose E C X is a non—empty’ and
with constants 0 < ¢1 < ¢g < 00 as in (2). Then,

c1pa.p(Ba(r,cy'r)) < PJ,E(BJ(%
Proof. By the symmetry of the problem at ha
Given z € X and r > 0, we have

pin(Bilz,r))

=sup{0 < s <2Kjr:Jyc
<

Ba(x, cflr). The third equality follows from rewriting the set
{0<s<2K;: 3y e X s.t. By(y, c;'s) C By(z,cytr)\ E}
as
c{0<t< QKJCQ_IT :Jy € X s.t. By(y,t) C By(w,c;'r) \ EY,

where aU denotes the dilation {au € R : w € U} of U C R by the number a. The last
inequality follows from the fact that 2K,(c; ' K JKd_lr) < 2Kg4c;'r (by (3)) implies the
set

{0<s< 2Kd(02_1Kd_1KJT‘) 13y € X s.t. By(y,s) C Ba(x,cy'r)\ E}

is contained in A(z, cl_lr; d,E). O
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Corollary 3.6. Suppose E C X is a non-empty set and let d~dbea quasi-distance in
X. Then, pqg is doubling if and only if p; , is doubling.

Proof. Take 0 < ¢; < ¢ < 00 as in (2) and let m > 1 be the integer such that 22 <
2 < 2m~1  Assume now that pd,r is doubling so we can check the first implication. We
have,

c2
pip(Bi(,2r) < capap(Ba(x, 2)) < 2C3'ppa,p(Ba(z, £)) < ECZ}?EPC;E(BJ(%T)),

where both inequalities in (7) along with the doubling condition and the monotonous
behaviour of pg g (z,-) where used to get the previous estimates. O

We are now in position to introduce the concept of weak porosity in sp. homo-

geneous type.

Definition 3.7. We say that a non-empty set £ C X is (o,7)-w.

respect to d and p (or simply weakly porous, when

two constants 0,7 € (0,1) such that for every ball

collection of balls {Bgy(zi, )}, (where N depends on B)
(i) By(z,ri) N Bq(xj,r;) = 0 for i # j and B(z;, rj
(i1) 3 > ypa,p(B) for every i =1,..., N;
(iii) r; < 2Kyr for every i =1, ... ,N;
(iv) SoiLy w(Ba(wi,ri)) = op(B).

Let us notice that condition (i) does nofféntail area ion. In fact, since from
(i) Ba(xi,r;) C Bg(z,r) for every i, wa (@, ;) = Bg(x;, min{r;, 2Kr}),
as was already noticed by Mudarra in [
deﬁmtlon of Weakly porous sets givei

invariant by changes in equiva iste e maximal FE-free hole function
verifies the doubling conditi

(X,d) be another quasi-distance with con-
E is a (o,7)-weakly porous set with respect
d only if E is (00, Y0)-weakly porous with respect to d and

ous with respect to the quasi-distance d and that pg g is doubling. We

already kn ccause of Corollary 3.6, that p; ,, is doubling, so all that remains is to look

for the consta o and 9. Let Bj(x,r) be an arbitrary d-ball in X. By equivalence,
ons Bd( ,é) C By(z,r) C Bd( L) Now, by hypothesis, there
exists a finite collection of d-balls {Bg(z;,7;)}},, each contained in By(x, <), such that
Ba(zi, i) N Bd(Z]7T]) = 0 and Bg(z;,r:) C Ba(x ’02) \E; r; > ’YPd,E(Bd( 02))§ r; <
2K, and Zf\il W(Ba(zi,ri)) = op(Ba(z, ). If we denote 7; := cir;, then, for each

1 <i <N, we have Bj(z;,7;) C Bg(z;,7:). Let us verify that the collection of d-balls
{Bj(z, 7))}, satisfies the four conditions of Definition 3.7 for the d-ball B (7).

we have the inclt
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(i) BJ(Zi,fi) N BJ(Zj,fj) C Bd(zi,ri) N Bd(Zj,Tj) = and BJ(Zi,fi) C Bd(Zi,Ti) C
By(z, )\ E C Byg(z,7) \ E.
(ii) As 7; = ciry, if we take m € Ny such that 2™~ ! < z—f < 2™ we have

T c17y r Cc17Y
Fi > Cl’YPdE<Bd<fL' 5)) > C&nE,OdE<Bd<$ c—1>) > CQC(TEPJ,E(BJ(%T))’

s0 75 = Y0pg p(Bg(@, 7)) with 7o := %%— €(0,1).

(iii) Recalling 7 Kd < &, we have 7; <201 Kg > = 2(%)2—;1{57“ <2K;r.

(iv) Finally, Wlth m as in (77) and Ay denoting the doubling cofistant, for the measure
of the d-balls,

where, clearly, og

Therefore, E is (09, O
4. PROOF OF T POROSITY AND DOUBLING OF pg E
In this secti i af from the A; condition of d(x, E)~¢ for some o > 0

: E and the doubling of pgr. We remark that to
1mphcat10n of Theorem 1.1 we do not need any prior results
ns. Let us first prove the weak porosity of E.

| a non-empty subset of X. If there is some o > 0 such that
A1 (X, d, ), then E is weakly porous.

iven some ball B = By(y,r) in X, if we were to have pg g(B) = 0, then arguing
as in tl oof of Lemma 3.4, we see that this should imply d(x, F') = 0 for every = € B.
However, Whis contradicts the integrability of d(x, F)™ on the ball B. Moreover, the
fact that d(-, E)~® € LY(B,d, u) implies

p{z € B:d(z,E) ™ =o00}) = pu({z € B:d(z,E) =0}) = p(BNE) = 0.

Therefore, pu(E) = 0 and pg g(B) > 0 for every ball B. Let us now suppose, for the sake of
contradiction, that the set F is not weakly porous. Picking then any pair of numbers o €
(0,1) and ~ € (0, W) there should be at least one ball B = B,(y, r) for which no finite
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collection {Bg(w;,7;)}}¥, can simultaneously satisfy properties (i)-(iv) in Definition 3.7.
Consider now the set D = {z € B : d(z,E) > vpqr(B) and d(z, X \ B) > vpqr(B)},
where we set d(x, X \ B) = oo in the case X \ B = ). Since pgg(B) > 0 and vy < 1,
Definition 3.1 clearly indicates D # (. Next, take {z;}}, to be a maximal collection
of points in D satisfying d(z;, ;) > 2ypq p(B) for i # j and set 7 = ypg p(B). Note
that Uf\i 1 Ba(z;,27) contains D because of the maximality property. We now extract
a subfamily out of {Bg(z;,7)}M, as follows. Set i; := 1. Assuming we have defined
i1,...,i and that Qp = {1 <i < M : By(x;,7) N Bg(z;;,7) = 0, forall 1 < j <k} is
e take M = k.

non-empty, pick iry1 as any element in this set. If instead ) is empty,
By construction, {Bd(mij,rij)}j]‘zl is clearly a pairwise disjoint family.
given some z € By(x;,27) (1 < i < M), there exists some 1 < j <
Bg(xi,7) N Bg(w;;,7) # 0. Take a point w in this intersection. Then
d(z,z;;) < Kgld(z,w) + d(w, x;;)]
< Ky[Kq[d(z, x;) + d(x;, w& d(w,

< Kq(3Kq+ 1)7.

We then have that U;‘il Bg(wi;, Kq(3Kq+1)7) contains
is pairwise disjoint. On the other hand, since each z; Bd(mij,F) -
B\ E. Furthermore, inequalities yp4 p(B) = 7 < 2 that the collec-
tion {B(ajijj)}jj\il do satisfy properties (i) th ' Definition 3.7. In order to
avoid an early contradiction, property (iv) . ce, we should have that
S>30 i(Ba(xi;, 7)) < op(B), and then

(Ba(wi;, 7)) < oAg'u(B),  (8)
j=1

where m
the mea

1) < 2™. Let us now proceed to estimate

/ d(z, B)"dp()
Bg(

Yi3icy)

/ d(z, E)"*du(x).
Ba(y,

FH\D

We claim that all'points contained in the set By(y, 2_1Kd_1r) \ D are at a distance less
than ypg g (B) to E. Write Bd(y, Q’"Td)\D = A1UAy, where A = Bd(y, ﬁ)ﬁ{d(z, E) <
vpa,e(B)} and Ay = By(y, ﬁ) N{d(z,X \ B) < vpq,e(B)}. To prove the claim, we
only need to verify that Ay = (). If X \ B = (), this is immediate. In the case X \ B # 0,
we start by taking w € By(y, 2_1Kd_17“) and £ € X \ B. We have

Kad(w,§) > d(y,§) — Kad(y,w) > r — Kad(y, w),
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consequently

1 1 1 r
d > —r—d > =
(w,§) = Kdr (v, w) = Kdr 2Kdr 2K,

and d(w, X \ B) > 271K 'r. Then,

4> € {d(a, X\ B) > g7} 0 {d(, X\ B) < 7pap(B)} =0

since v < ﬁ implies ypq p(B) < 2vKgr < ﬁ. Taking k& > 1 such that 2F~! < 2K, <
d
2% and using that By(y,2 'K, 'r)\ D = A; and pu(D) < c AT p(
1 / _ 1 _
L e By rdue) > / d(z, E)"dz
w(B) Jp 1(B) Ba(y, g \D

p(Baly, 2" K 'r) \ D)

we have

(9)

)¢ < 4°K$pq p(B)~“, which combined

< [d(, E)" ] a1 (x,d,p) €88 infrep d(x, £)™*

< 4QK3 [d(v E)_a]Al(X,d,u) Pd,E(B)_a

=: C(a) pa,p(B)"". (10)
9) and (10) together, we find that the quantity pg g(B)~ cancels out and all
itr s is
A—k —_ A™m
(dV—adU) < O(a). (11)

Relation (11) must remain true for every o € (0,1) and every v € (0, (4K3)~1). However,

taking o < Agk_m and considering the limit as v — 07 makes this inequality fail. Thus,
FE is weakly porous. O

Theorem 4.2. Let E be a non-empty subset of X. If there is some o« > 0 such that
d(-,E)~* € Ai(X,d, 1), then pg g is doubling.
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Proof. Let B = By(y,r) denote some arbitrary ball in X. Also, write AB to refer to
the ball By(y, Ar), for a given A > 0. We will consider two cases separately: whether
MBNE =0or \BNE # 0, where )\51 = K4[2K4 + 1]. In the first case, we have
Ba(y,Xor) C B\ E, from what we see X\or € A(y,r;d, E), and so pgr(B) > Aor.
Since pg r(2B) < 4Kg4r by definition of pg g, the bound pg p(2B) < 4Kd)\alpd,E(B) =
4K2[2Kq+1]pgp(B) becomes clear. Assuming now A\gBNE # () we note, by using (10),
that

d(z, E)" %du(z) < d(z, E)"%du(x)

w(2B) Jop
Aald(-, E)™ % Ay (x,d,p) €ss infreap d(w,
Agld(-, E)" %) a, (x,a)Cra,p(2B)"

w(B) /g

On the other hand,

(13)

If z € \gB\ E and we denote t = d(z, F),
Moreover, if X \ B # 0,

or (recall \gB N E # ().

= (7%~ mpraTa)"

2K, +1—1
= —————7T
Ky2K4+ 1]
= 2Kd)\07‘
> t.
So By(x at this inclusion holds trivially if X \ B = (). Since t <
2K r, : this gives pdyg(B)_z t = d(z, E), so that pgp(B)~* <
d(z, Hence, since p(E) = 0, we get
pa,e(B)"" <inf esspen,p d(z, E) . (14)
Now, ( : d (14) give us the desired inequality
,U,()\(]B) —a A —«
———pa,e(B)"* < Cpqr(2B)"“,
0 () (2B)

or simply

pa,e(2B) < Cpq r(B)

by renaming C. g
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5. PROOF OF THEOREM 1.1: WEAK POROSITY OF E AND DOUBLING OF pq  IMPLIES
THE A; CONDITION OF d(-, E)™® FOR SOME « > 0

Let us start this section by briefly explaining the heuristic idea of our approach.
First, given (X, d, u) a space of homogeneous type we change the quasi-distance d to ¢
of Definition 2.5. Now d-balls are quite smooth in the sense that they are subspaces of
homogeneous type uniformly. In particular, we are able to use Whitney covering lemmas
restricted to d-balls with uniform constants. So in the search for the estimate

][ d(z, B)"“dp(r) < Cess infp (4 .00)0(, B)77,
Bs(wo,r0)

uniformly in zg € X and rg > 0, we shall show that the measur
of E in Bs(xg,ro) decay exponentially for £ approaching zero. T
allow us to obtain a bound for the mean value of d(z, E)~
this point, it is worthy to mention that this exponential be

eighbourhoods
will, in turn,

of [1, 17].

In order to prove that (I) implies (II) in Theore g the lemmas
that are the key points of our proof. Given a sp ous type (X,d, ), we
shall use § to denote the quasi-metric introd i i associated with d.
With K we shall denote the triangular co nd with As the doubling

constant of (X, 0, u).

Lemma 5.1. Let E be any non-empt ¢ that ps i is positive and doubling.
Let BY := Bs(z0,70) be some ball TheBY 0. For 0 < e < psp(BY) set
Es(e) ={r € X :0(z,E) <€} d N BY. Then, there exist a countable

index set I, for each i € I a point ositive number t; such that
igjoint and \J,c; Bs(zi,t;) C Fs(e);

(2) Fs(e) C Ujer is the constant provided in (iii) of Theo-
rem 2.0;
13K3

(8) for eac oe €ri B\ Fs(e) such that §(z;,y;) < 7t

n =11 €1 :t; >ne} is non-empty and fori € I,

ps.e(Bs(2i,ti)) = ©(n)e, Vi € I, (15)

26K%] 1082 s . . .
+ T‘s and where Cs g 18, as in Section 3, the

oubling constant for ps k.

.2. Let E be a (09,70)-weakly porous set in X with respect to 6 such that ps g
Given Bg = Bs(zg,r0) such that Bg NE#0and0 < e < pg,E(Bg), there
ts 0 < p,q < 1, independent of €, such that

(5) w(Fs(pe)) < qu(Fs(e));
(6) 1(Fs(3p"ps.e(BY))) < ¢
(7) w(E) =o.

We shall give the proofs of Lemmas 5.1 and 5.2 after proving the main result contained
in the next statement.

w(BY), for every nonnnegative integer k;



ISSN 2451-7100
IMAL PREPRINT # 2024-0071 Publication date: June 24, 2024

WEAKLY POROUS SETS AND A; WEIGHTS IN SPACES OF HOMOGENEOUS TYPE 15

Theorem 5.3. Let (X,d,u) be a space of homogeneous type such that the d-balls are
open sets. Let E be a (o,7)-weakly porous set in X with respect to d such that pg g is
doubling. Then, there exists o > 0 such that w(x) = d(-, E)™ belongs to Ai1(X,d, ).
The constants a and [w]a, (x4, depend on o, v, Kq, Ag, and Cy .

Proof. For the given quasi-distance d on X, applying Theorem 2.6, we obtain that the
new quasi-distance 0 given by Definition 2.5 belongs to d(X, d). Hence, since (X, d, u) is
(0,7)-weakly porous and the function pg g satisfies the doubling condition with constant
Ca,g, from Corollary 3.6 and Lemma 3.8, we have that (X, §, i) is (00, v0)-weakly porous
and ps iz satisfies the doubling condition with constant Cs . The parameters og, 7o, and
Cs,g depend on Ky, Ag4, 0, v, and Cy . On the other hand, from Propogiti
enough to prove that for some o > 0, §(-, E)~® € A;1(X,J, u) so that we
positive constants C and « such that for every ball Bg = Bs(xo,70), the ineq

][ §(z, B)"“du(z) < Cess infp;(5g.r0)0(,
Bs(zo,r0)

holds. In order to prove this inequality we consider three cages re 1on of

Bg and E. More precisely, consider the three cases.
(A) Bs(wo,m0) NE =0 AS(Bs(z0,70), E) > 4K3rg:
(B) Bg(xo, To) NE=0A (5(35(:60, 7”0), E) < 4K§
(C) B(;(xo,ro) NE 75 Q),

where 0(A, B) := infoea pep d(a, b) denotes

and B. Let us start with the case (A).

Then7 5(‘1"’ E) > KLIS(S(ya E) - 5([1),@/) >

ﬁé(y,E). So that d(x, E)~* <

x € X, thus

ing the re

spect to § of the sets A
> (0 to be chosen later.
> 150y, B) = 530(BY, E) >

)~ for every a > 0 and every

_1N
Ks '
sy, B)°. (17)

Now, (B) can
we have

that, with m such that 2™~ 1 < 5K§’ <2m,

p(5K3BY) ][ -
< ——20-0s O0(x, B) “du(x
M(Bg) 5K3BY ( ) (@)

<7 f 6w B) dua).
5K3BY

Observe now th 3BYNE # . Then, assuming that (16) holds in case (C) for some
appropriate values‘of o > 0, we have

d(z, E)"%du(x) < CAj" ess inf5K§,Bg<5(-,E)_a < CAY ess infBg(SQ,E)_a, (18)
By

as desired. Let us finally consider the case (C). Assume that BY N E # () and write
p = psp(BY). Let us split the integral in question using the notation Ej(-) and Fy(-)
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introduced in Lemma 5

/ 5z, B)~*dp(z) /B o ) )+ /F L B
<(5) "u(m\Es(50)) + [ @B ). ()

§P)
To find a proper bound for the second term on the right-hand side notice that the set
where the integral is taken can be expressed as

F5(27'p) = {z € B : 6(x, E) < 27'p}

={zeB):8(z,B) =0} U | J{w e BY: 27 p*p < <27'p*p}
k=0
= (EnBY)U UF52 p) \ F5(271pF1p),

where 0 < p < 1 is prov1ded by Lemma 5.2. !!;r
u(E) = 0. Hence, from (6) in the same lemma,

Jra ™
F5(3p)

from (7 Lemma 5.2,

(@)u(BF)p™,

ciently small as to make p~®¢ < 1. Now, since Bg NE # () and

ma plies

/Ffs(ép)

ing then (17), (18), (19) and (20) and taking the maximum over all constants
figllows that d(-, E)~“ belongs to the class A1 (X, d, ) for every o > 0 such that
O

E) %du(z) < C(a)u(BY)inf esngé(-,E)_a. (20)

In the following, we give the proofs of Lemmas 5.1 and 5.2 which made it possible to
obtain the main result of this section.

Proof of Lemma 5.1. Consider the set (). := Fs(e) seen as a subset of the space (BY, §*, u*),
where 0* and p* are the restrictions to Bg of 6 and u, respectively. This set is open,
bounded, and proper in Bg. In fact, since 0 < € < pg’E(Bg) we may take ¢ such that
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e < ¢ < psp(BY) and a &-ball Bs(x,() which does not intersect with E and is con-
tained in Bg. Since, ¢ < (, it is clear that the center x of this ball does not belong
to Es(g), hence z € BY \ Q. = By \ Fs(¢). Apply now Lemma 2.7, with triangular
constant K = Kj, to (). to obtain a family of 6*-balls {Bs«(x;,7;) }ier satisfying (a)-(d)
of Lemma 2.7. Notice that Bs-(z,t) = Bs(x,t) N By, where Bs(x,t) is the d-ball in X
centered at x € BY with radius . We then have

U By« xz;"'z) - FJ UB5* m1,4K5n) (21)
el el

Fixed some index i € I, as Bg \ Q¢ # 0 and By« (zi,r;) C Q, we have 570, SO
by (iii) in Theorem 2.6 we can find some z; € X such that Bs(z;, Br;) C

z; € Bg«(w;,7;), we also have Bg«(;,4Ksr;) C Bs(2;, 5K2r;). Then,

U Bys(zi, t;) C Fs(e U Bs (ZZ, gti)»

el el ’8

where t; := r; and the Bj(z;,t;) are pairwise disjoint
the balls Bg«(x;,7;) are pairwise disjoint. The above inc
Lemma 5.1. In order to prove (&), notice that item (.
each i € I there exists some y; € By \ Fs() such th
see 6(Zi,yi) < K(;[(S(ZZ',.’L‘@') + 5(1‘1,?/2)] < Kg[’l“i + 12
Let us finally prove (4). Given some e € E N BY 21) there must exist i € I

so that ¢; > 2—[;(.5{5 when By« (x; particular, if 0 < n < (12K§’)_1B

and we define the index set ] ; , then I, # (). Furthermore, if
i € I, as B(g(yl, )ﬂ E = ' 13K§ﬂ_1]ti) and ¢ < n7t; <
Ksn~' +13K{871t;; 0, E) and

sn '+ 13K§ﬂ_1]ti)>

5,6 (Bs(zi, ti)),

ger satisfying 2! < % + 13?5 < 2", These inequalities prove
(15). O
Proof of Lem 2. Let 0 < & < psp(BY). For n > 0, consider the function O(n) =
[% + %} e introduced in Lemma 5.1. Since the constant Cs g is greater

than one, because E is weakly porous, the exponent —log, Cs g is negative and © is an
increasing function of 7. Also, lim, 0 ©(n) = 0 and lim,_,., ©(n) = (26€< Noe2Com < 1.
Set

1 Yo
/B Ks 2Ks 9( )
= e 07 —:| : < % , 23
o := Sup {” ( 12k3) = Ky 1 13K1B1 (23)



ISSN 2451-7100
IMAL PREPRINT # 2024-0071 Publication date: June 24, 2024

18 HUGO AIMAR, IVANA GOMEZ, AND IGNACIO GOMEZ VARGAS

so that 7y is well defined as the largest positive number satisfying the inequality ap-

pearing in (23). Since 0 < 79 < 12K3, the balls Bs(z;,t;) of Lemma 5.1 with i € I,

satisfy
ps,e(Bs(zi,ti)) > ©(no)e. (24)

Having this into account, take &’ := 72-O(1g)e. Notice &’ < & as O(n) < 1 for every
n > 0. We now proceed to estimate the measure of the set Fs(¢) \ Fs(¢’) by using (1) in
Lemma 5.1,

u(Fs() \ E5() 2 (| Bazio ) \ Fx()) =

el

Let us analyze individually the measures of seﬁB
according to whether i € I, or i € I\ I),. In

i € I\ I,, we invoke (3) in Lemma 5.1 to obtai
0(ziyyi) < 13K§’/B*1ti. Let us observe that K
claim that Bs(y;, K;'e — ') N Es(e’) = 0.
e € E. Tt follows that §(w,e) > K; '6(y;,e) —
Bs(yi,e) N E = (). Hence, w ¢ Es(¢). :
so in particular Bs(z;,t;) \ Es(g")
recalling t; < noe, we have

BY \ Fjs(e) such that
%@(no)) > 0, so we
(yl,Ké_ e—¢') and
- Ky leye —5 since
at Blg(zz,tz) C Bg(yZ,K e—¢),
e this take w € Bs(z;,t;) and,

s W(Bs(zi ti) \ Es(e")) = u(Bs(zi,ti)) for every ¢ € I'\ I),. On the
ing F a weakly porous set in X with respect to J, we can find
e disjoint balls {Bg(z}, s;)}jvzl such that

.5( i j) C Bs(z,t;) \ E for all 1 < j < N,
' > Yops,E(Bs(2i,t;)), for every j=1,..., N;
2Kst; for every j=1,...,N;

(iv) 3252, 1(Bs(25, 85)) = oop(Bs(2i, i)
1

From (ii) above and (24) we have s’: > v0O(no)e, which in turn implies 7532- - =

Ka( st — 20 (m)e) > —s . Also, we have that B(;(z;,K_lsi — 6’) N Es(e") = 0. To see
this, we proceed as in some previous step and take w € Bg(z Ky 5 —¢&)ande€ E. Tt

follows that §(w,e) > K(;lé(zj-, e) —5(z§,w) > Ké_lsg‘—K(s 13;-1—6 =¢', thus w ¢ Es(e’).
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It turns out that for i € I,

p(Bs(zi, i) \ Es(e ))>N<C[JB§(Z;‘75§)\E5(5/)>
j=1
= i u(Bs(25,s5) \ Es(€))
j=1
SCICETE)
J; 1 . 1Y o
S gt 2 Sl
j=1 0 j=1

where 2871 < 2K < 2F. Putting all together, we can co"-ue 0
Fs(¢")) as follows,

1(Fs(e) \ F5(e') > 1(Bs(zi,ti) \ Es(e"))

where [ wa 1 < 2L If we take p := @( ) and ¢ :=
1—09 A " = pe and the inequality ,u(F(;(a)\Fg( )) > l,u(F(;( )
u(Fs(e)) — u(Fs(pe)) = (1 — q)u(Fs(e)),

S ranged to get (5). Ttem (6) easily follows by applying (5) repeatedly,
p5.5(BY),

which can b8
starting with ¢

(Fs( 5 P E(st))) < QN<F6<1%P6,E(BS)>) <...< qk#(Fa(p‘s’ET(B‘?))) < ¢"u(BY).

Let us finally prove (7). Notice first that E C (J.cp Bs(e,r) = Es(r) for any choice of
positive r, so it suffices to check that pu(E N Bs(e,r)) = 0 for every e € E and r > 0.
Given such a ball By := Bs(e,r), since its center belongs to E, clearly Bs N E # () and
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we can apply (6) with Fs(e) := Es(¢) N Bs. Indeed, for every k € N,
k k

u(E N B;) < M<E5 (%P&,E(B(S)) n B(s) = N<F6<%P6,E(B(S))) < " u(Bs),
and so taking the limit as k — oo shows u(E N Bs) = 0. O
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