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GAUSSIAN JN, SPACES

JORGE J. BETANCOR!, ESTEFANIA DALMASSO2, AND PABLO QUIJANO?2

ABSTRACT. In this paper we introduce the John-Nirenberg’s type spaces

associated with the Gaussian measure dvy(z) = 7=4/2e=121” 4z in RY wh
1 < p < co. We prove a John-Nirenberg inequality for JN,(R%,~v). We a
characterize the predual of JN,(R?,~) as a Hardy type space.

1. INTRODUCTIOJ‘

In [12], John and Nirenberg introduced the well-kn
tions with bounded mean oscillation. Also, they consi

assume that the cubes have sides parallel to the
A function f € L'(Qo) is said to be in JN

where the supremum is taken over a > families {Q;}52; of pairwise
disjoint cubes in g and . of f over the cube @;. Similarly,
a function f € Li A en |[f[[sn, rey < 00, where || - [[jn, ey s
defined analogously.

JN,, spaces w polation by Campanato [3] and
last decade a number of papers have inves-
. 19], [15] and [17], for instance). Related with
p spaces ([13]), the John-Nirenberg-Campanato
d versions of JN,, spaces ([23]) and the sparse JN,, spaces ([0]),

ies of the chosen sets we can obtain different spaces.

In [11], John studied BMO spaces using medians instead of integral averages.
a the results in [21] and [22] it can be deduced that BMO spaces defined by

edians and averages coincide. Recently, median-type John-Nirenberg spaces

in metrie’measure spaces have been studied in [18].
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It is not hard to see that LP C JN,. Also we have that JN, C LP°°. Further,
both of these inclusions are strict. An example of a function f € JN,(I)\ L?(I)
where I is an interval in R was defined in [5]. Previously, some results related
to the nonequality L? # JN, were contained in [15]. In [1], it was proved that
JN, # LP*°. Other examples of functions in JN, spaces have been constructed
in [24].

Our objective in this paper is to introduce and to study the JN,, spaces associated
with the Gaussian measure dv(z) = 7~%2¢~1#1" dz on R? that we namelIN,(R?, ~)
with 1 < p < o0.

We consider the function m defined on R? by

1 if x =0,
m(z) = min{l,ﬁ} if 7 # 0.

If B is a ball in R? we denote by cp and rp the genter a
spectively. Let a > 0. By B, we represent the f&‘
rg < am(cp). It is usual to name the balls in B,
rameter a. The Gaussian measure has not the do
Gaussian measure is doubling on B, but the dou
Proposition 2.1]).
The bounded mean oscillation function spac
BMO(RY,v), was introduced in [16]. A function
BMO(R?,~) when

1], [14] and [26]).
0and 1 < p < co. A function f € L*(R%,~) is said to be in JNPQ“ (R4, ~)

p\ /P
K2o(f) = sup <Z’Y(Qi) (@/@ If—fQiIdv) ) < 00,

where the supremum is taken over all the countable collections {Q; }ien of pairwise
disjoint cubes in Q,. The space JNPQ“ (R4, ) is endowed with the norm

||f||JNPQa(]Rd"y) = ||f||L1(]Rd,’y) + Kan (f)a f € JNan (Rd7 'Y)'

We will prove in Proposition 2.1 that JNZ?“ (R4, ~) actually does not depend on
a > 0. Then we will write in the sequel JN,,(R%, ) to name JN?“ (R4, 5), a > 0. We
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also prove that BMO(R?,~) is contained in JN,(R?,7), 1 < p < oo, and appears
when p — oo in JN,(R?, ) (see Proposition 2.2).
The following property is a John-Nirenberg type inequality for JN,(R?, ).

Theorem 1.1. Leta >0 and 1 < p < co. There exists C > 0 such that, for every
Q€ Q,, 0 >0 and f € IN,(R?, y),

a

Q, p
7({w€Q:|f—fQ|>o})§C<K”—m) .

It is a celebrated result due to Fefferman and Stein ([7]) that the H
H(R?) is the predual of BMO(R?). In the Gaussian setting, the predual
space BMO(R?,~) was characterized in [16, Theorem 5.2] as a
H'(R?, ) defined by using atoms whose support is contained i
In [5, §6] it was defined a Hardy type space H?(Q) who
IN,(Q), where p' = ;% and 1 < p < oo. The :
properties for John-Nirenberg-Campanato spaces ([23]

Our main result characterizes a new Hardy type s
1<p<oo.

For every 1 < s < oo and every cube in
consisting of all those f € L*(Q,~) such that
a > 0 we say that a function b € A(q,a, Q) i
be LYQ.7):

Leta>0and1<p<q<oo
defined by g = >_°°

ble function g on R?

i1 b], Where ] ;a,Qj) being Q; € Qq
and the sequence {Q; }72 that g is a (p, ¢, a)-polymer
when
< 00. (1.1)
Note that the g g i intwi ent because {Q;}52, is pairwise
disjoint. We a/
1/p

ken over all the sequences {b;}32; as above such that
) holds. By using Jensen inequality we can see that if ¢ is

j—10; and (1.1

9, q,a)-polymer defined as above, then g € LP(R?, ) and

1/p

p/q
l9llzr e,y < ZW Qg( Q])/ |bj|qd7> : (1.2)

Observe that g = 0 a.e. provided that ||g[|(, 4,4y = 0. The above estimate implies
that if {g;}ien is a sequence of (p,q,a)-polymers such that Y7, [|gill(p,q.0) < 00,
then the series Y"°° | g; converges in LP(R?, ).

When g = oo the above expressions are understood in the usual way.

We now introduce a Hardy type space as follows. A measurable function g is
in Hy 4R Y) when g = o + Y ooy gi, where ¢g € C, g; is a (p, g, a)-polymer for
every i € Nand Y., [|gill(p,q,a) < 0. The convergence of the series is understood
in LP(R,v). Note that if g € H, 44(R%,v) then g € LP(RY,v). Observe that
co is actually unique, since each polymer g; can be written in terms of functions
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bij € Alg,a,Q;;) and all of them have zero integral with respect to the Gaussian
measure.
We define the following quantity

oo
19, o2ty = lcol + 10D [1gill (p.g.a);
i=1
where the infimum is taken over all the sequences {g;}$2, of (p, ¢, a)-polymers such
that g = co + D ioq 9i With ¢g = [ gdy and 372 [1gill (p.q.a) < 00. Théfunctional
[ - ”Hp,q,a(]Rd’,y) is a norm for Hp,q,a(Rd,y).
Given f € JN,(R?,~), we define the functional A by

Apgi= lim /R ) fngdy,

where for every N € N,

@), it )
Ste) = {ngn(f(rc)), i | (2)

The functional Ay is well-defined, as we shall se

| <

Theorem 1.2. Let 1 < g<p<oo anda>0

(b) IfA € (Hp’,q’,a(Rda7))/
A = Ay, defined as in (1.

H, .00 (RY, efiever a1,a2 >0 and 1 < p < g < o0.

<p<oo and ay,az > 0. We have that
ING“ (RY, 7) = IN;™2 (R, )
ebraically and topologically.

ithout loss of generality, we may assume that 0 < as < ay. It is clear that

,7) € ING“ (R, ) since K (f) < K2 (f) for every f € INS™t (R, 5)
and, therefore,

Qa/
”f”JN,?aQ (Re,~) < ”f”JNpQﬂl (Rd )’ f € JNP ! (Rda7)-

We are going to see the other inclusion. Let f € L'(R?, ~) and Q € Q,,. As in
the proof of [16, Proposition 2.3], there exist N cubes Q1,...,Qn € Q,, contained
in @ and a positive constant C' such that v(Q;) < v(Q) < Cv(Q;) for every
j=1,...,N, and

—foldv<C ) —55 — fa,ldy.
@) Jo\ Heldv < €3 [ 15~ o
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Here, C' > 0 and N € N do not depend on the cube Q.

Consider now a family {Q;}ien of cubes in Q,, such that Q; N Q; = 0 for every
i,j € N, i # j. For afixed i € N, we consider the collection of cubes {Q; 1,..., Qi n}
in Q,, associated with @; as above. Hence, there exists C' > 0 for which

})@( @ s )

N p
<C i
;’YQ <J:17Qz,1 Qulf fai,ldy
00 N
< CZ’Y(Qz)Z <’Y(Q11,]) /Z ' |f_fQi,j dy
N oo
<Cy > ol

The following proposition esta
IN,(RY, 7).
Proposition 2.2.

(a) BMO(R, ) i
(b) For every a

ubes in Q3. Thus, for every 1 < p < o0,

Zm( o |- sz|d7> < o 3 (@0)
Qi i=1

< ||f||z];MO(Rd,,y)'
hen,
||f||JN§1 (RY ) < ”f”BMO(]Rd,w)a 1<p<oo.

(b) We adapt an idea given in the proof of [25, Proposition 2.6]. Let a > 0,
1 < p<oo, f € BMO(R? ), and consider Q € Q,. We have that

g e 2 W lagesy + (@7~ / f — foldn.
Thus,

.. 1
hpn_lg.}f||f||m§a(ugdﬁ) > ”f”Ll(Rd,'y) + m /Q If — fQ|d%
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and we obtain that
hpIggolf ||f||JN§a (Rd,y) 2 [fIBMO2e (R ) (2.1)
On the other hand, by proceeding as in (a), for every 1 < p < oo,

[l in2e ey < I fllBMO20 (R ) (2:2)
From (2.1) and (2.2), it follows that

pli_)n;o ||f||JNz?a(]Rd7,y) = |l fllsmoea (R )

as desired.

3. A JOHN-NIRENBERG INEQUALITY FOR JN,, (R,

We now prove Theorem 1.1. Let f € JN,(R%,~) and Q €
the Lebesgue measure in R%. Proceeding as in th

roof of
see that ‘
A{ze@:[f(z) - foal>0o}) <C

for o > 0 where

SRUEE P

and the supremum is taken over all t
in Q,. Here, fu = %H) [y fd

To see this, suppose that H is a Q). We have that

lea| < lem — avdm(cq) + |cq)-

< 0o < am(co) < a(l + avd)ym(cy).
ng to [12, Lemma 3] we deduce that

g

Qa 14+aVvd P
Az € Q: 1f(2) — fonl > o} < C (u) |

and proceeding as in the proof of Proposition 2.1 we obtain that

Ky "+ (f) < CRS(f)

and (3.1) is proved.
If H € Q,, by using [16, Proposition 2.1(i)] we get

1 2 C
m/Hlf—fH,AIdAsW/H|f—fH|dxgm/H|f_fH|w

Also, [16, Proposition 2.1(i)] implies that if b > 0 there exists C' > 0 such that
for every measurable set B C D with D € Q,

C'(B) < e lv* X(B) < C(B).
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It follows that, for o > 0,

K,?“(f))”'

g

T({ze@:[f(2) = foal > 0}) < C(

Let 0 > 0. We have that
T{z e Q:|f(z) = fol >0}) Sv({z € Q:[f(z) — fonl > 0/2})
+7({z €Q:[foxr— fol >0/

As above, we can write

1 Co
o — fal Sm/Hlf—ledASm/Hlf—ledWSC‘w

for certain Cy > 0.
Then

(@)

T{z € Q:|foxr— fol >0/2}) < {0

‘We obtain

Let 1 <p<oo,1<gqg<ooanda>0. A function f € L'(R? ~) is said to

Qa (Tod
i (R%, ~) when

° o 1 p/a\ /P
K=a = i — — iqd < s
(1) sup(;“y(Q)(V(Qi) /Q 17~ o v) ) .

where the supremum is taken over all the pairwise disjoint sequences {Q;};en of
cubes in Q,. The space JNZ%; (R4, ) is equipped with the norm || - llyn2a (ra )

) pP;q ’
defined by

1/l sn2a @y = Ifli@ey) + Ka (f), f € INJa(RY, ).
p,q( 'Y)

When a > 0and 1 < g < p, JNZ%; (R4, +) actually does not depend on a and g,
as shown below.

Proposition 4.1. Leta > 0 and 1 < q < p. Then, JN?,Z (R, ) = IN, (R4, )
algebraically and topologically.
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Proof. By using Holder inequality with ¢ and ¢’ we easily get JNZ%; (R4 ) C
JNI% (R?,7) = JN,(R?, ) for any a > 0, and the inclusion is continuous. Here, we
have used Proposition 2.1.

We will now prove the other inclusion. Let Q € Q,. Since 1 < g < p, LP*°(Q,~)
is continuously contained in L9(Q, ), and there exists a constant C' > 0 indepen-
dent of ) such that

I9llLa@) < CHURQ)Y P gl Lre(@ry, 9 € LP(Q,7).

Indeed, given g € LP*°(Q, ) we can write, for t = ||g|Lr. (0, V(@)
19180y =4 [ 0" 2l € Q: lg(a)| > oo
0
t o)
SQ</<ﬂAﬂQW7+/‘UWWH$GQI
0 t

<@t + ¢ / o—“p||g||W?( do
t

-
WQﬂq+ﬂmmmm@7w

= ’Y(Q)liq/p”!]”m,oo@,y) + P Q)
__pr
p—yq
Hence,
l9llLa(@) <€
Now, let f € IN,(Q,7). i proof of Theorem 1.1 we can

deduce that

1 p\ /P
= sup | m/@u-mmﬁ) <o,

ken over all the pairwise disjoint sequences {Q; };en of cubes
f=fq € LYQ,v) and

1 1/q L
(m/cg'f ‘fQ""”> < Cp/(Q77NF = falln= .

< Cy(Q) TP 2 (f)-

Suppose that {Q;}ien is a pointwise sequence of cubes in Q,. From the above
inequality we have

sz( l)/ |f—fQi|qdv) i( 2.(0)"

Let € > 0. For every ¢ € N, we choose a pairwise disjoint sequence {Q; ;};jen of
cubes in Q, for which

o] p
(150.0)" = 7@ (ﬁ L, |f—fQi,j|dv) s
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We get

iv(@) Cen /Q 1= a i) "

<CY N Qi) <7(Q;”)/Q lf = fa.,

i=1j=1 i

p 0o
d’y) + Z ;
i=1

< C(ES(f) +e

The arbitrariness of € > 0 allows us to obtain

. p/a\ /P
<;7(Qi) <7(22i) /Qi 'f‘fQJqd’Y) ) < CK

This implies that JN,(R?,~) is continuously contaiied in JNSe

is now finished.

Proposition 4.2. Let 1 <r <s<oo anda >0. Th ar sp
Ag,s = span U L

is dense in Hy s o(R%, 7).

Proof. Suppose first that g is an (r, s
for every j € N, suppb; C Q; € Q
of pairwise disjoint cubes. Also,

We can write

k

9-> b

J

j j : i )
Ty ; g Q;
\
Due to the co NCE i
bj < €.
j (r,s,a)
en now g € R4, v), where g = cp + Y 0y 9 With ¢g € C, g; is an

polymer for every i € N, and ) ;o 19l r,s,a) < 00, for every e > 0, there

o0

€
< Z ”gi”(r,s,a) < 5
Hr,s,a(]Rdv'Y) i=ig+1

i0
g9—co— Y 9i
i=1

each of these (r,s,a)-polymers g;, we have that g; = Z;’;l bi; as above.
Therefore, for every i € N, there exists I; € N such that

1
€
gi — ;sz < 5 for every [ > I;.

(r,s,a)

Then,

i b
g_CO_ZZbi]’

=1=1 Hy o a(R%,y)
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io io l7,

<lg—co—> g +Do {9 =D b
=1 HT’S’Q(Rd’,Y) =1 j:1 HT‘ s Q(Rd77)

€
< —
-2

i0 l;
+ Z gi — Z bij < €.
i=1 =1
(r,s,a)

The proof is now concluded.

Proposition 4.3. Let a;,a2 >0 and 1 <p < q < co. Then

Hy g0, (Rdv 7) = Hp q,a, (Rdv '7)
algebraically and topologically.

it is immediate that H, ;.4,(R?, ) is continuously,
We now prove the converse inclusion.
Let us fix Q € Qq,, and v € L{(Q,~). We consider
family of 2¢ cubes P; contained in @ with sides p

where P, is a cube with cp, = c¢g andlp, = /¢ i of of [16, Lemma 2.3],

it can be obtained that P; € Q% N i ...,2% Consequently,
(4.1)
We define the functi the aforementioned proof. For

/ oy,
Rd

function of the measurable set £ C R?, and

2d
v; = Vi — A\iXp,, Vo =V — E V.
=1

ery i =0,...,2% it is clear that suppv; C P; and fP_ v;dy = 0. Moreover,
=1,...,2% by Hoélder inequality and (4.1) we get

1 "
leillzacmnm < lollzacem + (m / | |v||wi|dw) (P

v(P)
< wllza(p,) + 10l La(p ) —ros
[vllza(p ) + 10l Lacp, NPy

< Cllvllzacp

and

2d
d
voll Loy < I0llzacroy + D 10illLagpnm < (14 C2) 0]l Lacpom-
i=1
It %al(l—i- \/c_l%) < ay, we have P; € Q,,, for every i = 0,...,2% so we are done.
If, otherwise, there exists some P; not in Q,,, we repeat the previous construction
for each of these cubes not belonging to Q,,. If necessary, we iterate the argument.
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Notice that it will suffice to repeat this construction at most n times, where
. k
n::mm{kEN:(%) a1(1—|—\/_%1>§a2}.

This process produce a decomposition of @) into a famlly of cubes {P °, in
Qaz, a decomposition of v into a family of functions {v;};2, for some iy € N with
< (142%™ such that, for every i = 1,...,4g, suppv; C R, v; € LE(P;,~) and
||v1||Lq(p1 5 < (1+029)m [vllLa(q.y)- According to [16, Proposition 2.1(i)], for every
i=0,...,i, 7(P) ~ v(Q), where the equivalence does not depend on
Let g be a (p,q,a1)-polymer, that is, g = E‘;‘;l v; where, for ea
suppv; C Q; € Q,, and v; € L§(Q;,7), and the sequence of cubes
pairwise disjoint with

oo 1 . r/q

Let j € N. We work as before with v; and Q;." Hence,
cubes {P;;}:%, in Q,, and a collection {v;;};°, of fun
(2) Q; = (Ui, Py ) U E;, where |E;| = 0;

(b) supp vi; C PZJ? Vij € L (Pijaf}/) and ”U

for every i = 1,...,10;
(c) there exists C' = C(al,ag,d) >

D™ villLa, .

1
67(
(d) v = 3032, vij
Consequently, for any representation © v; as above, we have another

representation of g = e properties (a)-(d). Moreover,

for each i =1,... 1,

K

%0

”g”Hl7 arag (R%,Y) < Z ”V”(p,q,az <C 10”9”(1),(1,111)

=1

0 g € Hpg.a,( . Notice that the constant does not depend on g. Then,
||g||Hp a.a9 (RE,) < C”g” (p,q,a1)*

Suppose now that g = ¢g + Zj 1 9; where ¢g € C and g, is a (p, ¢, a1)-polymer

for each j € N with 7% [|gj]l(p,g.a) < 0. We can represent each g; = 21:1 Vij
where V;; is a (p, g, ag)—polymer. Then, as before we can estimate

ZZ 1Vijllp.gran) < CZ 1951l (p,g,a1) < 00-

i=1 j=1
We conclude that g € H, 44, (R%, ) with
9l e, 40y @) < Cllglla, , . @m0

and the constant does not depend on g. O
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4.2. A covering lemma. We now introduce a covering by cubes in R™ that will
be very useful in the proof of Theorem 1.2.

Lemma 4.4. There exists a sequence of cubes {Qp tnen such that

(a) RY = Upen@, U E with E having null Lebesgue (equivalently Gaussian)
measure.

(b) For everyn € N, Q,, € Qa,, where Ag = 2V/d.

(c) There exists Cy depending only on the dimension d such that

#{jeN:Q,NQ; #0} <Cq, neN.

(d) There exists, for each k € N, k > 2, a subfamily of cubes in th
named the k-th layer Ly, such that #L;, < Ck?! where C only depen

d, and if Q € Ly then m(cq) < Lo < 2v/dm(cq) and ther

M, independent of k, such that %\/E <legl < MFE4/2.

Proof. We consider the interval T = («, 3) wit

follows:
a = a+ ¢ =——, for some ¢ € N, we writ
(a) If B 0852 (eN i
) -«
I]:<a+(j—1)/86
(b) Ifa+(£—1)fb)g—°‘<ﬁ<oz+ 0 N, we write I; as above

forj=1,...,/—1 and

V2k < apy1 < V3k,

efine P, the cube of center cp, = 0 and side {p, = 2ay,

Pry1\ Pg.
ave that

d
U R’_:J URkJ
as null Lebesgue measure and, for every j =1,...,d,
RkJr,j = {(ml""axd) € ]Rd rag < € < Ak+1, |xz| < akJrl)i = ]-""adai #‘7}
and
Rk] {(1’1, '7$d)€Rd:_ak+l<xj<_ak) |xi|<ak+lai:17"')dai7éj}'

Let j =1,...,d. We denote by {If}ﬁ’“;f the division of (—ag+t1,ak+1) by 1/ak
finishing in ax,1. We name I(I)c’+ = (ag, ax+1). We define

j—1 d
+ k k,+ k
HJ S1yees8 o118 41 8d HISi XIO X H Isi ’
=1

i=j+1
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where s; € {1,..., g1}, i=1,...,d, i # .
We have that
Ry =UH

J58150++,85—1,580,85+415-+,5k "
In a similar way we can wrlte
R, = =UH;

J58150++385 =158 41555k’

where H~ is defined as HT by replacing IO’Jr with I('f’ = (—ags+1, —ag)-
Thus we obtain a covering (modulo a set with null Lebesgue mea;

The cubes in this covering will be called the cubes in the k-th layer.
Note that if @ and Q' are cubes in different layers then Q N Q' = 0. ere

exists C' = C(d) such that, for every k € N and every cube Q in the k-th lay

#{Q' : Q' NQ #0, Q" is a cube in the k-th layer}

On the other hand, since aj, ~ vk we have that
#Ly < CE1, ‘
where Lj collects the cubes of the covering in the
M > 0 such that for every Q € Ly, vk < |co|
Uken Li-

Let A > 1and Q € Q4 such that m(cq) <
inscribed in @, that is, cg = cg and rp = ZQ/2.
such that cps(p) is in the segment joinin
and rpr gy = m(en B))/2

To show this construction ca
case we can set cjy(p) in the seg

)O Rk

B be the ball
a ball M(B)
in the boundary of M (B)

at |cg| > 3/2. In this
B such that

M(B)|) We obtain

B)l +7v(B) = lcB|

v of M(B) = B(cau () Tm(B))-
cp| < 3/2 we can choose cj;(p) in the segment
that |car(m)| = |ep| — 1/2. Then, choosing 7y gy = 1/2 we

T — and levrsy |l + sy = |eBl

wing that cp lies in the boundary of M (B) = B(ca (), "m(B))-

so, if we name M(Q) the cube circumscribed around M(B) we have that
= cp@) and fa@) = 2ram) = mlcamq)). Therefore, it is possible to
is procedure obtaining M?(Q) = M(M(Q)) as long as |cag)| > 1/2.
Given a cube @ € Q4 such that m(cq) < £g and |cg| > 1/2 we will denote K the
integer such that |CMKQ(Q)| <1/2 and |CMKQ—1(Q)| >1/2.

Lemma 4.5. Let A > 1 and Q € Q4 such that m(cq) < Lo and |cq| > 1/2. Let
B be the ball inscribed in Q, M(B) and M(Q) the ball and the cube obtained in
the construction above, B’ the larger ball contained in M(B) N B and Q' the cube
circumscribed around B'. Then there exists K > 0 independent of Q such that

V(M(Q))
——= < K.
Q)
Also if |cg| < DVd for some constant D, then Kg < D?d.
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Proof. Notice that if M(B) C B, then M(Q) = Q" and
1(M(Q))

S 2|

(@)
If M(B) C B we distinguish 3 cases. First, suppose that [cys(p)| > 1. Then

U@ — Lo = 2(rues) —8) < mlems)) — mlcp)

_ vt les| = lenm(m|
levmy| el lesllen ()]
"M(B) E?VI(Q)EQ

S 47'12\4(3)7'3 =

B |CB||CM(B)| 2

Thus
G
tu@ = tq <1 + 2(

Now,

EQ
o < Alyg) < Alg (1 + %) < Al

Therefore

2rp Z TM(B) and the
Suppose now that
case

0
lg < Alyg) < Alg (1 + @) < Al (1 +

Ther
2
3hm@ = lo = Alm(q)-

Since 2¢g = {q the conclusion follows.
Finally, assume that |cg| < DV/d, then

Caricg) = mlcearig)) = mlcg) > L > !
Mi(Q) Mi(Q)) = Q = 2lcq| T 2DV’

Thus,
Kq < 4DVd|co| < Dd. O
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4.3. Proof of Theorem 1.2. We will prove (a).
We first establish a result that will help us to better understand the proof of (a).

Lemma 4.6. Let 1 < g<p,a>0, f€ JNgg(Rd,v), and C1,Cy > 0. Assume
that for every i € N, g; is a (p', ¢, a)-polymer with 31 |9/l (p.q7.0) < 0. For
every i € N, we have that g; = Z;’il bij where, for every j € N, b;; € L (Q;,7)

and supp b;; C Qj, being {Qi;}en a family of pairwise disjoint cubes in Q,, and
suppose that

. 1
; Y(Qij) <—’Y(Qij) /Q

Then,
D

oo
| foir| < Cullllgy sy Dl
i=1j=1 |’ Qij i—1

If, in addition, g = co + > .o, g; for some ¢y € C, a

1/p’

p'/q
|35 d’)') < Cillgill a0y, @

@j

oo
lcol + > 19:ll g0 < Collgl
i=1

v’ o (RE

then

wl fdwfjfj/czﬁ Figdy

i=1 j=1

d ) ||g||Hp/yq/ya(Rd,’y)‘

(4.4)

holds, where f, g;,b;; and the

Proof. First, let us show that, for ev
1 since fQij bijdy = 0 for each

1 1/q'
|9d —/ |bi;19 dvy
Qij W(Qij) Qij ’
p/a\ /P
— |f = fqi;|%dy
Y(Qij) /cjg.;j Qi

o 1 p'/q
i) | —— 17 d

1/p’

ij

= . v\
S o 7 Q _/ b q,d’)/
||f||JNp,q(1RdrY) ; (@iy) <’Y(Qij) Qij i
< Cl“f”JNpQ,g(Rd,v)”gi”(p"q,’a)' -

On the other hand, if g = co+>_ .-, g; for some ¢y € C and g; as before for every
i € N, with [eo| + 2272 19illpr.qra) < Collgllar, ., . (ra ), We can write

wf Jn+ 35 | o

i=1 j=1
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oo
< leolll 1l ey + CollE o2y ey S 198l v

i=1

<(1+ Cl)l|f||JN§g (R4 ) <|CO| + Z ”gi“(P’#I’va))

i=1
< (1 + Cl)CQHfHJN%g(Rd’»y) ||g||Hp/,q/Ya(Rd,fy)' U

Let f € JN,(R?, 7). According to Proposition 4.1, given a > 0, f €
for any 1 < g < p so the previous results apply to f.
We now adapt some of the ideas of [5, pp. 599-600]. We define, for ev:

= |70 it |f(x)] < N
VI E\ W sen(f (@), if |f(2)] > N

Assume that g € Hy o o(R%, ). Our next obje@e is to at the li

ot \
) )

ercise 3.1.4], for every cube @

exists, and also that

Arg:= lim

N— o0 R4

it satisfies

According to [20, Remark 1.1.8
in RY,

— fol'dy, (4.6)

[ L>(R4,~) for every N € N.
me ¢y € C, our objective is clear. Otherwise, we can write
ome ¢y € C and 0 # g; being (p', ¢, a)-polymers for every

since [|gill(pr.q7.a) # 0 we can write g; = >°72 bi; where,

wise disjoint cubes in Q,, with the property that

1/p’
= 1
; 7(Qu) <'Y(Qij) /Q

p'/q
[bi|! dv) < 2/l 47 )
By using (1.2), the polymeric expansion converges in s (R%,+) and, since v is
a probability measure, also converges in L'(R?,~). We have that

/ ngdWZCo/ fd’H‘Z/ fngidy, N eN.
R R = Jra

Since f € L'(R%,v) and |fx| < |f] for every N € N, the Dominated Convergence

Theorem leads to
lim / fndy = / fdr.
N—o0 Rd Rd

ij
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Since, for every i € N, {Q;;};en is pairwise disjoint and supp(b;;) C Qij, j € N,

we can write
o0 o0 o0
Z/d Ingidy = ZZ/Rd fnbijdy, N e€N.
i=1 7R

i=1 j=1
According to Proposition 4.1 and Theorem 1.1, there exists C' > 0 such that for
every Q € Q, and o > 0,

g

Qa p
7({376@1|f($)—fQ|>U})SC<Kp—(f)> -

Therefore, given Q € Q, and o > 0, we can write

Tz €Q: /@) > o}) <7 (fr € Q: 1f(@) ~ fal > §}) +7 ({r €
¢ <KpQ;(f)> . {0,
o <K,,Q;(f)> .

and we conclude that f € LP*°(Q,~). Since 1
of Proposition 4.1).

Let 7,5 € N. We get |be¢j| < |f||b”| S Ll(QiJ
Convergence Theorem leads to

lim
N—o00

By proceeding as in (4.5) and using first (4. , for each i, N € N,

fnbijdy

1/q
]_ ’
) 1 bii|7 d
< 7(Qij) 7(Qij) /;zij| i 7)

1/q 1 1/q
_ q - d

> 1/q 1/q
1 q 1 /
i) | ——=— — fo. |%d — [ |byl9d

< 2||f||JNgg (Rd,y)”.gi”(p’,q’,a)- (4'8)

ing again the Dominated Convergence Theorem, we get, for every ¢ € N,

li idy = i bidy = bydry.
Jim [ oy Ngnm;/%fmﬂ 33 [ s

i=1 j=1

ij

From (4.7) and (4.8), since >, ||gill(p',q',a) < 00, again Dominated Convergence
Theorem leads to

tiw [ fulg o)y = tim Y [ pugar =33 [ pon.
N—oo Jrd ( ) N—oo ; R4 ; ]:Zl Qij J
According to Lemma 4.6 and Proposition 4.1 we conclude that

|Argl < C”f”JNp(]Rd,'y)”g”Hp/yq/’a(]Rd,'y)a
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with C independent of f and g. Therefore, Ay € (Hp 4q(R%,v))" and
A £l @y < ClFlaN, @)

We will now see (b). Assume that A € (Hy 4 .o(R%, 7))
Note first that for any 1 < p’ < ¢ < 00, a > 0 and Q € Q,, Lg,(Q,fy) is

continuously contained in Hy 4 o(R%, 7). Indeed, let Q € Q,. Any g € L (Q,7)
happens to be a (p', ¢, a)-polymer and

pr,q9°,a

1/q’
ol i) < 1@ ([ o) < g, SHEA)

Then, Al ) € (LY (Q,~)) and there exists hy . € LY(Q,7)

A(g) =/Qghq',czd% geil(Q,v)

7
LE(Qyy

Replacing hq,q by hy.q —771(Q) [, he,@dy shows that we
L3(Q, 7).
If H is a measurable set in R® and h is a meas i on H we

say that h represents A on all the cubes in 9,
R € Q, contained in H, h|, represents A| is definition we
Q. Note that
R € Q, contained in Q.
301] allow us to define

Qa-
Then, by Proposition 4.1 we

LY (R,
have that hy ¢ represents A on all the cub(és( R
also, for every c € C, hy g+ c represe

The arguments developed in [16, 3
a function A* on R¢ which repre

Our objective is to prove that
can conclude that h* € JN,(R%, 7). aim first that h* € L' (R4, ).

By Proposition 4.3 i e a € R Let a = Ay as in
Lemma 4.4(b) and couSider the ion W% that represents A on all the cubes in
Qa,. Given Q € Qg,

Using (4.9

(PN

, 1/q
< y(Q)Y1 </Q|hq,,Q|qdv>

< 1/d’ sup /hq/’di'y‘
loll g g, <1 1/@
< 'Y(Q)l/q ”A”(Hp/’qua(Rd,’y))' sup ”g”Hp/’q/,a(]Rd,'y)
ol g7 g <1
0 (@7

<A QY Mz, @y

We get

1M @i < e allzi@q + lagl (@)
<A QYA s, . @iy + gV (@)
By proceeding as in [16, p. 302] we deduce that
lagl < CKqlAllm,, .z
Then,
1B s < € (V@Y + K@) 1M, ety
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Now, we consider the covering {Qp }nen given in Lemma 4.4 and write

1P Lt ey < Z 1AM 21 (@)
neN

< ClAlluty oty 3 (@) + Ko, (@)
neN

According to [16, Proposition 2.1] there exists C' > 1 such that for every Q € Q4,
and every z € Q)

% < eleal=lel* < ¢,
It follows that, for each n € N
Q) < Cem oy,
By Lemmas 4.4 (d) and 4.5, if @ is a cube in the k-th lay
Q) < Ce k=42 and KQ‘

Also by Lemma 4.4 (d), the number of cubes in the k-

by Ck%1 for every k € N. Note that the constan

only depend on the dimension d.
Therefore, we obtain

Z 'Y(Qn)l/q/ <C
n=1

and

Thus, we have proved
Using the ideas in | ) g to see now that

disjoint family of cubes {Q; ;VZI C Q4,. We can

1/q
1
A — RS |2dy = sup / hAb,dy,
: ol ) Q) Jo,

e the supremum is taken over all the functions b; € Lg,(Qj) such that

1 / /
— |b;]9 dy = 1. (4.10)
’Y(Qj) Q; !
Let € > 0. We choose, for every j =1,...,N, b; € Lgl(Qj,'y) such that (4.10)

holds and

1/a
1 1 €
— A — Bl |7d =— hb;d —_.
(’Y(Qj) /Qj | ol 7) 7(Q;) /Qj T NNA@)

Here {A;}7L; C (0,00) is such that Z;vzl 'y(Qj))\g-’l =1 and

3 4(Q)) #/ A — B [1d "
T ’Y(Qj) Q; 2t

Jj=1

1/p
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N 1 1/q
=Y v@ (g [ - md )
JZ:‘: Q) Jo, ’
We define g = Z;V 1 Ajb;. Tt follows that

1/p

N p/q
S (s )

91l a7, 40) <
Then, ||g||Hp/’q/’Ad(Rd’,y) <1 and ) a, (1)) We obtain
N
> @ : S A, yroa, ey €
j=1 \

1/p

p/q
—hd, |qu> <Al oa,@amy T6

n over all the families {Q;}7_, of pairwise disjoint cubes
e arbitrariness of € > 0 allow us to conclude that

Q
Kpgt(B*) < ClIMlea,, 0wy

by virtue of Proposition 4.1, that hy € JN,(R9,~).
e gomg to see that there exists o € C such that A = Ay where f = M+ a.

Let g € Hy ¢.o(R%,7) \ {0}
Suppose that ¢y € C and consider g = ¢y. We have

A(g) = coA(1) = co (A(l) - / hAd7> + / gh™dy.
Rd Rd
We define a = A(1) — [z, hdry, so it is clear that f = h™ + a € JN,(R?,~) and
As(g) = Alg).

Suppose now that g is a nonconstant function in JN,(R?, v). Therefore, A :=
inf 3277 193l r,q7,a) > 0, where the infimum is taken over all the sequences {g; }ien
of (p',q,a)-polymers such that Y77 [|gill(pr,q',a) < 00 and g = co + >0 gi, for
some cg € C.
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Thus, there exists a sequence {g;}:en of (p, ¢, a)-polymers such that g; # 0 for
every i €N, g =co+ Y 10y gi, With

o0
Z l9illpr,q7,0) < 24A.

i=1
For every i € N, we write g; = Z;’il bi;, where for every j € N, b;; € Lg, (Qij,7)
and supp b;; C @y, being {Qij};?il is a family of pairwise disjoint cubes in Q4,
such that

1/q'

p'/q
g d’y) < 2|19ill 4" a)-

J

iV(QU) <Qi” /Q

By proceeding as in the proof of Proposition 4.2 we can see t
sequences {ig treny and {ji tren of nonnegative inmers suc

ik Jk

CO+ZZbi]’ — 9,

i=1 j=1

as k — 00, in Hy o.o(R%,7). Since A € (Hy

We define f : = @. It is clear that f € JN,(R?, )
and we also

. fd7+ZZ/Rd Fhizdy

i=1 j=1

= C()A(l) + Z Z \/Rd hAbijd’}/

i=1 j=1
= A(g)-

roof of Theorem 1.2 is now complete.
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