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SPARSE APPROACH FOR THE TWO-NORM INEQUALITY OF
LOCAL FRACTIONAL MAXIMAL AND INTEGRAL
OPERATORS.

MAURICIO RAMSEYER, OSCAR SALINAS, JUAN SOTTO RiOS, AND MARISA TOSCHI.

ABSTRACT. Let Q be a proper open subset of R We give sufficient conditions
about local weights for the two-weight norm inequality for the local fractional
maximal and the local fractional integral operator acting on weighted Lebesgue
spaces. By using the technique of sparse operators we obtained improved
results taking into account the proposed hypotheses. As applications we obtain
a priori estimate for solutions of A™u = f in Q, acting in weighted Sobolev
spaces involving the distance to the boundary and different local weights. In
the context of Schodinger type operators we prove as another application the
boundedness of the Riesz potential ]ﬁ‘, for 0 < @ < 2,n >3 and pu be a Radon
measure on R™. Some illuminating examples are set out at the end of the
article.

1. INTRODUCTION

Let € be a proper open and non empty subset of R”. The notation @ = Q(zq,lg)
means a cube ) with sides parallel to the coordinate axes, where z¢ and lg are
the center and the length of half of its side respectively. Here, when we mention
the metric d, we mean the usual d.,. As usual we will denote by AQ the cube with
same center and side length A-times of Q.

For 0 < 8 < 1, we consider the family of cubes well-inside of € defined by

Fs ={Q = Qaq;lg): 2q €Q, lg < Bd(zq,Q%)}.

Associated to this families we give the definitions of the operators with which
we will work.

Definition 1.1. Let 0 <y <1,0< 8 <1 and f € L}, (). For z € Q we define
the local fractional maximal operator as

M35 = sup (107" [ 151) xe (@)

Definition 1.2. Let 0 <y <1,0< 8 <1 and f € L}, (). For z € Q we define
the local fractional integral operator as

() = /Q f(y)

(wpd(z.0e) [T —y[PTN
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Next, we present the class of weights involves in this work. But first we introduce
some notation. For a locally integrable function f and a cube @ in R", with
0 < |Q| < oo, we define the localized LP norm, 1 < p < oo, by

1L, o = (@2 /Q |f<x>pdx)’l’.

A function ¢ : [0,00) — [0, 00) is a Young function if ¢ is continuous, convex and
strictly increasing, ¢(0) = 0 and ¢(t)/t — oo as t — co. There exists an associate
function to ¢ namely @ defined by B(t) = sup,( (st — ¢(t)). This function is
important because it allows us to recover tools widely used in theory, among them
the Holder inequality. Finally, if ¢ is a Young function, the normalized Luxembourg
norm of f in @ is

| | /(@)
||f|<p,Q:1nf{>\>01@|/Qs0(A)dwél}.

In each of the following three definitions the parameters are 0 < f < 1,0 <y < 1
and 1 <p<g< 0.

Definition 1.3. We say that the pair of weights (u,v) belongs to the class AS,’;’ if
and only if

1 1 1
w,v] 45y = sup |Q[7FTa 5w Hv_ﬁ
[ ’ ]Ap’; QG.F[;} | q,Q
Definition 1.4. Let ¢ be a Young function. We say that the pair of weights (u,v)
belongs to the class Ag:;¢ if and only if

1
uaq

<
p',Q

"t

< 0.
$,Q

1 _1
ua v P

wol g = sup 1Q H
P,q q,Q

¥ QEFs

Definition 1.5. Lets ¢ and v Young functions. We say that the pair of weights

(u,v) belongs to the class Aﬁ:g,dmb if and only if

1

1
q v P

< 00.
¥.Q

u

[w,0] o = sup |Q"TT Y
P,

69 QEFg $,Q ‘

For a Young function ¢ we say that it belongs to the class B, with 1 < p < o0,

if for some ¢ > 0 - J
t) dt
/ pt) dt _
.t ot
This class of functions has an associated maximal operator defined as

My f(z)= sup |fll,q -
® 0 2Q »,Q

In R™ we know that this operator is bounded on L? (see [§], [9]).
Finally, if ¢ is doubling, that is, ¢(2t) < Cep(t), and @ belongs to B,, then

B(t'/?) is a concave function. Therefore, its inverse (@ !(¢))? is a convex function.

Lemma 1.6. Let 3, v, p, ¢ and v as above. If 1 belongs to By, then

By By
Ap,q,w c Ap,q :
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Proof. By the definition of the classes it is sufficient to show that

<
p',Q

‘ _1
v P .
P,Q

For a given function g, by using Hoélder’s inequality with ¢ = w(tl/ p/) we have

/ 1 ’ ’
lolfha = iy [0 <2 e <],

Furthermore, we have that

ng’ . :inf{A>o:K12|/ <9A>_ }
wfior i ()2
= {¥>0 g [o(8)s 1)

as we wanted to prove. O

Lemma 1.7. Let 3, v, p, ¢, ¢ and vas above. If ¢ belongs to By and 1 belongs

to By then
By By
Ap,q,¢> v © Ap,q :
Proof. The proof is analogous to the previous lemma. O

Now, we introduce our main results.

Theorem 1.8. Let 0 < v < 1,1 <p < g < oo and u,v be two weights such that
(u,v) € AD) s where 0 < 7 < 1 and ¢ is a Young function such that P € B,.
Then for each B < T holds

Mg : LP(Q,v) — LI(Q, ).

Theorem 1.9. Let 0 < v < 1,1 < p < g < oo and u,v be two weights such that

(u,v) € A;;¢ W where 0 < 7 < 1 and ¢ and ¥ are two Young function such that

& and 1) belong to By and By, respectively. Then for each 8 < T holds
I LP(Qu) = LY(Q,u).

The paper is organized as follows. In section 1 we give the tools in the local
context and introduce the local dyadic grids. In section 2 and 3 we prove the
principal theorems related to the boundedness of the local fractional maximal op-
erator and the local fractional integral operator respectively. In the section we give
some applications related to Sobolev embedding and the principal application is
the boundedness of the Riesz potential. In the last section we expose some exam-
ples that justify the hypotheses used in the results. Throughout this paper, unless
otherwise indicated, we will use C' to denote constants, which are not necessarily
the same at each occurrence,
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2. LOCAL GEOMETRY CONTEXT

We will work in this paper with the notion of “cloud” of a given subset F in ).
More precisely, for each 5 € (0,1) we consider the set

(2.1) NaBY= | R,
RNE#)
ReFp

as the cloud of F. For balls in a general metric spaces, this notion was introduced
in [5]. The following two lemmas can be found in [?] in the euclidean version.

Lemma 2.2. Let Q be an open proper subset of R™. Given 0 < 8 < 1, for each
t € N such that 2=t < 3/5, there exists a covering Wy of Q by disjoint dyadic cubes
belonging to Fg and satisfying the following properties

i) If R= R(zR,lr) € Wi, then 10R € F3 and
2_t_3 d(:ER,QC) S lR § 2_t_1 d(xR,QC) .

11) There is a number M, only depending on  and t, such that for any cube
Qo = Q(z0,1l0) € Fz with 10Q & Fgs, the cardinal of the set

Wi (Qo) ={R €W, : RNN3(Qo) # 0},
is at most M. We will call the union of this cubes as

Wiao= |J R.
ReW:(Qo)

The following lemma says that a certain element x can not belong to too many
clouds of balls of the covering given by Lemma

Lemma 2.3. Let {Q;} be a pairwise disjoint collection of Whitney type cubes.
Then their clouds have bounded overlapping. More precisely, there exists a natural
number Ng > 0 such that

Y Xwi@n (@) < No,

for every x in Q.

For a cube R = Q(x R, lr) € F3, we observe that the cloud Ng(R) can be written
as

Ss(R) = |J Qx,Bd(z, Q).
Py

By the definition we note that this set is the support of local fractional maximal
operator acting on locally integrable functions f supported on R. Moreover, for
small 3 values, is well-inside of €2, in the following sense.

Lemma 2.4. Letn € (0,1]. If 5 € (O, g) then there exists 8 € (3, n) such that
Ss(R) € R = Q(wo, 5d(z0,Q°)),
for every cube R = Q(xg,1) € Fga.
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Proof. Let us consider R = Q(zo,l) € Fg and y € Sg(R). Then y € Q =
Q(z, B d(z,Q°)), with RN Q # 0. Since for any z € RN Q we have

d(z,Q°) < d(xg,Q°) +d(xg,2) +d(z,2) < (1+ B)d(xo,Q°) + Bd(x,Q°).

Then
1
(2.5) d(z,9°) < % d(x0,92°) .
Now
d(ya l‘o) S d(ya Z) + d(Z, IO)
< 2Bd(x, Q%) +1
1
<28 (fg) (o, %) + Bd(wo, )
2 +3 c 2 c
:ﬁ Bd(l‘o,ﬂ):ﬁd($o,ﬂ)
1-p
So, y € Q(xo,Bd(azo, Q°)). Since 0 < 8 < n/5 then B = ﬂifgﬁ < n as we wanted to
prove. O

The following lemma we need later.

Lemma 2.6. Let 0 < v < 1 and we define a = 2"3=0+1 For a cube R = Q(z g, )
and a non-negative function f & Llloc whit support in R, there exist ky € Z and
jo € Ny such that

2R, ! / f< af < |Rjg [t / f<abtt
R R

where R; = 27R = Q(z g, 271R).

Proof. First, we consider ko € Z such that
ako < |R|7—1/ f <afotl,
R

Next, since |R;|77! [, f tends to zero we can define

jozmax{jEN: ako <|Rj|7_1/ f}
R

The first inequality now is trivial and the proof of the lemma is complete. O

Remark 2.7. From now on, we will denote R = 2R, where Jjo is as in the above
proposition and R is as in the Lemma

In the next definition we introduce a local version of the dyadic grid considered
in [2] (pag 31).
Definition 2.8. Given a cube @ € Q). We say that a collection of subcubes D is a
dyadic grid of Q, denoted by D(Q), if
i) If P € D then lp =2 %lg, for some k € Ny.
it) If PR €D then PN R € {0, P,R}.
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iii) For each k we have ‘Q\ U P‘ =0.
PeDy,

In the last item it means that the collection Dy = {P € D : Ip = 27%l5} forms
a partition of @, for every k € Ny, except perhaps for a set of measure zero.

In addition, we will need that the cubes of the grids belong to some family of
well-inside cubes. The following lemma prove it.

Lemma 2.9. Let o € (0,1] and Q € Fg, with 3 € (0
0 € (B,0) such that P € Fy, for every cube P C Q.

,1%7) Then there exists

Proof. Let us consider Q@ = Q(x,lg) € Fs and P = P(y,lp) C Q. First, we note
that
d(z,Q°) <d(y,Q°) +d(z,y) <d(y, Q) +lg < d(y, Q°) + Bd(x,Q°).

So )
Q¢ Q¢
d(z, )<1—Bd@’)’
and
Ie < g < f(e,0) < 17 A1),
By defining 6§ = % we obtain that 6 < ¢. With this, P € Fy and the proof of
the lemma is complete. [

As a consequence, not only the grid of @ but the grid of any subcube contained
in @ all belongs to the same family.

Corollary 2.10. Let 0 € (0,1]. If Q € Fp with 8 € (O,ﬁ%), then there exists
0 € (B,0) such that D(P) C Fy, for every P C Q.

Now we present a necessary tool with which we will work later. Given a cube QQ =
Q(zqg,lg) we says that Q, = Q(z,lg), with z, = zg + 2tlg, t € {—1/3;0;1/3}"
is the 1/3-translation of . The following observation exposes the relationship
between a cube and the grids built on each translation of it.

Remark 2.11. Every 1/3-translation R; of the cube R = Q(zo, 2ly) is contained in
Q(zo,lo). In fact, for each y € R; we have

3 13
d(y,zo) < d(y,z¢) + d(xt, ) < 310 +2 3 510 =1.

3. SPARSE APPROACH FOR THE MAXIMAL OPERATOR

In order to construct an adequate sparse operator for our goal, we need the
following result.

Theorem 3.1. Let 5 < 3/10 and R = Q(zg,lr) € Fp, then every cube in the 1/3-
translation dyadic grid D¥(R), whitk =1,...,3", belongs to Fsp/(3-58)- Moreover,
given any cube Qo C R, there exists k and P € D¥(R) such that Qo C P and
Ip < 3l0,.
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Proof. Taking into account the Remark and since R € Fjg, if we take Iy = %l R
we have that Iy < 38p(zg) with witch Q(zg,lo) € .7-'%5, where 23 < 3. Then
D*(R) belongs to Fsg/(3-55) by applying the Corollary |2 Finally, the rest of
the proof is analogous to the proof of Theorem 3.1 in [2]. O

Now, we will consider a fractional maximal operator associated with a dyadic
grid as follows.

Definition 3.2. Let 0 <y <1 and f € L}, .(Q) and a cube R C Q. For the dyadic
grid D = D(R) we define the dyadic fractional mazimal operator in ecvery
x € as

M5 = sip (100 [ 1) xa(o):

Proposition 3.3. Let 0 < v < 1. There exists By € (0,1) such that for every
0< B < Boand f € L} .(Q) such that supp(f) C R € Fps there exists a positive
constant C = C(n,~) such that for each x € Sz(R)

Mifx)<C S MPf(a),

1<k<3"

where DF = D¥(R) is the 1/3-translation of the grid D(R) and R is as in Remark

27

Proof. Since g(8) = QJO% is a increase and continuous function with g(0) = 0,
we define Sy such that g(fp) = 3/10. Then, if 0 < B < Sy, for each z € Sz(R) then

z€QC Rby Lemma So, by Theoremthere exists k and P € DF = DF(R)
such that Q C P and |P| < 3"|@Q|. So

QP /Q £ < 3= [Pt /P fl oM P fa)<C Y M f(a).
k

Then, we have

M’Yf <CZM%

as we wanted to prove. O

Finally, in order to prove our first result, we will consider the following notion
of sparse.

Definition 3.4. Given a cube Qp € Q and a dyadic grid D(Qo), we say that a
subset S = S(Qo) C D(Qo) is a sparse set if

U P
PeS
PCQ

for every Q € S. Equivalently, if we define E(Q) =
as above, then the sets E(Q) are disjoint and |E(Q)|

1
< —

Q\ U ) where the union is
> 31Q

Lo
2
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Definition 3.5. Let 0 <~y < 1 and f € L}, (). For a cube R C Q and a sparse

loc

S C D(R) we define a Sparse Maximal Fractional operator for any x € Q as

25w = 3 (1007 [ 171) xeie@)-

Qes Q

Proposition 3.6. Let 0 < v < 1 and f be a bounded locally integrable function

such that supp(f) is contained on a cube R C Q). We consider D = D(R) the dyadic
grid of R, then there exists a sparse set S = S(f) C D(R) and a positive constant
C = C(n,v) such that for all x € R we have

(3.7) MYPf(z) < CLVSf(x).

Proof. For a = 2"(0=+1 and k € Z we define
Q= {x e R: M"Pf(z) > ak} .

‘We observe that there exist kg and k1 such that the last sets are not trivial. In
fact, since the Maximal is bounded, we take k; the smaller k& such that M$ fx) <

a¥1, for all z € R. With this we get Q) = 0, for every k > k.
On the other hand, by the Lemma [2:6] there exists ko € Z such that

ako < |R|7—1/ f< aFot1
R
Moreover, for every k < ko we have that
o < [RP [,
R
so, Q = R for k < ko. Now, we define
S = {Q € D: @ maximal A |Q|7*1/ f> ak} .
Q

S= J S

ko<k<ki

and

It is not difficult to see that Q; = UPESk P, for each k. Moreover, if P € S, and
P#£ R then taking the father P of P we deduce

(3.8) a® < |P|7‘1/ f< 2”(1—7>|P|7—1[ f<on=mgk,
P P

On the other hand if P = R then (3.8)) still holds by Lemma We write two
claims that we will prove later.

Claim 1: The cubes in S are nested. That is, if P’ € Sk11 and P’ has a father
in D (i.e. P’ # R) then there exists P € Sy, such that P’ C P.

Claim 2: For a fixed k and P € S, we have

Ur= U 7
PGP PGP
P'eS P'eSki1
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Now, we will see that S is sparse. In fact, for kg < k < ki we consider P € S,
by using the Claim 2 and (3.8]) we deduce

pres Prednn

1 on(1-y) 1
< Pl < P|=—-|P
< Pl [ 1< T 1PI= 5 1P

S0, the set satisfy the definition as we wanted to show.

Finally, we prove (3.7). The proof is analogous to prove of Proposition 3.5 in [2].
But we write the idea for the sake of completness. First, we observe that

U\ %= |J EP)= | (P\ U P’).

PeSy PeSy P'GP
P'eSk+1
If Mff(x) = 0 it is nothing to prove. On the other hand, we take € Q. \ Qg1
that is @ € E(P), for some P € Sg. Thus

M7VPf(z) <t <al|PP? z)=0C ppt x),
fla) < <a (1P [ Fxeo@ > (7 | Hxea@
then
M™P f(z) S CLSf(x),
as we wanted to prove.

It only remain to prove the claims made above. For the first, by maximality
suppose that P’ € Spy1 (we note P’ = R implies P’ € Sy,, then there is nothing
to prove) it must necessary happen that if P’ & P, for some P € D then P € S.
In fact, if this does not happen we get

‘Pl'y—l/ f < ak = ‘P/Pl_l f < 2n(1—’y)ak < ak:-‘,—l7
P P’
which is a contradiction.
For the second claim, it is only needs to show for any P € S
Urc U P
PGP PGP
P'eS P/E€Sit1
The other inclusion is trivial. Then, we consider kg < k < ky—1l andletz € P’ ¢ P,
for some P’ € S;. By the maximality it is clear that k > k. Now, by using the
claim 1 there exists a finite sequence of cubes belonging to each S from k to k + 1
such that P’ ¢ P and P € S41. Thus, since PN P # () must be P C P and the
inclusion is proved. The case k = kg is analogous. For k = k1 — 1, is an exercise to
show that a cube P’ € § such that P’ C P cannot exist. Then
Ur= U rP=0
PGP PGP
P'eS P'€Sk41
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d

Remark 3.9. Let us observe that the previous proposition is actually valid for all

translations de D(R).

Proposition 3.10. Let 0 < v < 1land 0 <7< 1. Forl <p < g < oo let us

consider u and v weights belonging to A;’Zw, where ¥ is a Young function such

that 1 € B,,. There exists 1 < T such that for each locally integrable function f,
with supp(f) C R € Fa, with § < (1, then

)
1337, 0 < €Wl oy

Proof. For a given 7 we consider £, = min{fy, gﬁ}, where (3 is as in Proposition
Since Sy < 1/4 and S < %ﬁ implies % <7 for the Theorem and
the Corollary we obtain that the grids on each of the translations of the dilation

R belongs to F.

Now, in order to prove the result, Propositions[3.3|and [3.6]says that it is sufficient
to prove the result for L"°, where S is a sparse in any of 1/3-translations of

D(R) C F-.
Since the sets F(Q) are disjoint we have that

@S1@)" = X (10 [ 1) koo @)

Qes Q

So, by using the generalized Holder inequality, the hypothesis on the weights we
estimates as follows

1275 (D= | @ 5@
= 1 quE
> (lert | i) ue@)

QeS
q7+1_£ 1|4 _1l|9 —1 a
<oy sl [loF ] (@t [ ) e
5ok 0.Q ».Q Q
q q g
:cz(@pﬁé ui H -3 ) vai Do
Ocs q,Q »,Q P,Q
q
oY |mr] 1E@l?,
Ocs P,Q

where in the last inequality we use the fact that |Q| < 2|E(Q)|. Now, since p < ¢
and the boundedness of the Maximal Orlicz we conclude

HL%S(-}C)Hiq(Q,u) <C Z/E

Qes’E@Q) ’

S

for

P
$,Q

Rl
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<o ()]

q

Lr(Q)

<o

— q
iy = C 1y

Thus the proof of proposition is complete. O

Proposition 3.11. Let 0 <y < 1,0<7<1land1l <p < q < oo Letu, v two

weights belonging to A;:g’w, where 1 is a Young function such that ¥ € B,. Then

there exists B < T such that
Mg : LP(Q,v) — LY(Qu),
for all0 < 8 < fBs.

Proof. Let us consider f € LP(Q,v) and {R;} be a decomposition for Q2 as in
Lemma We consider ]%j as in the Remark Then, if we take 8y = (51/5,
where (3 is provided by the Proposition for each 8 < (5 we estimate as follows

[, 0n0) =% [ (15)"
=3 [, (07 )
= C Z </Q (szﬁ(Rj))qv>Q/p

J
q/p

c /Q (Zj:xsﬁ(Rj))qu

<c (/Qf%>q/p,

where in the last inequality Lemma [2:3] was applied. O

IN

Let us introduce the following maximal operator. For 0 <y < 1,0< 6 < 8 < 1,
and f € L{ (Q) we define for each z € Q

loc
Mo f@=_ s (107 [ 1) xo(e).

QEFp\Fo

For this operator we prove the desired estimate.

Proposition 3.12. Lets 0 <~y <1,0<0<pf<landl <p<qg<oo. Ifu,v are

two weights such that (u,v) € A7"Y, for some T € (8,1) then

M(Veﬁ] : LP(Q,v) — LYQ,u).
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Proof. Let f € LP(Q,v). For each x € ) we can take a cube @, such that x €
Q. € f@ \ Fo and

M), F(@) < 21Qu" / A,

Let us take t € N large enough such that 27% < /5 and the covering {Q,} given
by Lemma Thus
Q= =JQi;1)
J J

Now, if z € Q. Q; # 0, for some j, we claim that there exists a bigger cube,
namely @, such that Q; C Q, € F.. In fact, if we denote Q, = Q(zg,lq) and
Q; = Q(x;,1;) we have in a similar way as in (2.5))

So, for each z € Q;, taking into account the properties of the covering and the
size of the cube ), we can deduce that
d(zg, z) < d(zg,z) +d(z,z;) + d(z;, 2)
<lg+2i;
<lg+27"d(x;,9°)
148

<lg+2° t—ﬁd( 0,9

1+ )

0(1—-p)
Note that it is possible to take t large enough at the beginning of the proof such

that 5 & < 7, then the inclusion Q; C Q(zq, & lg) and the fact that Q(zq,&lg) € F-

is evident. Now, in order to prove the proposition, we will denote Q, = Q(zg,£lg)
and since 2 = U;(); we have that

/(M?eﬁ]f)q“
—Z/ My f)"
<Cy [ e (.

S<1+2_t lg=¢lg-

(f 1)
<CZ/ Q20D (/QI f|pv>‘1/1’ </Qwv_l;,)q/p'u
< CZ( |fpv> |Q 2= (/Q Uf;’)‘l/p/ (@) gx)

Sﬁ(Q] Ed

_OZ< |fIPv

Sp (QJ

1

IQ i

uaq

7,Qx
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Now, since (u,v) € A}7 then the last integral is bounded. Thus, we estimates
in a usual way for obtain

/(M’Y f)qu<C(Z/ |f|pv>q/p<c’</ |fpv>q/p
o 7 - j 7 Ss(Qj) B Q ,

as we wanted to prove. [

Now, we will proof our first result.

Proof of the Theorem[1.8 For a given 7 we consider 0 < 8 < 7 < 1 and we let S5
as in the Proposition [3:11] Now, for 6 < 5 we can disarm the operator as follows

MY f(a) < M7 f (@) + My f(@).
So, by the Lemma we can apply the Propositions and to obtain

1737, g < 1M Aoy + [ Mo ] gy < Oy

‘L’I(Q,u

as we wanted to prove. O

4. SPARSE APPROACH FOR THE FRACTIONAL INTEGRAL OPERATOR

In this section we will prove the Theorem [[.9] We start with the following
definitions. As in the last section R be a cube in §2.

Definition 4.1. Let 0 < v < 1 and f € L, () with supp(f) C R C Q. For the

loc

dyadic grid D = D(R) we define the local fractional integral operator in x € Q as

P2 = 3 (1 [ 111) xolo).

QeD Q

Definition 4.2. Let 0 < v < 1, f € L} (Q) such that supp(f) C R and a sparse

loc

S C D(R). Then, for any x € R we define a sparse fractional integral operator as

s =3 (10 | ) xate)

QeS

Proposition 4.3. Let 0 < v < 1. There exists By such that for every 0 < 8 < By
and f € L}, (Q) such that supp(f) C R € Fz the following estimates holds

loc
ni@<c Y ),

1<k<3n

for every x € R, for some positive constant C = C(n,~), where D* = D*(R) is the
1/3-translation of the grid D(R) and R.
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Proof. With out lost of generality we consider a non-negative function f. Let us
take By as in the Proposition We will suppose that R € F3 where 5 < fy. For

a fixed z € R we denote Q/-g = Q(x 277 8d(x,9Q°)), j € Ng and estimate as follow
I f( / W 4 <c =8 d(z, Q)" 1’/
Z QN 17— yl"(1 " Z (. 29)" Q)

In an analogous way as in the Proposition . for each j, there are some k €
{1,...,3"} and a cube Q. € D¥ = D¥(R) such that Q]ﬁ C Qr, and

(4.4) 279 Bd(z, Q) = 1(Q) < 1(Qr) < 31Q)) <2772Bd(z,Q°).

Now, taking into account that I[(Qy) = 270~ 5 d(zg, Q°) for some i (see Lemma
, there are a finite number of possibilities for 1(Qy) regardless of § and z. In
fact, we recall that for each x € Q(zr, Bp(zr)) we get that

(1 = pB)d(zr, Q%) < d(x,Q°) < (1+5)d(zr, Q)
Return to (4.4) and by dividing the expression by B d(x g, Q) we obtain that

9 2
9—i—4 2#& < 2o~ < 2_j+21,6’_T53 <277,

B+3
where we use that 8 < 8y < 1/2 implies 11—6 < (1,87_‘_'83?2 and 1ﬁ_f32 < %.
Then
& ey n(v—1)
I} f(x) <CZ 279 Bd(z, Q)" /QB
<eF%, ¥ (lor" [ 7)xo@
QeD* Q
2-7—4<2i0~ <23
<62 Y (@ [ 1) xat)
k QeD*
=03 1P f(x)
k
Then the proof of proposition is complete. O

Proposition 4.5. Let 0 < v <1 and f be a bounded locally integrable function in
Q such that supp(f) C R € Fj the following estimates holds.

1P () < OIS ().

for every x € Sg(R), for some positive constant C = C(n,7), where D¥ = Dk(R)
is the 1/3-translation of the grid D(R) and R.

Proof. The argument is similar to that used in Proposition [3.6] and can be consid-
ered as an adaptation to the local context of Proposition 3.6 in [2]. Let a = 271
and for each k € Z we consider

_ T k+1}
Ok {QED.a <|Q|/Qf§a )
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As above, in this context there exists ky and ki such that S, = R, for k < kg and
S, =0, for k > k;. Thus we consider again a subset of D as a sparse set given by

s= U s

ko<k<ky

where
1
Sk:{QED: () maximal /\/f>ak}.
Ql Jo

So, for © € R we can estimate in an analogous way as in [2]. More precisely

PP =3 3 (e [ f)xe@

k<ki QeQy
k
<D YT QN xo(w)
k<ki PeS, QeQk

QCP
Now, for a fixed k < k; and P € S, we have that the last inner sum

S @ =3" ¥ 1@ o= |Pixs).
1-2

QEQy r=0 QEQk
QCP QCP
(Q)=27"U(P)

Then, recall that S, = R, for every k < ko we get

P f(x <Caz Z |P[Ya"xp(z)

k<ki PESK

=C [ IR xa(x) D d"+ > D |P[dx,(x)

k<ko ko<k<ki PeSy

TV A S

ko<k<ki PESy

—c Y (1P / 7) xe(@)

PeS
=C1¥f(a),
as we wanted to prove. [

Remark 4.6. As in Remark [3.9 we note that the previous proposition is actually
valid for all translations de D(R).

Proposition 4.7. Let 0 < v < 1 and0<T< 1. For1l < p < q < oo let us
consider u and v weights belonging to A Ddb? where ¢, ¥ are Young function such

that ¢ € By and ¢ € By. Then there exists 31 < T such that for every 8 < 1 and
feLi,, with supp(f) C R € F3 we have that

|ras < C [ fllzoan) -

L9(Rw)
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Proof. We can assume that f is non-negative and by the monotone convergence
theorem we may also assume that f is bounded and has compact support. Thus, if
we take 81 provided in the Proposition by applying the Propositions and
it will suffice to prove the result for the sparse operator 7S, where S is an
appropriate sparse depending on f and its support. For this, we take h € LY (R, u)
with ||hHLq/(R7u) =1 then by taking g = hxgr for 5 < 51 we get that

| 8 @g@uta)ds
R

< Lo ([ 9)( o)
= S0 (g [ 080 (g [ antd)

QeS

<0 S0 (| bt ) oo, o)
e 3 ot ] YR
co 3 (4 ) g,

where in the last inequality we use the conditions on the weights and the definition
of sparse set. So, since p’ > ¢/ by using a standard argument we can continue the
estimation as follow

/R 17 f(2)g()u(e)da
< (1. e
(S I ) (Sl
:(J(Z [ L g ) (Z [ ¢’Qdm>
<C<Z/E<Q) (10} @)’ d )(Z/ 1/)<x))q'dx>;'

S Clfl e 12 o (o -

) (szf'

IA

Finally, taking the supremum over all such functions h we conclude

||fHLP (Q,v)

Ny ‘
H p Li(R, )

and the proof is complete. [l
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Proposition 4.8. Let 0 < v <1l and 0 <7 < 1. Forl <p < gq < oo let us
consider u and v weights belonging to A;’g Sap where ¢, 1 are Young function such

that ¢ € By and 1 € B,. Then there exists B2 < T such that
I LP(Qv) — LYQ,u),

for each f € L},. and every 3 < Bs.

Proof. Let f € LP(Q,v) and {R;} be a decomposition for € as in Lemma [2.2] We
consider Rj as in the Remark Thus, for 83 = 81/5 by applying the Proposition

7 we get
/Q(f%f)q“:Z/R, (fgf)q“

IN

/Q(;XSﬂ(Rj))fqv
<c (/ f%)wp7
Q

for every 8 < 1/50 and the proof is complete. O

Proof of Theorem[1.9 Let 0 <~ < 1. If 0 < 8 < 1/50 by applying the Proposition
it is nothing to prove here. On the other hand, for 0 < 1/50 < g < 7 < 1,
f € LP(Q,v) and each x € € we estimates as follows

f()

117 f(x)] = / W,
B Q(z,Bd(x,Q°)) |;L' — y|n(177)

fly
< Iglf(l")‘+ / %dy
Qe fd(2,.29)\Q(a,fod(2,07)) 1T = Y|

< |13, £(@)] + My, o f(@).

Finally, by the Propositions [£.8] and [3.12] we can obtain that

|737] 7]

,
+C HM(ﬂlﬁ]f‘

<C .
rony <€ Iflzege

L1(%, u) Le(Q,u)
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5. APPLICATIONS

Interior Sobolev’s type estimates. Let us consider the m-Laplacian operator,
denoted as A™, where the notation means composing the Laplacian operator m
times in 2.

For U, a solution of the problem A™U = f, many estimates are already known
in the context of weighted Sobolev spaces. In particular, in the context of local
weights, in [5], the author considers a version of weighted Sobolev spaces that takes
into account the distance to the boundary. That is, if p(z) = d(z,Q°), then they
define

WEEQ) = 8 f € Lol W lwigoy = 2 [0 D f]

la| <k

Lr(Q, w)

Our first application is a two weights estimates for the solution U as above.

Theorem 5.1. Let 1 < p < g < co. For a pair of weights (u,v) that satisfy
the hypotheses of Theorem , and additionally u € Ag and U a solution of
A™U = f in Q, we have:

100wz 00 < € (100 2oy + 10778 ] o)

Proof. Since u € A2, we have

1Vl ey < O (101 + 17 7o) -
Then, by the Lebesgue differentiation theorem and the Theorem ([1.8)),
”U“LG(Q w) h ||M6U|‘Lq(ﬂ w) <C HU”LP(Q v)*

Note that the pairs of weights (up*™?, vp*™™) also belong to the class A7 . In
fact, if Q € F; is a cube centered at xg, we have p(x) =~ p(x¢), for all z € @), where
the constant depends only on 7. Thus,

QmH Hv’%p‘Qme o= Cp(xo)* " plao) 2™ Hu%

1
P

0.Q $.Q

Then, by applymg the Theorem (1.8 again we conclude

2m 2m
Hp 'f||L‘1(Q7u) = ||f||L’1(Q,UP2m’q) S ||Mﬂf||Lq((27up2m,q) S OHP fHLT’(Q)U) .
With this the proof of the theorem is complete. O

Theorem 5.2. Let 0 <7 <1yl <p<gqg<oo. Let us consider two weights u
and v satisfying the hypothesis of Theorem[I.9 Then

||P9||Lq(§z w = C||9||W1 P(Q)

for every g € Wplf(Q)

Proof. For any z € Q, in [0, Theorem 5.3], the authors proved that

l9(@)| < € (p@)™ 1" lgl (@) + 15"V (=) ) ,
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holds for every g € C1(Q), where 3 € (0,1). Now, given 7 € (0,1) it is easy to see
that (u,v) € A7 implies (up?, vp?) € A7 .. Then, for 8 < 7, by applying
the Theorem we have
La(Q u))

1/n
loalisin = (|13l
L"(Qw"))

Hp 1/”IVQI‘

Li(Q,u)

1n 1n
= ([ 191, * 7191

< C (lgllzoay + 1V gllocgropm))
C\Qle b -

Equivalently, we conclude that W} ?(Q2) C L(€, up?) and the proof is done. [

Schédinger type operators. We will analyze the behavior of the Schidinger
type Fractional Integral acting on weighted Lebesgue spaces with different weights
satisfying a bump type condition in both factors. We now provide a description of
the context. This operators was considered by Shen in [I1] and they are defined as

L;t = _A_'_Ma

where 4 is a non-negative Radon measure on R™ with the following properties:
there exists positive constants d,, Cy, and D, such that

d—2+8,
(5.3) WB) <Cu(g) B R):;
and
(5.4) pl(B(,2r)) < Dy (n(B(w, R)) +772) |

forallz e R*and 0 < r < R.
Thus, by using the semigroup theory we can considered the Riesz potential as

I9:=1L; %,
for 0 < a < 2. In [I] the author introduce a class of weights w for which the I} i
bounded from LP(w) to L¥(w*/?) for the case 0 < @ < 2,1 <p < Zand L = % %

For the next result we require the following concept. We denote d ( ,y) the
Agmon distance for the measure p defined through

1
u(o9) = dy, (o) =t [0 ),
where the infimum is taken over all absolutely continuous « : [0,1] — R™ with
7(0) =z and (1) = y and

B
pu(x)—sup{r>0zwgl}, rzeR".

We will denote p instead p,, for the next. It have the properties of a know called
critical radius function. A cube of the form Q(z, p(x)) is called critical cube. If
o >0 and z, y € 0@, where @ is a critical cube, then p(z) < Cyp(y). As a
consequence of it we have the fundamental decomposition of the space.
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Proposition 5.5 ([4], [3]). There exists a sequence of points {z;};en € R" that
satisfies the following two properties,

(1) R™ = UjenQ(z;, p(z;)).
(2) There exists C, N1 > 0 such that for every o > 1

D XQ, o) < Co™
JEN

Lemma 5.6. Let Q and Q be two balls such that Q C Q, then

<19l
1fll.0 < = 1flne-
=g

Proof. Let Q C Q and suppose that | flln,@ < co. By the convexity of n we have
that ~

L2y A

= n )

@l /o : =7al ||f||nQ

and the proof of lemma is complete. ([l

The following two lemmas are the key for our application. The constant ¢ is
greater than 2 and depend of the critical radius function. Their proofs can be
found in [I, Lemma 2.4 and Lemma 2.5].

Lemma 5.7. Let p : R — (0,00) be a critical radius function. Let r > 0 and
x € R™. Suppose that r < 2. Then

B(z,rp(x)) C By(x,0r).
Suppose instead that v > 2. Then

B(z,rp(x)) C B, (axé(l + r)kOH) .

Lemma 5.8. Let p : R" — (0,00) be a critical Tadius function. There exists a
constant Ag > 1, dependent on p only through By and kg, such that for all x € R™
and 0 < r <9,

B,(z,r) C B(z, Agrp(z)) .
Also, for xR™ and r > 6,

B,(z,7) C B(:r, ((Té)k°+1?1)p(x)) .

Our application is now exposed.

Theorem 5.9. Let pi be a non-negative Radon measure on R™ satisfying and
. Letn>3,q>5,0<a<2andl <p<q<oo. Letus consider Young
functions v and ¢ such that ) € B, and ¢ € By . Then

Iy LP(R",v) — LY(R"™,u),
for every pair of weights (u,v) that satisfy
ul/a v /P

eCT/P/

1

(5.10) sup\Bp|%_%+5
BP

< 00,
By ¥,B,
for some ¢ > 0, where B, is the ball with center x and radius r > 0 with the metric

d,.

ecr/q
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Proof. The fractional integral operators are well-known to have the following rep-
resentation (see [7, p. 286])

12| f(z / K2 () | ()] dy

For the proof we consider the known decomposition in the local and global compo-
nents of the operator. That is, for each z € R"”

I;C”f‘(x) = Iﬁ(|f|XQ(x,p(x)))<m) + I3(|f|XQ(x,p(x))c)(x) .

So, it will to be sufficient to prove the result for each of one. For the local part
we use an estimation proved in Lemma 4.5 in [I], then

(1 F X o) @) < C / @]y

(5.11) < C/ )|
(z,p(x)) Iw = yl

Let us consider {Q;} the critical cubes provided by Proposition and for the
properties of p we can take o > 1 such that Useq,Q(z,p(x)) C 0Q; = Qj. For
each j, we define Q; = QQj, with 6 > 1 to be determinate later. In this context, we
can to prove that the critical cubes belongs to a certain local family of well-inside
cubes in (2;. More precisely, we have that Q. € Fy,¢_1), for every z € @;. In
fact since p(z) < Cy p(z;), where Cy > 1 by denoting x; the center of Q); we can
estimate

d(z, QF) > d(z;,Q5) — d(z, Ij) (0Cs = 1)p(z;) > Co (0 —1)p(x;) = (0 — 1)p(x),

that is Q(z, p(z)) C Q(z, (9 0 d(z,95)) and following the estimate (5.11) we get
for x € Q;

ey f Y a/n
1720/ gt @] <© [ Oy ol i),
Qe gy d(z.02)) [T — Yy

where 1/, 1" . is the local fractional integral operator defined in 2; (see Definition

-0
).

Now, in order to use the Proposition @ we must show that @); belongs to the
appropriate local family of well inside cubes in €); and that the pair of weights
satisfy the hypothesis of the aforementioned proposition

For the first we take 6 large enough such that 0 7 < B1 (see Proposition
In second place, for 0 < 7 < 1 and a cube @ = Q(zq,lq) € F-(£2;) applying the
Lemmas and [5.8] it can be seen that

QiEmir ] o] g <

Then (u,v) € A;’;{b"w and the estimation can be continue

/ |22 (11X @0 (2) | (2 dx—Z/ 2 (F1XQGp() (@)| ul@) do
<CZ/

12 @) () do
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SCZ(/Qj \f(x)l”v(a?)dx>%
< c( | 1@ (3 xase, @) o) dw) ;

< CNANT o) -
where in the last inequality we use the Proposition

For the global part, that is I3 (| fIXQ(x,p(2))) (%) let us consider the balls B; :=
B(z;,p(z;)), with j € N, as in Proposition B,. = By(z,Ay"), B,j =
By(z;, 5 + Aal), where § and Ay are constants that dependent of the critical
radius function p. (see [1I, pg. 24).

By an argument of duality, for a function g such that ||g||Lq/(u) = 1, we can
estimates as follow

1552 (I X Q@@ @) Lo

— [ 507N ) 9(0) ) d
<3 [ T Nt ) )

jeN

<Z/ </ -~ Ky (z,y) \f(y)ldy> g(x) u(x) dz
<Z/ (/ Ki@y) |y )Idy) 9(@) u(z) d

_Z/< /k+1>B \kB,, Kﬁ(wv?/)f(?/)l@) g(x)u(z) dx .

JEN

In the last inequality, since 8 > 2 and Ag > 1, by Lemma with r = Aal,
we have that B(z,p))® C By ,. Then, for each j € N, k € N, x € B; and
y € (k+1)B,s \ kB, s, we have the following estimate for the kernel

K (z,y) < Cep(a)*?,
for some 0 small enough. Moreover, we note that (k+1)B, . C B, ; for all z € B;.
HIS(\flmu,p(w))c)(x)||Lq(u>

—d S &k

JEN

—cz(ze—ék/

jJeN k

No—d = e—ék
<C jze;]p(x]) <k_1 /( - ()] dy> ( /B

)~ g(x) u(x) dv
o If(y)ldy> [ p)g(a) @) a

B

g(x) u(z) dx) ;

P
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where in the last inequality we use p(z) >~ p(x;), for all x € B; and the inclusion
B; C B, ; (see Lemma . Thus, by using the generalized Holder inequality in
both parenthesis for adequate young functions we estimate as follows

1152 (1 X Q@@ ) @) Lo

=5 _
<C ZP z;)* d(ze g [(k+1)B, ] ||f”1/p||a,(k+1)3,,,j”v 1/p||w,(k+1)Bp,j)

jeEN

< (1Bl I 5, 1., )

<C Zp a—i—d(ze—ék (k+1 )d(ko+1)

jJEN k=1
NP1 ey, 190 5 5, 0, N2, )

The next step is to make use the bump condition about the pair of weights. More
precisely, by the Lemmas [5.6] [5-7] and [5.8] again and the hypothesis on weights we

get that
o™ sy 5, 162 6,3,
k + —
<M DBaly il bl
1B,

k “n a
< C |( + ) ,jl |(/€ + 1) pJ| +17— c(k-i-l)(ﬁ-‘rA )( +pl/>
1B,

< Cp(z;) 7 |(k+ 1)B, ;|77 7 QD (B+ATH (34)
Now, returning to the original account we have that

||Ia(|f‘XQ w,p(ﬂc))c)(x)HLq(u)

<C Z (Z (o + 1)d(ho+1) =0k + ekt 1)(5+A45 H(2+2)

JEN MEk=1
l+i{ ’
VR DB 1T 1P g, 0 5,

<O (k4 1)horD) O el (Faz ) (34 5)

M8

=~
Il
_

l+i/ ’
* (Z |(k+1)B,;|7 "« ||f“1/p||E,(k+1)Bp,jngl/q ||¢73p=7’>

JjEN

<C (k + 1)2d(k0+1) e—6k+c(k+1)(5+Agl)(%+i)

hE

~
Il
-

1 1
(0 0Bl 18 150y,

p,j> ’
jEN

where in the last inequality we use |(k + 1)B, ;| < C (k + 1)+ |B, ;|. For a
fixed k we apply the discrete version of the Holder inequality with p > 1 and since
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¢ < p' and taking into account that B,; C By; = B(x;,d (k + 1)*otp(z,)),
with § = ([3(6 + Ao_l))(kﬁl), we can get

1 % ’
S+ DByl # Bl 7 1507 g sy, 90 g,

jEN
1 l/p o’ L , 1/17/
< (Sl 08 12 ) (1B e )
jeN jeN
1 1/q
< (D104 DB ()l "(y s i :
—_ 0, Xk]) Hw (k—‘,—l)B Z| ﬂJ|H QXk,J) ||¢>Bp]
jJEN JEN
1/q
§<Z/ (e PG oy mdw> (Z/ (e "N, o >
JEN JEN
» 1/p , q 1/4q
sZ( L (st mi@) an) S (- (et @) )
eN JEN R

Since the Agmon metric is continuous (see Lemma 2.3 in [I]) we can consider the
averages that de definition of the Orlicz Maximal involves and since both Young
functions ¢ and 1 are such that ¢ & B, and P e By, conditions, we can apply the
boundedness in LP and L9 respectively (see [9]).

So, since ||gl/;.¢'(,,) = 1 we conclude that

1 1 ’
S0+ DBy 1 1B 02 5 o syl

JEN
<Z%</ 2R ”(x)dxy/pj%(/ n<9xk,j)<x)q’u<x>dx>”q' |
(/ <%XBM > )v(x)dx)l/p(/ (%XB ) l(x)d;y)l/q

< C(d, ko, B, Nu) (k + DM EFD YL 191 L
< Ol M D
where
By = Blay,6 (k+1)%"p(z;));  B; = Blay,6p(ay)),
with § = ([3(6 + Ao_l))(kﬁl) and N; is provided by Proposition So,

1252 (1 Q) @] a0y

<Cfll U)Z (k4 1) RN (Eo1) o=k +e(hr)(@+4; 1) (3+77)
k=1

Finally, the result for the global part of the operator is valid if we choose the
constant ¢ such that

—0k + c(k+1)(5+A61)(; +;,> <0,
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or equivalent 8¢k — ok <0 ©ec<

85 independent of p and gq.

6. EXAMPLES

The Theoremis an improvement over the analogous result found in [I0] in the
sense that the weights do not need to satisfy a doubling property. In this direction
the following example presents a pair of weights belonging to A;’ﬁw, where one of
them is not doubling.

Example 6.1. Let @ = RT and 8 € (0,1). Let 1 < p<g<oo, 0<~vy<1
such that v — % + % =0 and ¥ be a Young function. Then the pair u(z) = 1 and

7,8

1/
v(z) =e"°" belongs to A/,

Moreover, v is not doubling.

Let us consider @ € Fg. First, we note that Hul/quQ =1 and Hvl/p/ <1

oo

Now, since y— 1174—% =0, if we take Ay = max{1, (1)} then by the Young function’s

properties we get
() (I
o Yl | S| ——] <1,
Q[ Jo Ao Ao

7.8
p'.Q < Xo, consequently (u,v) € Ay g

So, Hvl/p/

On the other hand, we will see that v is not doubling. Suppose that this not
occur and let us take x > 0 and r = g—x If we denote B = B(z,r), By = B(z+7%, §)
and By = B(x 4+ 37, 1), it is easy to see that B, C 3B; and it follows that

474
’U(BQ) S ’U(SBl) S C’U(Bl) .

Furthermore, since v is increasing;:

4
v(B3) > Cae ™"

r

8
; ) < Cxe=® (EERE)E

v(By) < v(B(z,7)) = U(B(z,4£)) < Cv(B(z,

From which we conclude that

8 4
oo BT —eTFA= <cC

Since the left side tends to infinity as x approaches zero, we obtain a contradiction
from assuming that v is doubling.

In Theorem we require that (u,v) € A)'7  for to prove the boundedness of

Mg for every § < 7. One question that arises is whether the classes of weights

V.8
D,q,%

(u,v) € A;’ff. The answer is negative, ever in the particular case of ¥(t) = t%, as

I E)

can be seen in the following example.

satisfies certain openness condition on 8. More precisely, (u,v) € A implies
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Example 6.2. Let Q =RT, 0 < <7< 1,1 <p<qooand 0 < v <1 such
ig
that v = % - % We consider the weights u(y) = e#69Y and v(y) = eP¥Y. Then

(u,v) € AZZ? but however (u,v) ¢ AJ7

Let us consider > 0 and [ > 0 such that Q = (zx—1,x+1) C ((l—ﬁ)x, (1—|—ﬁ)x),
that is @ € F3. For each y € Q) we have that

u(y) < o178 @+ o(y) PP < o@D
So
1 % 1 ! i 1-8
() (o) sonceall
Ql Jq Ql Jq
. 1,1 _ :
Since v — 5 + ; = 0 we get that (u,v) € Agy?.

Now we will see that (u,v) ¢ AY'7. For this, we will consider a critical cube
Q= ((1=7)z,(1+7)z) for some z > 0. Then |Q| = 27 z and

(147)z
/u_/ 72 dy 1+B1 ( 7§(I+T)qw_e%(l—r)qw) :
1-B4q

P’ (1+T)x 1 ’ /
/ v = / =P Ydy = — (e—(l—T)p z _ o—(47)p :c) )
Q (1- 4

)X

It is an exercise to show that for a given parameters a > b the inequalities

1 _ _ 1 _
eax_ebx>§e(m7 ebx_e ax>§e bac7

holds for every x large enough.

1,1
With all this, taking into account that |Q) aty = C a7, for every sufficiently
large x we can estimates as follow

i ’ L/ Mz
o TN [ Y s e
QI Jo 1Ql Jo Q7+ =7

Where M > 0 since the function ¢(t) = %—jri is strictly decreasing. Finally, since
7 i —|— = =0, by considering » — +00 we can conclude that (u,v) ¢ A7

Although we have seen that the inclusion of the families of weights A} ﬁ can
be strict, it is also true that in some particular cases, for certain pairs of Welghts
U,V belongmg to a class A;’qu they can also satisfy the condition Agf“‘s For this
implication to hold, it is sufficient to require that at least one of the weights doubles.

Example 6.3. Let 1 < p < g < o0, 0 < 8 <7 <1, and a pair of weights

(u,v) € A;;f. If at least one of the weights is doubling, then (u,v) € A)7.



ISSN 2451-7100
IMAL PREPRINT # 2024-0075 Publication date: December 27, 2024

SPARSE APPROACH FOR THE TWO-NORM INEQUALITY OF Mg AND Ig 27

REFERENCES

[1] Julian Bailey. Weights of exponential growth and decay for Schrédinger-type operators. J.
Funct. Anal., 281(1): Paper N2. 108996, 93, 2021.

[2] David Cruz-Uribe and OFS. “Two weight inequalities for fractional integral operators and
commutators”. Advanced Courses of Mathematical Analysis VI, (2017), 25-85.

[3] J. Dziubanski and J. Zienkiewicz. Hardy space H' associated to Schrédinger operator with
potential satisfying reverse Holder inequality. Rev. Mat. Iberoam. 15 (1999) 279-296.

[4] Bruno Bongioanni and Eleonor Harboure and Oscar Salinas, Classes of weights related to
Schrodinger operators. J. Math. Anal. Appl. 373 (2011) 563-579.

[5] Eleonor Harboure, Oscar Salinas, and Beatriz Viviani. Local maximal function and weights
in a general setting. Math. Ann., 358(3-4):609-628, 2014.

[6] Eleonor Harboure, Oscar Salinas, and Beatriz Viviani. Local fractional and singular integrals
on open subsets. J.d’Analyse Math., 138(1):301-324, 2019.

[7] Kato, T. Perturbation Theory for Linear Operators. Springer Science €& Business Media,

1995.

Carlos Pérez. On sufficient conditions for the boundedness of the Hardy-Littlewood maximal

operator between weighted LP-spaces with different weights. Proc. London Math. Soc 71,

(1995) 135-157.

Gladis Pradolini and Oscar Salinas. Maximal operators on spaces of homogeneous type. Proc.

Amer. Math. Soc., 132(2):435-441, 2004.

[10] Mauricio Ramseyer and Oscar Salinas and Marisa Toschi. Two-weight boundedness for local
fractional maximal and applications. Springer; Furopean Journal of Mathematics, 9, 109,
2023, 33.

[11] Zhongwei Shen. “On fundamental solutions of gemeralized schrédinger operators”. Journal
of Functional Analysis, 167(2):521-564, 1999.

8

[9

INSTITUTO DE MATEMATICA APLICADA DEL LITORAL, CONICET-UNL, COLECTORA RUTA
Nac. N° 168, PARAJE EL Pozo - 3000 SANTA FE - ARGENTINA.

Email address: salinas@santafe-conicet.gov.ar

Email address: mramseyer@santafe-conicet.gov.ar

Email address: jsotto@santafe-conicet.gov.ar

Email address: mtoschi@santafe-conicet.gov.ar



	Portada-2024-0075
	Borrador
	1. Introduction
	2. Local geometry context
	3. Sparse approach for the Maximal operator
	4. Sparse approach for the Fractional integral operator
	5. Applications
	Interior Sobolev's type estimates.
	Schödinger type operators.

	6. Examples
	References




