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UNCERTAINTY IN HYPERGRAPHS

HUGO AIMAR, IVANA GÓMEZ, AND JOAQUÍN TOLEDO

Abstract. In this paper we explore an uncertainty principle on certain hypergraphs.

Precisely we prove a multiplicative uncertainty inequality for regular hypergraphs of

Kirchhoff type, based on the definition of reasonable position and momentum operators

for a quantum formalism in hypergraphs.

1. Introduction

In [BK15] and [Kop15] a Fourier Analysis version of the uncertainty principle is es-

tablished in the setting of finite weighted undirected graphs. The approach of John

Benedetto and Paul Koprowski is based in the spectral theory for the graph Laplacian

that provides the Fourier Analysis of signals defined on the vertex set of the graph (see

also [AL13]). In recent years, in applications to data analysis, it became clear that inter-

actions of order higher than two between nodes of a net, provide additional information

on the system under analysis. See for example [GMV23]. Actually the basic definition of

hypergraph as a covering of the vertex set by subsets, the hyperedges, of any cardinality

can be found in [Ber73]. Since, as it is well known, see for example [Rod02], every hyper-

graph induces weighted matrix of adjacency of vertices, we can construct an undirected

weighted graph induced by the hypergraph. So, we can apply the results in [BK15] to

this graph to obtain an additive Fourier type uncertainty principle. Nevertheless, since

an hypergraph is not completely determined by its adjacency matrix, the above reduction

of an hypergraph to a graph is loosing relevant information regarding the higher order

interactions that the hyperedges are recording. With the idea of introducing position and

momentum operators on a hypergraph in order to recover a multiplicative uncertainty

principle, we consider a special case of regular hypergraphs satisfying Kirchhoff type con-

ditions. Instead of the Fourier Analysis induced by the spectra of the given hypergraph,

our approach is based in a formula that resembles an integration by parts.

2. Weighted Hypergraphs. Basic definitions

A hypergraph is a pair H = (V ,E ) where V is a finite set and E is a subfamily of

the non empty parts of V that covers V . The elements of E are called the hiperedges. In

other words E ⊂ P(V ),
⋃
e∈E = V and for each e ∈ E we have that e 6= ∅. A weighted
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hypergraph is a pair (V , w) where V is finite and w : P(V ) → R
+ ∪ {0} is a function

satisfying
⋃
{a⊆V :w(a)>0} a = V . As it is easy to see, with E = {e ∈ P(V ) : w(e) > 0}, we

have that (V ,E ) is an hypergraph in the sense of the above definition.

Notice that every hypergraph H = (V ,E ) can be seen as a weighted hypergraph

taking w(e) = 1 if e ∈ E and w(e) = 0 when e /∈ E . Given a weighted hypergraph

H = (V , w) the incidence function of H is the function h : V × E → {0, 1} defined

by h(v, e) = χe(v), here χA denotes the indicator function of the set A. The degree of

the vertex v ∈ V is given by d(v) =
∑

e∈E h(v, e)w(e). The degree of the hyperedge

e ∈ E is defined as δ(e) =
∑

v∈V h(v, e) = |e|, where |A| denotes the number of elements

of the set A.

These basic definitions provide the ingredients for a notion of adjacency of two vertices

in a weighted hypergraph. The function A : V × V → R
+ ∪ {0} given by A(v, ṽ) =∑

e∈E h(v, e)h(ṽ, e)w(e) is called the adjacency function of H . Notice that when

w ≡ 1 on E , the adjacency function takes only integer values. In fact A(v, ṽ) = |{e ∈
E : v and ṽ belong to e}|. It is clear that A is symmetric and that on the diagonal

A(v, v) =
∑

e∈E h(v, e)h(v, e)w(e) =
∑

e∈E h(v, e)w(e) = d(v) is the degree of the vertex

v. Hence the modified version of A given by Ã(v, ṽ) = A(v, ṽ) − d(v)δv,ṽ, where δv,ṽ

denotes the Kronecker delta, is the adjacency function (matrix) of a weighted undirected

graph on the set V of vertices with no loops. We say that the graph G = (V , Ã) is the

graph on V induced by the hypergraph H = (V , w) on V . It is worthy noticing at this

point that different hypergraphs H can produce the same induced graph. In some sense

the above algorithm can be seen as a projector of hypergraphs onto weighted undirected

graphs. Since in G we have the harmonic analysis induced by its Laplace operator, we

also have the uncertainty results in [BK15]. Nevertheless some substantial properties of

H are not inherited by G.

We shall say that a hypergraph is regular of degree k ≥ 2 (or k-regular) if E = {e ∈
P(V ) : w(e) > 0} ⊂ Pk(V ) = {e ∈ P(V ) : |e| = k}. Notice first that when k = 2 the

class of regular hypergraphs of degree 2 is precisely the class of all weighted undirected

graphs.

In what follows we consider a k-regular hypergraph on the vertex set V with |V | = N

andN larger than 2(k−1). The wave functions ψ for a quantum formalism in H = (V , w)

will be here real functions with domain V . We are looking for two operators P and Q

acting on the wave functions ψ playing the roles of momentum and position operators

in quantum mechanics. In doing so we realize that, so far, all the above definitions were

given in, let us say, absolute terms regardless of any enumeration of the vertex set V .

An enumeration of the set V can be seen as the introduction of a coordinate system in

the classical formalism of quantum mechanics in order to properly define position and

velocity. It is a delicate craft the enumeration of the vertices of a given hypergraph.
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From now on we shall fix an enumeration of V = {v1, v2, . . . , vN} ' {1, 2, . . . , N} and

frequently we shall simply use i to denote vertex vi, i = 1, . . . , N . Since the operators

of position and momentum will be defined through this enumeration of V , we emphasize

on their dependence on this “coordinate system”.

Since in our k-regular hypergraph H = (V , w) we have introduced the enumeration

of V , this fact determines a prelation order of vertices in each e ∈ Pk(V ). Let us precise

this in the following definition.

Definition 2.1. For j = 1, 2, . . . , k we define the functions ij : Pk(V )→ V ' {1, . . . , N}
by

i1(e) = inf{l : vl ∈ e};

ij(e) = inf{l /∈ {i1(e), i2(e), . . . , ij−1(e)} : vl ∈ e}, 1 < j ≤ k.

Proposition 2.2. With the above notation we have

(a) j ≤ ij(e) ≤ N − k + j, for every j ∈ {1, 2, . . . , k} and every e ∈ Pk(V );

(b) ik(e) = sup{l : vl ∈ e}.

Proof. It follows readily from the definition of the functions ij. �

The trivial fact reflected in Proposition 2.2 is that not every vertex can be the first in

some hyperedge, neither can be the kth. Nevertheless, since in applications, the number

of vertices N is much larger than the order k of interactions that determines the order of

regularity of H , we may say that most of the vertices V can be the first, the second and

the kth of some hyperedge e ∈ Pk(V ). This fact leads us to (non topological) definitions

of boundary and interior of an enumerated k-regular hypergraph H .

Definition 2.3. Given an enumerated k-regular hypergraph H , we define its boundary

and its interior respectively by

∂(H ) ={vl ∈ V : 1 ≤ l < k} ∪ {vl ∈ V : N − k + 1 < l ≤ N} and

H̊ =V \∂(H ) = {vl ∈ V : k ≤ l ≤ N − k + 1}.

As a simple example consider V as the set of the first one hundred positive integers,

V = {1, 2, . . . , 100}. The interactions take place only when three integers are consecutive,

then k = 3, w({j, j + 1, j + 2}) = 1 , j = 1, . . . , 98 and w(e) = 0 for any other e ∈ P(V ).

Then, ∂(H ) = {1, 2, 99, 100} and H̊ = {j ∈ N : 3 ≤ j ≤ 98}.
The weight w defined on the hyperedges of H produces a measure on the family

of all the subsets of Pk(V ). Given a subset E of Pk(V ), define µ(E) =
∑

e∈E w(e).

With this measure we may and shall consider the distribution functions of the functions

ij : Pk(V )→ {1, . . . , N} given by dj : {1, . . . , N} → R
+ ∪ {0}, with dj(n) = µ(i−1

j (n)) =

µ({e ∈ Pk(V ) : ij(e) = n}), for n ∈ {1, . . . , N} and j = 1, . . . , k. It is worthy noticing
3
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that for simple hypergraphs, that is when w takes only the values zero and one, the

function dj(n) counts the number of hyperedges having n as its jth element.

3. Some Calculus on k-regular hypergraphs

In this section we aim to introduce some elementary notions of gradient of real functions

defined on the vertex set a given hypergraph, allowing for a Leibniz type formula. We

also prove a kind of integration by parts formula that shall be the key to prove our main

result in Section 4. The starting point for our definition of gradient is that provided for

the case of graphs by Benedetto and Koprowski ([BK15]). If G = (V , w) is a weighted,

undirected, enumerated graph, the derivative, defined in [BK15], of a function f in V is

the function defined on the edges P2(V ) by

Df(e) =
√
w(e)(f(vj)− f(vi))

where e = {i, j} and j > i.

In what follows we shall use the notation {Ej : j = 1, . . . , k−1} for the canonical basis

of Rk−1. Precisely Ej = (0, . . . , 1, 0, . . . , 0) are the k− 1 tuples with a 1 in the position j

and zeros in all the other components.

Definition 3.1. Let H = (V , w) be an enumerated k-regular hypergraph. Let f and

h be two real functions defined on V . The gradient of f with respect to h is the k − 1

dimensional vector valued function of the hyperedges given by

∇hf(e) =
1

2

k−1∑
j=1

[h(ij+1(e)) + h(ij(e))] [f(ij+1(e))− f(ij(e))]Ej.

Notice that when k = 2 and h ≡ 1, we recover the operator Df(e) in [BK15] except

for the factor
√
w(e).

Proposition 3.2. Let H = (V , w) be an enumerated k-regular hypergraph. Then the

operator that applies the pair of functions (f, g) into the vector functions on the hyperedges

∇gf is bilinear. Moreover,

∇1(fg) = ∇gf + ∇fg,

where ∇1 = ∇h with h ≡ 1 in V .

Proof. The linearity in f for g fixed and the linearity in g for f fixed are clear. Let us

check the Leibniz like formula,

∇1(fg) =
k−1∑
j=1

[(fg)(ij+1(e))− (fg)(ij(e))]Ej

=
k−1∑
j=1

[f(ij+1(e))− f(ij(e))] g(ij+1(e))Ej +
k−1∑
j=1

[g(ij+1(e))− g(ij(e))] f(ij(e))Ej.

4
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Since fg = gf , then ∇1(fg) = ∇1(gf) that can be computed as above interchanging f

and g. So that, we also have

∇1(fg) =
k−1∑
j=1

[g(ij+1(e))− g(ij(e))] f(ij+1(e))Ej +
k−1∑
j=1

[f(ij+1(e))− f(ij(e))] g(ij(e))Ej

hence, adding the two formulas above, we have the desired identity. �

In the family of all the subsets of Pk(V ) we have the measure µ defined in Section 2,

by µ(E) =
∑

e∈E w(e) for E ⊆ Pk(V ). Since the gradient of a function f defined on V is

a vector field on Pk(V ) we may compute its integral with respect to µ and we may look

for a kind of fundamental theorem of calculus in terms of integrals of f on ∂(H ) and on

H̊ . In order to properly and briefly write the result let us first introduce two relevant

signed measures on V . For each j = 1, 2, . . . , k − 1, set

δj(n) = dj+1(n)− dj(n) = µ(i−1
j+1(n))− µ(i−1

j (n)),

and

∆j(V ) =
∑
n∈V

δj(n), V ⊆ V .

For every j = 1, . . . , k − 1 define the following function on the set of vertices,

mj(n) =



−dj(j), n = j;

dj+1(N − k + j + 1), n = N − k + j + 1;

δj(n), j + 1 ≤ n ≤ k − 1;

δj(n), N − k + 2 ≤ n ≤ N − k + j;

0 otherwise.

It is simple to check that each mj is supported in ∂(H ). Set Mj to denote the measure

on V , supported on ∂(H ), given by Mj(V ) =
∑

n∈V mj(n). With this notation we have

the following result.

Proposition 3.3. Let H = (V , w) be an enumerated k-regular hypergraph. Let f be a

real function defined on the set of vertices V . Then, with the notation introduced above,

we have the identity∫
Pk(V )

∇1fdµ =
k−1∑
j=1

(∫
∂(H )

fdMj +

∫
H̊

fd∆j

)
Ej.

Proof. Notice first that for j = 1, 2, . . . , k − 1 we can obtain two disjoint partitions of

Pk(V ) using the functions ij and ij+1. In fact

Pk(V ) =

N−k+j+1⋃
n=j+1

i−1
j+1(n), i−1

j+1(n) ∩ i−1
j+1(m) = ∅

5

IMAL PREPRINT # 2025-0076
ISSN 2451-7100 
Publication date: May 23, 2025

Prep
rin

t



for n 6= m . Also

Pk(V ) =

N−k+j⋃
n=j

i−1
j (n), i−1

j (n) ∩ i−1
j (m) = ∅

for n 6= m. Hence∫
Pk(V )

∇1fdµ =
∑

e∈Pk(V)

w(e)
k−1∑
j=1

[f(ij+1(e))− f(ij(e))]Ej

=
k−1∑
j=1

Ej

 ∑
e∈Pk(V)

w(e)f(ij+1(e))−
∑

e∈Pk(V)

w(e)f(ij(e))


=

k−1∑
j=1

Ej

N−k+j+1∑
n=j+1

∑
e∈i−1

j+1(n)

w(e)f(n)−
N−k+j∑
n=j

∑
e∈i−1

j (n)

w(e)f(n)


=

k−1∑
j=1

Ej

(
N−k+j+1∑
n=j+1

f(n)µ(i−1
j+1(n))−

N−k+j∑
n=j

f(n)µ(i−1
j (n))

)

=
k−1∑
j=1

Ej

(
N−k+j+1∑
n=j+1

f(n)dj+1(n)−
N−k+j∑
n=j

f(n)dj(n)

)

=
k−1∑
j=1

Ej

[(
k−1∑
n=j+1

f(n)dj+1(n) +

N−k+j+1∑
n=N−k+2

f(n)dj+1(n)

)

−

(
k−1∑
n=j

f(n)dj(n)+

N−k+j∑
n=N−k+2

f(n)dj(n)

)
+
N−k+1∑
n=k

f(n) (dj+1(n)− dj(n))

]

=
k−1∑
j=1

(∫
∂(H )

fdMj +

∫
H̊

fd∆j

)
Ej.

�

Propositions 3.2 and 3.3 can be used to obtain a formula of integration by parts that

is contained in the next statement.

Proposition 3.4. Let H = (V , w) be an enumerated k-regular hypergraph and let f and

g be two functions defined on V , then

∫
Pk(V )

∇gf(e)dµ(e) = −
∫
Pk(V )

∇fg(e)dµ(e) +
k−1∑
j=1

(∫
∂(H )

fgdMj +

∫
H̊

fgd∆j

)
Ej.

Proof. Since from Proposition 3.2

∇1(fg)(e) = ∇gf + ∇fg,
6
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integrating both sides on Pk(V ) with respect to dµ , we get∫
Pk(V )

∇gfdµ = −
∫
Pk(V )

∇fgdµ+

∫
Pk(V )

∇1(fg)dµ.

Now, applying Proposition 3.3 with fg instead of f , we get the result. �

All the gradients above are vector fields in the set of hyperedges. Their components

can be regarded as “partial derivatives”. We shall further use the notation

Dj
hf(e) =

1

2
[h(ij+1(e)) + h(ij(e))] [f(ij+1(e))− f(ij(e))] ,

for the jth component of ∇hf(e), j = 1, . . . , k−1. This notation give natural coordinate-

wise versions of Propositions 3.2, 3.3 and 3.4.

In the next section we shall make use of the result contained in the next statement.

Lemma 3.5. Let H = (V , w) be an enumerated k-regular hypergraph. Let ν be the

positive measure on V given by ν(V ) = 1
2

∑
n∈V

∑k−1
j=1 [dj+1(n) + dj(n)] for V ⊆ V . Set

I : V → {1, . . . , N} to denote the index function of each vertex in the given enumeration

of H , I(vi) = i. Then for every nonnegative function g on V , we have

(a) Dj
gI(e) ≥ 0, for every j = 1, . . . , k − 1 and every e ∈ Pk(V );

(b)
k−1∑
j=1

∫
Pk(V )

Dj
gIdµ ≥

∫
V

gdν.

Proof. Notice first that for fixed j = 1, . . . , k − 1 and e ∈ Pk(V ) we have that

Dj
gI(e) =

1

2
[g(ij+1(e)) + g(ij(e))] [I(ij+1(e))− I(ij(e))]

=
1

2
[g(ij+1(e)) + g(ij(e))] [ij+1(e)− ij(e)] ≥

1

2
[g(ij+1(e)) + g(ij(e))] .

In order to prove (b) we use the last inequality and the partitions of Pk(V ) introduced

in the proof of Proposition 3.3,

k−1∑
j=1

∫
Pk(V )

Dj
gIdµ ≥

1

2

k−1∑
j=1

∫
e∈Pk(V )

[g(ij+1(e)) + g(ij(e))] dµ(e)

=
1

2

k−1∑
j=1

∫
e∈Pk(V )

g(ij+1(e))dµ(e) +
1

2

k−1∑
j=1

∫
e∈Pk(V )

g(ij(e))dµ(e)

=
1

2

k−1∑
j=1

[
N∑
n=1

∫
e∈i−1

j+1(n)

g(n)dµ(e) +
N∑
n=1

∫
e∈i−1

j (n)

g(n)dµ(e)

]

=
1

2

k−1∑
j=1

N∑
n=1

g(n)[µ(i−1
j+1(n)) + µ(i−1

j (n))]

7
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=
N∑
n=1

g(n)
1

2

k−1∑
j=1

[dj+1(n) + dj(n)]

=

∫
V

gdν.

�

4. Wave functions, position and momentum operators on k-regular

hypergraphs

So far, given a weighted hypergraph H = (V , w), we have two positive measure

spaces (Pk(V ), µ) and (V , ν). Hence in both of them we have the natural Hilbert spaces

L2(Pk(V ), µ) and L2(V , ν). Let us denote with single angular brackets 〈·, ·〉 the inner

product in L2(V , ν) and with ‖ ·‖ the induced norm. The scalar product in L2(Pk(V ), µ)

is denoted by double angular brackets 〈〈·, ·〉〉 and the corresponding norm ||| · |||.
A wave function is a real function ψ belonging to the unit sphere of L2(V , ν) vanishing

on ∂(H ). Precisely ψ : V → R, ‖ψ‖2 = 1 and ψ(n) = 0 for every n ∈ ∂(H ).

Given a wave function ψ, the position operator acting on ψ is the k− 1-dimensional

vector field defined on the hyperedges or, more generally, on Pk(V ) by

Qψ(e) =
k−1∑
j=1

Qjψ(e)Ej,

with

Qjψ(e) =
1

2
[ij+1(e) + ij(e)][ψ(ij+1(e)) + ψ(ij(e))].

The momentum operator applied to the wave function is the k − 1-dimensional

vector field defined on Pk(V ) by

Pψ(e) = ∇1ψ(e) =
k−1∑
j=1

Pjψ(e)Ej,

with

Pjψ(e) = ψ(ij+1(e))− ψ(ij(e)) = Dj
1ψ(e).

Notice that both, P and Q, can be seen as operators applying functions from L2(V , ν)

into functions (L2(Pk(V ), µ))k−1, which is a Hilbert space with the inner product

〈〈F ,G〉〉 =
k−1∑
j=1

〈〈Fj, Gj〉〉 =
k−1∑
j=1

∫
Pk(V )

FjGjdµ

and

|||F |||2 = 〈〈F ,F 〉〉 =
k−1∑
j=1

∫
Pk(V )

F 2
j dµ.

Let us observe that in some sense the position and momentum operators resemble the

classical analogues. In fact, the difference of the values of ψ in consecutive vertices of a
8
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hyperedge, mimics the derivative that is the essential definition of moment. On the other

hand, a simple way to regard the classical momentum in one dimension, is given by a

multiplication operator on the wave function ψ(x) with multiplier x.

5. The main result

Let us start by going back to the result in Proposition 3.4 taking as g any function on

V vanishing on ∂(H ) and f = I the index function I(vi) = i.

Proposition 5.1. Assume that g vanishes on ∂(H ). Then∫
Pk(V )

∇gI(e)dµ(e) = −
∫
Pk(V )

(
1

2

k−1∑
j=1

[ij+1(e) + ij(e)][g(ij+1(e))− g(ij(e))]Ej

)
dµ(e)

+
∑
n∈H̊

ng(n)
k−1∑
j=1

(dj+1(n)− dj(n))Ej.

Proof. Follows directly form Proposition 3.4, taking f = I. �

When H is actually a simple graph we have only two distribution functions d1(n) and

d2(n). The equation d1(n) = d2(n) means that the number of edges “arriving” to the

vertex n equals the number of edges “departing” from n. For weighted graphs it can be

seen as the first Kirchhoff law for circuits. This remark suggests the next definition.

Definition 5.2. Let H = (V , w) be an enumerated k-regular hypergraph. We shall say

that H is of Kirchhoff (respectively sub-Kirchhoff) type if and only if for every n ∈ H̊ we

have that dj(n) is constant as a function of j ∈ {1, . . . , k} (respectively dj(n) ≥ dj+1(n)

for every j).

In the example introduced in Section 2 with V = {1, . . . , 100}, k = 3 and w({j, j +

1, j + 2}) = 1 and w = 0 otherwise, since H̊ = {3, 4, . . . , 98}, we see that dj(n) = 1 for

j = 1, 2, 3 and n ∈ H̊ . So that this is a Kirchhoff type hypergraph.

Under the hypothesis of sub-Kirchhoff type for k-regular hypergraphs, the coordinate-

wise version of Proposition 5.1 and g ≥ 0, we obtain the following result.

Corollary 5.3. Assume that g ≥ 0 vanishes on ∂(H ) and that H is of sub-Kirchhoff

type. Then, for each j = 1, . . . , k − 1 we have∫
Pk(V )

Dj
gI(e)dµ(e) ≤ −

∫
Pk(V )

1

2
[ij+1(e) + ij(e)][g(ij+1(e))− g(ij(e))]dµ(e).

Proof. Notice that, since g ≥ 0 and from the sub-Kirchhoff property of H , the second

term in the right hand side of the formula in Proposition 5.1 is negative or vanishes. �

We are finally in position to state and prove our main result.
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Theorem 5.4. Let H = (V , w) be a k-regular sub-Kirchhoff hypergraph. Then, the

inequality

|||Pψ||||||Qψ||| ≥ 1

holds for every wave function ψ defined on the vertex set V .

Proof. From (b) in Lemma 3.5, with g = ψ2

1 =

∫
V

ψ2dν ≤
k−1∑
j=1

∫
Pk(V )

Dj
ψ2Idµ.

Hence, applying Corollary 5.3 with g = ψ2 we obtain

1 ≤ −
k−1∑
j=1

∫
e∈Pk(V )

1

2
[ij+1(e) + ij(e)][ψ

2(ij+1(e))− ψ2(ij(e))]dµ(e)

= −
k−1∑
j=1

∫
e∈Pk(V )

1

2
[ij+1(e) + ij(e)][ψ(ij+1(e)) + ψ(ij(e))][ψ(ij+1(e))− ψ(ij(e))]dµ(e)

= −
k−1∑
j=1

∫
e∈Pk(V )

Qjψ(e)Pjψ(e)dµ(e)

≤ |||Pψ||||||Qψ|||,

where the last inequality follows from Schwartz inequality in (L2(Pk(V ), µ))k−1. �
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